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Abstract
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1 Introduction
The distance notion is as old as the history of finding the writing. On the other hand,
the abstract formulation of the notion of distance is relatively new. It was formulated by
Fréchet in 1905 for the distance of sets. In the setting of points, it was discovered by Pom-
peiu and Hausdorff in 1914 under the name of metric. After that it has been improved,
generalized, and extended in several ways. Among them, we mention the distance that
was proposed by Branciari.

Definition 1 (See e.g. [1]) Let S be a non-empty set, and let b : S ×S → [0,∞) such that,
for all x, y ∈ S and all u �= v ∈ S \ {x, y},

(b1) b(x, y) = 0 if and only if x = y (self-distance/indistancy),

(b2) b(x, y) = b(y, x) (symmetry),

(b3) b(x, y) ≤ b(x, u) + b(u, v) + b(v, y) (quadrilateral inequality).

(1.1)

In this case, the map b is called a Branciari distance. The pair (S , b) is called a Branciari
distance space and abbreviated as “BDS”.

In many sources it was called “generalized metric space” or “rectangular metric space”,
but these names do not reflect and indicate the notion (see e.g. [2–19]). Indeed, “Branciari
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distance” cannot reduce to the standard metric. Further, general topological properties
are not compatible. That is why we prefer to use Branciari distance space. For a recent
extension of such spaces, we refer to [20, 21] and [22–28].

Recently, in [29] a concept of Θ-contraction was proposed to extend some fixed point
theorems in the context of Branciari distance space. For the sake of completeness, we rec-
ollect the notion of Θ-contraction here:

Let Θ be the set of all non-decreasing, continuous functions θ : (0,∞) → (1,∞) satisfy-
ing the following conditions:

(†) for each sequence {sn} ⊂ (0,∞), limn→∞ θ (sn) = 1 if and only if limn→∞ sn = 0+;
(‡) there exist q ∈ (0, 1) and � ∈ (0,∞] such that lims→0+ θ (s)–1

sq = �.
This definition has been refined and applied to several fixed point results, see e.g. [8–
12, 20, 21, 30–48].

On the other hand, we recall the notion of extended b-metric space (simply, de-metric
space) introduced by Kamran et al. [32], which is the most general form of the concept of
metric. We recollect the definition as well.

Definition 2 ([32]) For a non-empty set S and a mapping ω : S × S → [1,∞), we say that
a function ρe : S × S → [0,∞) is called an extended b-metric (in short, ρe-metric) if it
satisfies:

(i) ρe(x, y) = 0 if and only if x = y;
(ii) ρe(x, y) = ρe(y, x);

(iii) ρe(x, y) ≤ ω(x, y)[ρe(x, z) + ρe(z, y)]
for all x, y, z ∈ S. The symbol (X,ρe) denotes a ρe-metric space.

We shall combine these two notions, extended b-metric and Branciari distance, under
the name of an extended Branciari b-distance space by the following definition.

Definition 3 For a non-empty set S and a mapping ω : S × S → [1,∞), we say that a
function de : S × S → [0,∞) is called an extended Branciari b-distance if it satisfies:

(i) de(x, y) = 0 if and only if x = y;
(ii) de(x, y) = de(y, x);

(iii) de(x, y) ≤ ω(x, y)[de(x, u) + de(u, v) + de(v, y)]
for all x, y ∈ S and all distinct u, v ∈ S \ {x, y}. The couple of symbols (S, de) denotes an
extended Branciari b-distance space (shortly, de-metric space).

Example 1 Let S = lp, where 1 ≤ p < ∞, be defined by

lp =

{
(xn)n≥1 ⊆R :

∞∑
n=1

|xn|p < ∞
}

.

Define de : S × S →R
+ by

de(x, y) =

( ∞∑
n=1

|xn – yn|p
) 1

p

for all x, y ∈ S.

