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Abstract
In this paper, we first prove the local Ls norm estimate of composite operators
�kGm(u) by use of the Ls norm of u. Then we establish the local and global higher
norm inequalities of �kGm(u). Simultaneously, we also give a global higher norm
estimate with Radon measure. Finally, as applications of these results, we give two
examples to estimate the higher norm of �kGm(u).
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1 Introduction
In this paper, our purpose is investigating some higher norm inequalities for composition
of power operators �kGm on a bounded domain M, where k, m are positive integers, �
is Laplace–Beltrami operator, and G is Green’s operator. The norm estimate of operators
applied to differential forms is an important and interesting research topic in some ar-
eas of mathematic analysis and has achieved fruitful results; see [1–11] for more detail.
Some these results improved the development of some other branches of mathematics
and mathematical physics; see [12–18] for details. In previous related research about norm
estimates of operators the study mostly concentrated on estimates of the Lt norm of oper-
ators and applying them to differential forms in terms of the Lt norm of differential forms.
Therefore, if s > t, then we could not estimate the Ls norm of operators by the Lt norm
of differential forms from the literature. This motivated us to research the higher norm
of operators than of differential forms. Since the norm estimate of a composite operator
is more complicated than that of a single operator, in this paper, we choose the compo-
sition of power operators �kGm to be the research object. In this paper, we first give the
local Ls norm estimate of �kGm(u) by the Ls norm of u in Theorem 2.5. Then based on
Theorem 2.5, we prove the local and global higher norm inequalities of �kGm(u) sepa-
rately presented in Theorems 2.6–2.8 and 3.2. Simultaneously, we also establish the global
higher norm estimate with Radon measure in Theorem 3.3. Finally, we give two examples
as applications of Theorem 3.2.

We start this paper by introducing some notations and definitions in [19]. Let M ⊂ Rn

(n ≥ 2) be a bounded domain, B be a ball, and σB be the ball with the same center as
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B satisfying diam(σB) = σ diam(B). We do not distinguish balls from cubes in this pa-
per. By Λk = Λk(Rn) (k = 1, 2, . . . , n) we denote the linear space of all k-forms u(x) =
∑

I uI(x) dxI =
∑

ui1i2···ik dxi1Λdxi2Λ · · ·Λdxik with summation over all ordered k-tuples
I = (i1, i2, . . . , ik), 1 ≤ i1 < i2 < · · · < ik ≤ n, k = 1, 2, . . . , n. If the coefficient uI(x) of k-forms
is differentiable on M, then we call u(x) a differential k-form on M. As usual, we use
C∞(M,Λk) to denote the space of smooth k-forms in a domain M, D′ (M,Λk) to de-
note the space of all differential k-forms. Let Lp(M,Λk) be the set of differential k-forms
u(x) =

∑
I uI(x) dxI on M with

∫
M |uI |p < ∞ for all ordered k-tuples I . The norm of a k-

form u(x) on M is defined by

∥
∥u(x)

∥
∥

p,M =
(∫

M

∣
∣u(x)

∣
∣p dx

) 1
p

=
(∫

M

(∑

I

∣
∣uI(x)

∣
∣2

) p
2

dx
) 1

p
, (1.1)

and then Lp(M,Λk) is a Banach space. As usual, we use � to denote the Hodge star op-
erator and dist(x, M) to denote the distance of the point x from the set M. Also, we use
d : D′ (M,Λk) → D′ (M,Λk+1) to denote the differential operator and d� : D′ (M,Λk+1) →
D′ (M,Λk) to denote the Hodge codifferential operator defined by d� = (–1)nk+1 � d� on
D′ (M,Λk+1). The n-dimensional Lebesgue measure of a set E ⊆ Rn is denoted by |E|. For
any differential form u, the average of u over B is defined as uB = 1

|B|
∫

B u dx. All integrals
involved in this paper are the Lebesgue integrals. The Laplace–Beltrami operator � is de-
fined by � = dd� + d�d. We define Green’s operator G on the space of smooth k-forms in
M by setting G(u) to be a solution of Poisson’s equation �G(u) = u – H(u), where H is the
harmonic projection; see [1, 7, 19–22] for more detail about the Laplace–Beltrami oper-
ator �, Green’s operator G, and projection operator H . We call w a weight if w ∈ L1

loc(Rn)
and w > 0 a.e. For any Radon measure ν defined by dν = w(x) dx, we define the Lp-norm
of a measurable function f with Radon measure over M by