The function ω : S×S → [1,∞) is defined by ω(x, y) = 2
1
p for all x, y ∈ S. Then de satisfies all

the conditions of an extended Branciari b-distance space. Indeed if p = 1, the quadrilateral
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inequality trivially holds. So, let p > 1 and x = (xn)n≥1; y = (yn)n≥1; z = (zn)n≥1; w = (wn)n≥1

be sequences in S with y, w ∈ S \ {x, z}. Consider

|xn – zn|p ≤ p|xn – zn|p

= p|xn – zn||xn – zn|p–1

= p
[|xn – yn + yn – wn + wn – zn|

]|xn – zn|p–1

≤ p
[|xn – yn| + |yn – wn| + |wn – zn|

]|xn – zn|p–1

= p
[|xn – yn||xn – zn|p–1 + |yn – wn||xn – zn|p–1

+ |wn – zn||xn – zn|p–1] for n ∈N,
∞∑

n=1

|xn – zn|p ≤ p

{ ∞∑
n=1

|xn – yn||xn – zn|p–1

+
∞∑

n=1

|yn – wn||xn – zn|p–1

+
∞∑

n=1

|wn – zn||xn – zn|p–1

}

≤ p

{( ∞∑
n=1

|xn – yn|p
) 1

p

+

( ∞∑
n=1

|yn – wn|p
) 1

p

+

( ∞∑
n=1

|wn – zn|p
) 1

p
}( ∞∑

n=1

|xn – zn|p(p–1)

) 1
p

.

After simplifying we get

( ∞∑
n=1

|xn – zn|p
) 1

p

≤ p

{( ∞∑
n=1

|xn – yn|p
) 1

p

+

( ∞∑
n=1

|yn – wn|p
) 1

p

+

( ∞∑
n=1

|wn – zn|p
) 1

p
}

≤ 2p

{( ∞∑
n=1

|xn – yn|p
) 1

p

+

( ∞∑
n=1

|yn – wn|p
) 1

p

+

( ∞∑
n=1

|wn – zn|p
) 1

p
}

for 1 ≤ p < ∞.

Thus de(x, z) ≤ ω(x, z)[de(x, y) + de(y, w) + de(w, z)] and de is an extended Branciari b-
distance space.
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Example 2 Let S = [0, 1]. Define de : S × S → R by ω(x, y) = 5x + 5y + 3, then (S, de) is an
extended Branciari b-distance space.

We will prove the extended quadrilateral inequality only as the other conditions are clear.

de(x, y) = |x – y|2

= |x – z + z – w + w – y|2

= |x – z|2 + |z – w|2 + |w – y|2 + 2|x – z||z – w|
+ 2|z – w||w – y| + 2|w – y||x – z|

≤ (5x + 5y + 3)
[|x – z|2 + |z – w|2 + |w – y|2]

= ω(x, y)
[
de(x, z) + de(z, w) + de(w, y)

]
.

Hence de(x, y) ≤ ω(x, y)[de(x, z) + de(z, w) + de(w, y)].

Remark 1 If θ (x, y) = s for s ≥ 1, then we obtain the definition of Branciari b-distance and
s = 1 yields the standard Branciari distance. As is known well, b-metric does not need to be
continuous. Consequently, an extended Branciari b-distance is not necessarily continuous
either. In this paper, we presume that each extended Branciari b-distance is continuous.

Definition 4 Let S be a non-empty set endowed with extended Branciari b-distance de.
(a) A sequence {xn} in S converges to x if for every ε > 0 there exists N = N(ε) ∈N such

that de(xn, x) < ε for all n ≥ N . For this particular case, we write limn→∞ xn = x.
(b) A sequence {xn} in S is called Cauchy if for every ε > 0 there exists N = N(ε) ∈N

such that de(xm, xn) < ε for all m, n ≥ N .
(c) A de-metric space (S, de) is complete if every Cauchy sequence in S is convergent.

Motivated and inspired by the above concerns, we have organized the article as follows:
• In Sect. 1, the concept of an extended Branciari b-distance space is introduced and

needed definitions are presented.
• In Sect. 2, various topics called Θ-Branciari contraction, Ćirić–Reich–Rus type

Θ-Branciari contraction, and interpolative-Θ-Branciari contraction are introduced.
By using these new contractions, we formulate and prove some fixed point theorems
in the setting of extended Branciari b-distance spaces.

• A supporting example is presented by using various sequences.
• In Sect. 3, as an application, we present a solution for a fourth-order differential

equation boundary value problem.

2 Main results
Now, we start this section by introducing the concept of Θ-Branciari contraction.

Definition 5 Let (S, de) be an extended Branciari b-distance space and T : X → X be a
mapping. Then T is said to be a Θ-Branciari contraction if there exists a function θ ∈ Θ

such that

θ
(
de(Tx, Ty)

) ≤ [
θ
(
de(x, y)

)]r if de(Tx, Ty) �= 0 for x, y ∈ S, (2.1)

where r ∈ (0, 1) is such that supm≥1 limn→∞ ω(xn, xm) < 1
r , where xn = Tnx0 for x0 ∈ S.
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Theorem 1 Let (S, de) be a complete extended Branciari b-distance and T : X → X be a
Θ-Branciari contraction. Then T has a unique fixed point in S.

Proof For an arbitrary point x0 ∈ S, we construct an iterative sequence {xn}0 as follows:

xn = Tnx0 for all n ∈N.

Suppose that if Tn∗x = Tn∗+1x for some n∗ ∈N, then Tn∗x is clearly a fixed point of T .
Hence, without loss of generality, we may assume that de(Tnx, Tn+1x) > 0 for all n ∈ N.

From Definition 5, we have

θ
(
de(xn, xn+1)

)
= θ

(
de(Txn–1, Txn)

)
≤ [

θ
(
de(xn–1, xn)

)]r

≤ [
θ
(
de(xn–2, xn–1)

)]r2
.

Recursively, we find that

θ
(
de(xn, xn+1)

) ≤ [
θ
(
de(x0, x1)

)]rn
. (2.2)

Accordingly, we obtain that

1 < θ
(
de(xn, xn+1)

) ≤ [
θ
(
de(x0, x1)

)]rn
for all n ∈N. (2.3)

Letting n → ∞ in (2.3), we get θ (de(xn, xn+1)) → 1 as n → ∞.
From (†), we have

lim
n→∞ de(xn, xn+1) = 0. (2.4)

Similarly, we can easily deduce that

lim
n→∞ de(xn, xn+2) = 0. (2.5)

From (‡), there exist q ∈ (0, 1) and l ∈ (0,∞] such that

lim
n→∞

θ (de(xn, xn+1)) – 1
[de(xn, xn+1)]q = l.

Suppose that l < ∞. In this case, let B = l
2 > 0. Using limit definition, we pick n0 ∈ N such

that
∣∣∣∣θ (de(xn, xn+1)) – 1

[de(xn, xn+1)]q – l
∣∣∣∣ ≤ B

for all n ≥ n0.

This implies that |θ (de(xn, xn+1)) – 1
[de(xn, xn+1)]q | ≥ l – B = B for all n ≥ n0.
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Then, we derive that

n
[
de(xn, xn+1)q] ≤ n

[
θ (de(xn, xn+1)) – 1

B

]
for all n ≥ n0.

Suppose that l = ∞. Let B > 0 be an arbitrary positive number.

Using the limit definition, we find n0 ∈N such that
θ (de(xn, xn+1)) – 1

[de(xn, xn+1)]q ≥ B for all n ≥ n0.

This implies that

n
[
de(xn, xn+1)

]q ≤ n
[

θ (de(xn, xn+1)) – 1
B

]
for all n ≥ n0.

Thus, in all cases, there exist 1
B > 0 and n0 ∈N such that

n
[
de(xn, xn+1)

]q ≤ n
[

θ (de(xn, xn+1)) – 1
B

]
for all n ≥ n0.

Using Eq. (2.3), we obtain

n
[
de(xn, xn+1)

]q ≤ [
θ
(
de(x0, x1)

)]rn
– 1 for all n ≥ n0.

If we let n → ∞ in the above inequality, then we obtain

lim
n→∞ n

[
de(xn, xn+1)

]q = 0.

Thus, there exists n1 ∈N such that

de(xn, xn+1) ≤ 1

n
1
q

for all n ≥ n1. (2.6)

Let N = max{n0, n1}. Due to the modified triangle inequality, we have two cases.
For all n ≥ 1, we have two cases as follows.
Case 1: Let xn = xm for some integers n �= m. So, for m > n, we have Tm–n(xn) = xn. Choose

y = xn and p = m – n. Then Tpy = y, that is, y is a periodic point of T . Thus, de(y, Ty) =
de(Tpy, Tp+1y). Thus, by the above argument, we can easily deduce that de(y, Ty) = 0, so
y = Ty, that is, y is a fixed point of T .