‖f ‖p,M,ν =
(∫

M
|f |p dν

) 1
p

=
(∫

M
|f |pw(x) dx

) 1
p

, (1.2)

and the Radon measure of E by ν(E) =
∫

E dν =
∫

E w(x) dx.
The nonlinear partial differential equation

d�A(x, du) = 0 (1.3)

is called the A-harmonic equation, where A : M×Λk(Rn) → ΛK (Rn) satisfies the following
conditions:

∣
∣A(x, ξ )

∣
∣ ≤ a|ξ |p–1 and A(x, ξ )ξ ≥ |ξ |p (1.4)

for almost every x ∈ M and all ξ ∈ Λk(Rn), where a > 0 is a constant, and 1 < p < ∞ is
a fixed exponent associated with (1.3). For more details about A-harmonic equation, see
[3, 4, 8, 19, 23, 24].

2 Local higher norm inequalities for �kGm(u)
In this section, we first give the Ls norm estimate of �kGm(u) in terms of the Ls norm of u.
Then based on this result, we establish local higher norm inequalities for �kGm(u) in two
cases.
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Let ψ be a strictly increasing convex function on [0, +∞) with ψ(0) = 0, and let u be
a differential form on a bounded domain M. Then ψ(κ|u| + |uM|) ∈ L1(M,ν) for any real
number κ > 0 and ν({x ∈ M : |u – uM| > 0}) > 0, where ν is the Radon measure defined by
dν = w(x) dx for a weight w(x). For any positive constant a, we have

∫

M
ψ

(
1
2
|u – uM|

)

dν ≤ C1

∫

M
ψ

(
a|u|)dν ≤ C2

∫

M
ψ

(
2a|u – uM|)dν

for some constants C1 > 0 and C2 > 0. Let ψ(u) = us, s > 1, w(x) = 1, and let M be a ball B in
this inequality. Then there exist two positive constants C3 and C4, independent of u, such
that

‖u – uB‖s,B ≤ C3‖u‖s,B ≤ C4‖u – uB‖s,B (2.1)

for all balls B with |{x ∈ B : |u – uB| > 0}| > 0. Inequality (2.1) indicates the norm ‖u – uB‖s,B

comparable to the norm ‖u‖s,B.

Lemma 2.1 ([5]) Let u ∈ C∞(M,Λ) be a smooth differential form defined on M. Then there
exists a constant C = C(s), independent of u, such that

∥
∥dd�G(u)

∥
∥

s,B +
∥
∥d�dG(u)

∥
∥

s,B +
∥
∥dG(u)

∥
∥

s,B +
∥
∥d�G(u)

∥
∥

s,B +
∥
∥G(u)

∥
∥

s,B ≤ C(s)‖u‖s,σB

for any ball B with σB ⊂ M, where σ > 1 and 1 < s < ∞ are constants.

Lemma 2.2 ([25]) Let u be a solution of A-harmonic equation (1.3) in a domain M. Then
there exists a constant C, independent of u, such that

‖u‖s,B ≤ C|B|(t–s)/st‖u‖t,σB

for all balls B with σB ⊂ M, where σ > 1 and 0 < s, t < ∞ are constants.