Case 2: Suppose that Tnx �= Tmx for all integers n �= m. Let n < m be two natural numbers.
To show that {xn} is a Cauchy sequence, we need to consider two subcases as follows.

Subcase 1: We claim that if n – m is odd, then de(xn, xm) converges to 0 as n, m → ∞ To
prove this, we may assume that m = n + 2p + 1. Thus,

de(xn, xn+2p+1) ≤ w(xn, xn+2p+1)
[
de(xn, xn+1) + de(xn+1, xn+2) + de(xn+2, xn+2p+1)

]
≤ w(xn, xn+2p+1)de(xn, xn+1) + w(xn, xn+2p+1)de(xn+1, xn+2)

+ w(xn, xn+2p+1)w(xn+2, xn+2p+1)
[
de(xn+2, xn+3)

+ de(xn+3, xn+4) + de(xn+4, xn+2p+1)
]

≤ w(xn, xn+2p+1)de(xn, xn+1) + w(xn, xn+2p+1)de(xn+1, xn+2)
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+ w(xn, xn+2p+1)w(xn+2, xn+2p+1)de(xn+2, xn+3)

+ w(xn, xn+2p+1)w(xn+2, xn+2p+1)de(xn+3, xn+4)

+ w(xn, xn+2p+1)w(xn+2, xn+2p+1)de(xn+4, xn+2p+1)

≤ · · ·
≤ w(xn, xn+2p+1)de(xn, xn+1) + w(xn, xn+2p+1)de(xn+1, xn+2)

+ w(xn, xn+2p+1)w(xn+2, xn+2p+1)de(xn+2, xn+3)

+ w(xn, xn+2p+1)w(xn+2, xn+2p+1)de(xn+3, xn+4) + · · ·
+ w(xn, xn+2p+1)w(xn+2, xn+2p+1) · · ·
× w(xn+2p–2, xn+2p+1)de(xn+2p, xn+2p+1).

This can be written as follows:

de(xn, xm) ≤
n+m–1∑

j=n

de(xj, xj+1)
n+m–1∏

i=n

ω(xi, xm).

Since supm≥1 limn→∞ ω(xn, xm) < 1
r , we have

de(xn, xm) ≤
n+m–1∑

j=n

de(xj, xj+1)
n+m–1∏

i=n

ω(xi, xm) ≤ 1
r

∞∑
j=n

1

j
1
q

,

which is convergent to 0 as n, m → ∞ and 1
q > 1.

Subcase 2: We claim that if n – m is even, then de(xn, xm) converges to 0 as n, m → ∞.
To prove this, we may assume that m = n + 2p. Thus,

de(xn, xn+2p) ≤ w(xn, xn+2p)
[
de(xn, xn–2) + de(xn–2, xn+2p+1) + de(xn+2p, xn+2p+1)

]
.

Hence, by the fact that supm≥1 limn→∞ ω(xn, xm) < 1
r , subcase 1, (2.4), and (2.5), we can

easily deduce that de(xn, xm) converges to 0 as n, m → ∞. Thus, the sequence {xn} in S is
a Cauchy sequence.

Since (S, de) is a complete extended Branciari b-distance, there exists a point η in S such
that {xn} converges to η.

Next, we indicate that T is continuous. Suppose that if Tx �= Ty, then from (2.2) we have

ln
[
θde(Tx, Ty)

] ≤ r ln
[
θde(x, y)

]
≤ ln

[
θde(x, y)

]
.

Since θ is non-decreasing, we derive, from the above observation, that de(Tx, Ty) ≤ de(x, y)
for all distinct x, y ∈ S.

From this inspection, we can get de(xn+1, Tη) = de(Txn, Tη) ≤ de(xn,η) for all n ∈N.
Letting n → ∞ in the above inequality, we get xn+1 → Tη.
From the rectangle inequality, we have

de(η, Tη) ≤ ω(η, Tη)
[
de(η, xn) + de(xn, xn+1) + de(xn+1, Tη)

]
.
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Taking limit as n → ∞ and using (2.6) and Definition 3 of (i), we have de(η, Tη) = 0, which
implies that Tη = η.

This contradicts the assumption that T does not have a periodic point. Hence, assume
that η is a periodic point of T with period q.

Suppose that the set of fixed points of T is empty.
Then we have de(z, Tz) > 0 for all z ∈ S and de(z, Tqz) = 0 for q > 1.
Using Definition 5, we get

θ
(
de(z, Tz)

)
= θ

(
de

(
Tqz, Tq+1z

)) ≤ [
θ
(
de(z, Tz)

)]rq

< θ
(
de(z, Tz)

)
,

which leads to a contradiction. So, there exists a point η ∈ S such that Tη = η.
Suppose that f has another fixed point ζ such that η �= ζ . Then clearly de(η, ζ ) =

de(f η, f ζ ) �= 0.
Now, using condition (2.1), we get

θ
(
de(η, ζ )

)
= θ

(
de(Tη, Tζ )

)
= θ

(
de

(
Tqη, Tqζ

)) ≤ [
θ
(
de(η, ζ )

)]rq

< θ
(
de(η, ζ )

)
, a contradiction.

Therefore, η = ζ . This claims that T has a unique fixed point in S. �

Example 3 Consider the sequence:

τ1 = 1 × 2,

τ2 = 1 × 2 + 2 × 3,

τ3 = 1 × 2 + 2 × 3 + 3 × 4,

τ4 = 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5,

τn = 1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + · · · + n(n + 1) =
n(n + 1)(n + 2)

3
.

(2.7)

Let S = {τn : n ∈ N}. Define de : S × S → [0,∞) as de(x, y) = |x – y|2 and ω : S × S → [1,∞)
as ω(x, y) = 4x + 2y + 3. Then (S, de) is a complete extended b-Branciari distance space.

Define the mapping T : S → S by T(τ1) = τ1, T(τn) = τn–1 for all n ≥ 2. Now we show that
T is a Θ-Branciari contraction with θ (t) = et .

Since θ (de(Tx, Ty)) ≤ [θ (de(x, y))]r , which yields e(de(Tx,Ty)) ≤ [e(de(x,y))]r . Applying log on
both sides, we get

de(Tx, Ty) ≤ rde(x, y).

Thus to prove T is a Θ-Branciari contraction, it suffices to prove the above equation.
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Case-1: For n = 1 and m > 2, we have

de(Tτ1, Tτm) = de(τ1, τm–1)

=
∣∣∣∣m(m – 1)(m + 1) – 6

3

∣∣∣∣
2

and

de(τ1, τm) =
∣∣∣∣m(m + 1)(m + 2) – 6

3

∣∣∣∣
2

.

Now consider

de(Tτ1, Tτm)
de(τ1, τm)

=
∣∣∣∣m(m – 1)(m + 1) – 6
m(m + 1)(m + 2) – 6

∣∣∣∣
2

< r, where r ∈ (0, 1).

Case-2: For m > n > 1, we have

de(Tτn, Tτm) = de(τn–1, τm–1)

= de

(
(n – 1)n(n + 1)

3
,

(m – 1)m(m + 1)
3

)

=
∣∣∣∣ (n – 1)n(n + 1)

3
–

(m – 1)m(m + 1)
3

∣∣∣∣
2

=
∣∣∣∣n3 – n

3
–

m3 – m
3

∣∣∣∣
2

=
∣∣∣∣n3 – m3 – (n – m)

3

∣∣∣∣
2

=
∣∣∣∣ (n – m)(n2 + nm + m2) – (n – m)

3

∣∣∣∣
2

=
∣∣∣∣ (n – m)(n2 + nm + m2 – 1)

3

∣∣∣∣
2

and

de(τn, τm) = de

(
n(n + 1)(n + 2)

3
,

m(m + 1)(m + 2)
3

)

=
∣∣∣∣n(n + 1)(n + 2)

3
–

m(m + 1)(m + 2)
3

∣∣∣∣
2

=
∣∣∣∣n3 + 3n2 + 2n

3
–

m3 + 3m2 + 2m
3

∣∣∣∣
2

=
∣∣∣∣n3 – m3 – 3(n2 – m2) + 2(n – m)

3

∣∣∣∣
2

=
∣∣∣∣ (n – m)(n2 + nm + m2) + 3(n + m) + 2

3

∣∣∣∣
2

.
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Now consider

de(Tτn, Tτm)
de(τn, τm)

=
∣∣∣∣ n2 + nm + m2 – 1
n2 + nm + m2 + 3(n + m) + 2

∣∣∣∣
2

< r, where r ∈ (0, 1).