Lemma 2.3 ([24]) Let u ∈ D′(Q,Λl) and du ∈ Lp(Q,Λl+1). Then u–uQ is in Lnp/(n–p)(Q,Λl),
and

(∫

Q
|u – uQ|np/(n–p) dx

)(n–p)/np

≤ Cp(n)
(∫

Q
|du|p dx

)1/p

for a cube or a ball Q in Rn, where l = 0, 1, 2, . . . , n – 1 and 1 < p < n.

Lemma 2.4 Let u be a smooth differential form defined on M, G be Green’s operator, and �
be the Laplace–Beltrami operator defined by � = dd� + d � d. Then the Laplace–Beltrami
operator � and Green’s operator G are commutable, that is,

�G(u) = G�(u). (2.2)

Proof From [19, p. 88] we find that Green’s operator G commutes with d and d�. Therefore,
for any differential form u, we have

Gd(u) = dG(u), Gd�(u) = d�G(u). (2.3)
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From (2.3) and the definition of the Laplace–Beltrami operator � we obtain

�G(u) =
(
dd� + d�d

)
G(u)

= dd�G(u) + d�dG(u)

= Gdd�(u) + Gd�d(u)

= G
(
dd� + d�d

)
(u)

= G�(u).

Thus we complete the proof of Lemma 2.4. �

Now we will give the following local Ls-norm estimate of composite operator �kGm,
which will be used in the proof of higher norm theorems.

Theorem 2.5 Let u ∈ Ls
loc(M,Λl) (1 < s < ∞, l = 1, 2, . . . , n) be a smooth differential form

defined on M, G be Green’s operator, and � be the Laplace–Beltrami operator. Then there
exists a constant C, independent of u, such that

∥
∥�kGm(u)

∥
∥

s,B ≤ C‖u‖s,σB (2.4)

for all balls B with σB ⊂ M and any positive integer k ≤ m, where σ > 1.

Proof We prove this theorem in two steps: (1) First, let k = m. For any differential form u,
from Lemma 2.4 we have G�(u) = �G(u), and thus

�kGk(u) = (�G)k(u). (2.5)

Hence (2.4) is equivalent to

∥
∥(�G)k(u)

∥
∥

s,B ≤ C‖u‖s,σB. (2.6)

Now we use mathematical induction to prove (2.6). Let k = 1. By Lemma 2.1 we have

∥
∥�G(u)

∥
∥

s,B =
∥
∥
(
dd� + d�d

)
G(u)

∥
∥

s,B

≤ ∥
∥dd�G(u)

∥
∥

s,B +
∥
∥d�dG(u)

∥
∥

s,B = C1‖u‖s,σ1B, (2.7)

where σ1B ⊂ M with σ1 > 1. Assume that (2.6) holds for k = k′, k′ = 1, 2, . . . , that is,

∥
∥(�G)k′

(u)
∥
∥

s,B ≤ C2‖u‖s,σ2B, (2.8)

where σ2 > 1 is a constant such that σ2B ⊂ M. Now we prove that (2.6) holds for k = k′ + 1.
From (2.7) and (2.8) we have

∥
∥(�G)k′+1(u)

∥
∥

s,B =
∥
∥�G

(
(�G)k′

(u)
)∥
∥

s,B

≤ C3
∥
∥(�G)k′

(u)
∥
∥

s,σ3B ≤ C4‖u‖s,σ4B, (2.9)

where σ4 > σ3 > 1 and σ4B ⊂ M. From (2.9) it follows that if k = m, then (2.4) holds.
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(2) Next, let k < m. From �G(u) = G�(u) we obtain

�kGm(u) = Gm–k((�G)k(u)
)
. (2.10)

For any differential form u, from Lemma 2.1 we have

∥
∥G(u)

∥
∥

s,B ≤ C5‖u‖s,σ5B (2.11)

for some constant σ5 > 1 with σ5B ⊂ M. Using mathematical induction and (2.11),we can
easily prove that

∥
∥Gk′

(u)
∥
∥

s,B ≤ C6‖u‖s,σ6B (2.12)

for any positive integer k′ and some constant σ6 > 1 such that σ6B ⊂ M. Combining (2.10),
(2.12), and (2.6), we have