Thus T satisfies Θ-Branciari contraction with θ (t) = et . Then, from Theorem 1, T has a
unique fixed point τ1.

If we take ω(x, y) = b > 1 in Theorem 1, then we get the following corollary.

Corollary 1 Let T be a self-map on a complete Branciari b-distance space (X, d). Suppose
that there exist ϑ ∈ Θ and r ∈ (0, 1) such that

ϑ
(
d(Tx, Ty)

) ≤ [
ϑ

(
d(x, y)

)]r if d(Tx, Ty) �= 0 for x, y ∈ S.

Then T has a unique fixed point in S.

If we take ω(x, y) = 1 in the above theorem, then we get the following corollary.

Corollary 2 Let T be a self-map on a complete Branciari distance space. If there exist
ϑ ∈ Θ and r ∈ (0, 1) such that

ϑ
(
d(Tx, Ty)

) ≤ [
ϑ

(
d(x, y)

)]r if d(Tx, Ty) �= 0 for x, y ∈ S,

then T possesses a unique fixed point in S.

Definition 6 Let (S, de) be a de-metric space. A mapping f : S → S is called Ćirić–Reich–
Rus type Θ-Branciari contraction, in short, CRR-Θ-Branciari contraction, if there exist a
function θ ∈ Θ and a non-negative real number r < 1 such that

θ
(
de(fx, fy)

) ≤[
Mf ,θ (x, y)

]r (2.8)

for all x, y ∈ S, where

Mf ,θ (x, y) := max
{
θ
(
de(x, y)

)
, θ

(
de(y, fy)

)}
,

where lim supn,m→∞ ω(xn, xm) < 1
r , here xn = f nx0 for x0 ∈ S and r ∈ (0, 1).

Theorem 2 Let (S, de) be a complete extended Branciari b-distance space and f : S → S
be a CRR-Θ-Branciari contraction. Then f has a unique fixed point in S.

Proof As in Theorem 1, we construct an iterative sequence {xn}0∞ by starting an arbitrary
point x0 ∈ S as follows:

xn = f nx0 for all n ∈N.
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Without loss of generality, we assume that de(f nx, f n+1x) > 0 for all n ∈N. Indeed, if f n∗x =
f n∗+1x for some n∗ ∈N, then f n∗x will be a fixed point of T .

We prove thatlimn→∞ de(xn, xn+1) = 0.
Employing the contraction condition (2.8), we get

θ
(
de(xn+1, xn)

) ≤ [
Mf ,θ (xn, xn–1)

]r , (2.9)

where

Mf ,θ (xn, xn–1) = max
{
θ
(
de(xn, xn–1)

)
, θ

(
de(xn, fxn)

)
, θ

(
de(xn–1, fxn–1)

)}
= max

{
θ
(
de(xn, xn–1)

)
, θ

(
de(xn, xn+1)

)
, θ

(
de(xn–1, xn)

)}
.

≤ max
{
θ
(
de(xn, xn–1)

)
, θ

(
de(xn, xn+1)

)}
.

If Mf ,θ (xn, xn–1) = θ (de(xn, xn+1)), then inequality (2.9) becomes

θ
(
de(xn+1, xn)

) ≤ θ
(
de(xn, xn+1)

)r ⇔ ln
(
θ
(
de(xn+1, xn)

)) ≤ r ln
(
θ
(
de(xn+1, xn)

))
,

which is a contradiction (since r < 1). Thus, we have Mf ,θ (xn, xn–1) = θ (de(xn–1, xn)). It yields
from (2.9) that

θ
(
de(xn, xn+1)

) ≤ [
θ
(
de(xn–1, xn)

)]r .

Iteratively, we find that

θ
(
de(xn, xn+1)

) ≤ [
θ
(
de(x0, x1)

)]rn
.

After this observation, by following the related lines in the proof of Theorem 2, we con-
clude that the sequence {xn} in S is a Cauchy sequence. Regarding that (S, de) is a complete
extended Branciari b-distance, there exists a point η in S such that {xn} converges to η.