∥
∥�kGm(u)

∥
∥

s,B =
∥
∥Gm–k((�G)k(u)

)∥
∥

s,B

≤ C7
∥
∥(�G)k(u)

∥
∥

s,σ6B

≤ C8‖u‖s,σ7B (2.13)

for some constants σ7 > σ6 > 1 such that σ7B ⊂ M. Estimate (2.13) shows that (2.4) holds
for k < m. This completes the proof of Theorem 2.5. �

Next, based on Theorem 2.5, we will prove local higher norm inequalities for the com-
posite operator �kGm in two cases.

Theorem 2.6 Let u ∈ Lt
loc(M,Λl) be a smooth differential form on M, G be Green’s oper-

ator, and � be the Laplace–Beltrami operator, l = 1, 2, . . . , n, 1 < t < n. Then �kGm(u) ∈
Ls

loc(M,Λl) for any s such that 0 < s < nt/(n – t). Moreover, there exists a constant C, inde-
pendent of u, such that

∥
∥�kGm(u)

∥
∥

s,B ≤ C|B|1/s+1/n–1/t‖u‖t,σB (2.14)

for all balls B with σB ⊂ M and |B| > d0 and any positive integer k < m, where σ > 1 and
d0 > 0 are constants.

Proof We prove this theorem in the following two cases: (1) First, assume that the mea-
sure |{x ∈ B : |�kGm(u) – (�kGm(u))B| > 0}| = 0. Then �kGm(u) = (�kGm(u))B almost ev-
erywhere in B. Thus �kGm(u) is a closed form and is a solution of A-harmonic equation
(1.3). Hence Lemma 2.2 holds for �kGm(u). Replacing u by �kGm(u) in Lemma 2.2, we
have

∥
∥�kGm(u)

∥
∥

s,B ≤ C1|B|(t–s)/st∥∥�kGm(u)
∥
∥

t,σ1B, (2.15)
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where σ1 > 1 is a constant such that σ1B ⊂ M. Since |B| > d0 > 0, there exists a constant
C2 > 0 such that 1

|B|1/n ≤ C2. Combining (2.15) and Theorem 2.5, we obtain

∥
∥�kGm(u)

∥
∥

s,B ≤ C1|B|(t–s)/st∥∥�kGm(u)
∥
∥

t,σ1B

≤ C3|B|(t–s)/st‖u‖t,σ2B

= C3|B| 1
s + 1

n – 1
t

1
|B|1/n ‖u‖t,σ2B

≤ C4|B| 1
s + 1

n – 1
t ‖u‖t,σ2B, (2.16)

where σ2 > σ1 > 1 with σ2B ⊂ M.
(2) Second, if the the measure |{x ∈ B : |�kGm(u)–(�kGm(u))B| > 0}| > 0, then (2.1) holds

for �kGm(u), and thus we have

∥
∥�kGm(u)

∥
∥

nt/(n–t),B ≤ C5
∥
∥�kGm(u) –

(�kGm(u)
)

B

∥
∥

nt/(n–t),B. (2.17)

Note that G�(u) = �G(u) and k < m. Then d�kGm(u) = dG(�kGm–1(u)) and k ≤ m – 1.
Thus, combining Lemma 2.1 and Theorem 2.5, we have

∥
∥d�kGm(u)

∥
∥

t,B =
∥
∥dG

(�kGm–1(u)
)∥
∥

t,B ≤ C6
∥
∥�kGm–1(u)

∥
∥

t,σ3B ≤ C7‖u‖t,σ4B, (2.18)

where σ4 > σ3 > 1 are constants such that σ4B ⊂ M. Since 1 < t < n, from Lemma 2.3 and
(2.18) we have

∥
∥�kGm(u) –

(�kGm(u)
)

B

∥
∥

nt/(n–t),B

=
(∫

B

∣
∣�kGm(u) –

(�kGm(u)
)

B

∣
∣nt/(n–t) dx

)(n–t)/nt

≤ C8

(∫

B

∣
∣d�kGm(u)

∣
∣t dx

)1/t

= C8
∥
∥d�kGm(u)

∥
∥

t,B

≤ C9‖u‖t,σ4B. (2.19)

By the monotonicity property of the Lt-space, we obtain the inequality

(
1

|B|
∫

B

∣
∣�kGm(u)

∣
∣sdx

)1/s

≤
(

1
|B|

∫

B

∣
∣�kGm(u)

∣
∣nt/(n–t) dx

)(n–t)/nt

(2.20)

for any s such that 0 < s < nt/(n – t). Inequality (2.20) shows that

∥
∥�kGm(u)

∥
∥

s,B ≤ |B|1/s+1/n–1/t∥∥�kGm(u)
∥
∥

nt/(n–t),B. (2.21)

Combining (2.21), (2.17), and (2.19), we have

∥
∥�kGm(u)

∥
∥

s,B ≤ C10|B|1/s+1/n–1/t‖u‖t,σ4B. (2.22)
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From (2.16) and (2.22) we get (2.14) for 1 < t < n. Thus we complete the proof of Theo-
rem 2.6. �

In Theorem 2.6, since 1 < t < n, then nt
n–t → +∞ as t → n–. Since 0 < s < nt/(n – t), s can

be greater than t, and thus the composite operator �kGm(u) has higher norm than the
differential form u. Next, we prove (2.14) for t ≥ n.

Theorem 2.7 Let u ∈ Lt
loc(M,Λl) be a smooth differential form on M, G be Green’s opera-

tor, and � be the Laplace–Beltrami operator on M, l = 1, 2, . . . , n, t ≥ n. Then �kGm(u) ∈
Ls

loc(M,Λl) for any constant s > 0. Moreover, there exists a constant C, independent of u,
such that

∥
∥�kGm(u)

∥
∥

s,B ≤ C|B|1/s+1/n–1/t‖u‖t,σB (2.23)

for all balls B with σB ⊂ M and |B| > d0 and any positive integer k < m, where σ > 1 and
d0 > 0 are constants.

Proof We prove this theorem in the following two cases: (1) First, if the measure |{x ∈ B :
|�kGm(u) – (�kGm(u))B| > 0}| = 0, then applying the same method as in the proof of The-
orem 2.6, we can prove (2.23) for any ball B with σB ⊂ M, where σ > 1 is a constant.

(2) Next, let the measure |{x ∈ B : |�kGm(u) – (�kGm(u))B| > 0}| > 0. Select p =
max{1, s/t} and r = npt

n+pt . Then 1 < r < n. Since t ≥ n, that is, n – t ≤ 0, we have r – t =
t(p(n–t)–n)

n+pt < 0, that is, r < t. Since 1 < r < n, Lemma 2.3 holds for �kGm(u) and r. Thus
replacing u and p by �kGm(u) and r, respectively, in Lemma 2.3, we have

(∫

B

∣
∣�kGm(u) –

(�kGm(u)
)

B

∣
∣nr/(n–r) dx

)(n–r)/nr

≤ C1

(∫

B

∣
∣d�kGm(u)

∣
∣r dx

)1/r

. (2.24)

From Lemmas 2.4 and 2.1 and Theorem 2.5 we obtain

(∫

B

∣
∣d�kGm(u)

∣
∣r dx

)1/r

=
(∫

B

∣
∣dG

(�kGm–1(u)
)∣
∣r dx

)1/r

≤ C2

(∫

σ1B

∣
∣�kGm–1(u)

∣
∣r dx

)1/r

≤ C3

(∫

σ2B
|u|r dx

)1/r

(2.25)

for all balls B with σ2B ⊂ M, where σ2 > σ1 > 1. Since r < t, applying the monotonicity
property of the Lt space, we have