Without loss of generality, we assume that f nx �= η for all n (or for large enough n). As-
sume that d(η, Tη) > 0. Employing (2.8), we get

θ
(
de(fxn, f η)

) ≤ [
Mf ,θ (xn,η)

]r (2.10)

for all x, y ∈ S, where

Mf ,θ (xn,η) := max
{
θ
(
de(xn,η)

)
, θ

(
de(xn, fxn)

)
, θ

(
de(η, f η)

)}
.

By taking n → ∞ in the inequality above, we derive that

θ
(
de(η, f η)

) ≤ [
θ
(
de(η, f η)

)]r < θ
(
de(η, f η)

)
,

a contradiction. Hence, f η = η.
That is, f has a fixed point in S.
Suppose that η �= ζ are two fixed points of f . Then clearly de(η, ζ ) = de(f η, f ζ ) �= 0.
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Now, using condition (2.11), we get

1 < θ
(
de(η, ζ )

)
= θ

(
de(f η, f ζ )

)
≤ [

max
{
θ
(
de(η, ζ )

)
, θ

(
de(η, f η)

)
, θ

(
de(ζ , f ζ )

)}]r

< θ
(
de(η, ζ )

)
,

a contradiction. Accordingly, we have η = ζ .
Thus f has a unique fixed point in S. �

Definition 7 Let (S, de) be an extended Branciari b-distance and f : S → S be a mapping.
Then f is said to be an interpolative-Θ-Branciari contraction if there exist a function θ ∈ Θ

and non-negative real numbers r1, r2, r3 with r1 + r2 + r3 < 1 such that

θ
(
de(fx, fy)

) ≤ [
θ
(
de(x, y)

)]r1[
θ
(
de(x, fx)

)]r2[
θ
(
de(y, fy)

)]r3 (2.11)

for all x, y ∈ S, where lim supn,m→∞ ω(xn, xm) < 1
r , here xn = f nx0 for x0 ∈ S and r ∈ (0, 1).

Theorem 3 Let (S, de) be a complete extended Branciari b-distance where de is a continu-
ous functional. If f : S → S is an interpolative-Θ-Branciari contraction, then f possesses a
unique fixed point in S.

We skip the proof since

[
θ
(
de(x, y)

)]r1[
θ
(
de(x, fx)

)]r2[
θ
(
de(y, fy)

)]r3

≤ [
Mθ ,f (x, y)

]r1+r2+r3 .

Thus, it is sufficient to choose r := r1 + r2 + r3 < 1 in Theorem 2 to conclude the theorem
above.

In Theorem 3, if we take r2 = 0, r3 = 0, then the above theorem reduces to the following.

Theorem 4 Let f be a self-mapping on an extended Branciari b-distance space (S, de) and
θ ∈ Θ . If there exists r1 ∈ [0, 1) such that

θ
(
de(fx, fy)

) ≤ [
θ
(
de(x, y)

)]r1 for all x, y ∈ S, (2.12)

where r ∈ [0, 1) and lim supm,n→∞ ω(xn, xm) < 1
r , then f has a unique fixed point in S.

In Theorem 3, if we take r1 = 0, r2 = 0, r3 = 0, then the above theorem reduces to the
following one.

Theorem 5 Let (S, de) be an extended Branciari b-distance space such that de is a contin-
uous functional and θ ∈ Θ , f : S → S be a mapping. Suppose that there exists r4 ∈ [0, 1)
such that

θ
(
de(fx, fy)

) ≤ [
θ
(
de(x, fy) + de(y, fx)

)]r4 for all x, y ∈ S (2.13)

and r ∈ [0, 1) such that lim supm,n→∞ ω(xn, xm) < 1
r . Consequently, f possesses a unique fixed

point in S.
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3 Existence of a solution of fourth-order differential equation
We consider the problem

⎧⎨
⎩ξ 4(t) = g(t, ξ (t), ξ ′, ξ ′′, ξ ′′′),

ξ (0) = ξ ′(0) = ξ ′′(1) = ξ ′′′(1) = 0; t ∈ [0, 1],
(3.1)

where g : [0, 1]×R
3 ×R →R is a continuous function. This problem known as a boundary

value problem (shortly, BVP) is employed to model such phenomena as deformations of
an elastic beam in its equilibrium state, where one end-point is free while the other is
fixed. In the discipline of mechanics, boundary value problem is said to be a Cantilever
beam equation. Due to its significance in mathematics, the existence of solutions for such
a problem plays a vital role. With this inspiration, we shall employ the fixed point technique
to find the existence of solution of BVP.

In this section, we study the existence of solution of a fourth-order differential equation
boundary value problem. Let S = C[0, 1], where C[0, 1] represents the space of all con-
tinuous functions defined on the closed interval [0, 1]. An extended Branciari b-distance
space on S is given by de(ξ , y) = |ξ – y|2, where de : S × S → R and ω : S × S → [1,∞) by
ω(ξ , y) = 5ξ + 5y + 3.

Note that the space S = (C[0, 1], de) is a complete extended Branciari b-distance space.
Now, we consider the above fourth-order ordinary differential equation boundary value
problem. Then the problem BVP can be written in the following integral form:

ξ (t) =
∫ 1

0
G(t, s)g

(
s, ξ (s), ξ ′(s)

)
ds, ξ ∈ C[0, 1],

where G(t, s) is Green’s function of the homogenous linear problem ξ 4(t) = 0, ξ (0) = ξ ′(0) =
ξ ′′(1) = ξ ′′′(1) = 0, which is explicitly given by

G(t, s) =

⎧⎨
⎩

1
6 t2(3s – t), 0 ≤ t ≤ s ≤ 1,
1
6 s2(3t – s), 0 ≤ s ≤ t ≤ 1.

(3.2)

From (3.2), we can easily check that G(t, s) has the following properties: 1
3 t2s2 ≤ G(t, s) ≤

1
2 t2 (or 1

2 s2), t, s ∈ [0, 1].

Theorem 6 Assume that the following conditions are satisfied:
(1) g : [0, 1] ×R

3 ×R→R is continuous.
(2) There exists τ ∈ [1,∞) such that the following condition holds for all ξ , y ∈ S:

∣∣g(
s, ξ , ξ ′) – g

(
s, y, y′)∣∣ ≤ √

20e
–τ
2

∣∣ξ (s) – y(s)
∣∣, s ∈ [0, 1].

(3) There exists ξ0 ∈ X such that, for all t ∈ [0, 1], we have

ξ0t ≤
∫ 1

0
G(t, s)g

(
s, ξ0(s), ξ ′

0(s)
)

ds.

Then the problem BVP has a solution in S.
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Proof If we define the mapping f : S → S by

f (ξ )(t) =
∫ 1

0
G(t, s)g

(
s, ξ (s), ξ ′(s)

)
ds,

then ξ = f ξ , which yields that BVP has a unique solution. Consider

∣∣f (ξ )(t) – f (y)(t)
∣∣2 =

∣∣∣∣
∫ 1

0
G(t, s)g

(
s, ξ (s), ξ ′(s)

)
ds –

∫ 1

0
G(t, s)g

(
s, y(s), y′(s)

)
ds

∣∣∣∣
2

≤
∫ 1

0

(
G(t, s)

)2∣∣g(
s, ξ (s), ξ ′(s)

)
– g(s, y(s), y′(s)

∣∣2 ds

≤
∫ 1

0

1
4

s420e–τ
∣∣ξ (s) – y(s)

∣∣2 ds

≤ 20e–τ de(ξ , y)
∫ 1

0

1
4

s4 ds

≤ 20e–τ de(ξ , y)
1

20

= e–τ de(ξ , y),

which yields

de
(
f (ξ ), f (y)

) ≤ e–τ de(ξ , y)√
de

(
f (ξ ), f (y)

) ≤ √
e–τ de(ξ , y)

e
√

de(f (ξ ),f (y)) ≤ (
e
√

de(ξ ,y))√
e–τ

, where e–τ < 1 as τ ≥ 1.

Hence e
√

de(f (ξ ),f (y)) ≤ (e
√

de(ξ ,y))r with r =
√

e–τ , which gives

θ
(
de(f ξ , fy)

) ≤ [
θ
(
de(ξ , y)

)]r , where θ (t) = e
√

t .

As all the conditions of Theorem 4 are satisfied, f has a fixed point. Thus BVP has a
solution in S. �
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