(
1

|σ2B|
∫

σ2B
|u|r dx

)1/r

≤
(

1
|σ2B|

∫

σ2B
|u|t dx

)1/t

. (2.26)

Inequality (2.26) is equivalent to

(∫

σ2B
|u|r dx

)1/r

≤ C4|B|1/r–1/t
(∫

σ2B
|u|t dx

)1/t

. (2.27)
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Since the measure |{x ∈ B : |�kGm(u) – (�kGm(u))B| > 0}| > 0, estimates (2.1) hold for
�kGm(u). In the second half of (2.1), we replace u and s by �kGm(u) and nr/(n – r):

(∫

B

∣
∣�kGm(u)

∣
∣nr/(n–r) dx

)(n–r)/nr

≤ C5

(∫

B

∣
∣�kGm(u) –

(�kGm(u)
)

B

∣
∣nr/(n–r) dx

)(n–r)/nr

. (2.28)

Since p = max{1, s/t}, we have pt ≥ s. Since nr/(n – r) = pt, we have nr/(n – r) ≥ s, and
thus applying the monotonicity property of the Lt space, we have

(
1

|B|
∫

B

∣
∣�kGm(u)

∣
∣s dx

)1/s

≤
(

1
|B|

∫

B

∣
∣�kGm(u)

∣
∣nr/(n–r) dx

)(n–r)/nr

. (2.29)

Combining (2.29), (2.28), (2.24), (2.25), and (2.27), we obtain

(∫

B

∣
∣�kGm(u)

∣
∣s dx

)1/s

≤ |B|1/s–(n–r)/nr
(∫

B

∣
∣�kGm(u)

∣
∣nr/(n–r) dx

)(n–r)/nr

≤ C5|B|1/s–(n–r)/nr
(∫

B

∣
∣�kGm(u) –

(�kGm(u)
)

B

∣
∣nr/(n–r) dx

)(n–r)/nr

≤ C6|B|1/s–(n–r)/nr+1/r–1/t
(∫

σ2B
|u|t dx

)1/t

= C6|B|1/s+1/n–1/t
(∫

σ2B
|u|t dx

)1/t

. (2.30)

Inequality (2.30) implies (2.23). Therefore we complete the proof of this theorem. �

In Theorem 2.7, from the condition t ≥ n we have 1
s + 1

n – 1
t > 0, which is also presented

in Theorem 2.6, and thus combining Theorems 2.6 and 2.7, we easily obtain the following
theorem for any t > 1.

Theorem 2.8 Let u ∈ Lt
loc(M,Λl) be a smooth differential form defined on M, G be Green’s

operator, and � be the Laplace–Beltrami operator defined on M, l = 1, 2, . . . , n, t > 1. Then
�kGm(u) ∈ Ls

loc(M,Λl) for any constant s > 0 such that 1
s + 1

n – 1
t > 0. Moreover, there exists

a constant C, independent of u, such that

∥
∥�kGm(u)

∥
∥

s,B ≤ C|B|1/s+1/n–1/t‖u‖t,σB (2.31)

for all balls B with σB ⊂ M and |B| > d0 and any positive integer k < m, where σ > 1 and
d0 > 0 are constants.

3 Global higher norm inequalities for composite operator �kGm

In this section, based on Theorem 2.8, we will prove the global higher norm estimate for
the composite operator �kGm(u) in any bounded domain M ⊂ Rn. Then we will estab-
lish the corresponding global higher norm estimate with Radon measure. In the following
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proof of related theorems, we need the following modified Whitney cover in [25]; see [23]
for more detail about Whitney covers.

Lemma 3.1 Each Ω ⊂ Rn has a modified Whitney cover of cubes W = {Qi} that satisfy

⋃

i

Qi = Ω ,

∑

Q∈W

χ√
5/4Q ≤ N · χΩ

for all x ∈ Rn and some N > 1, and if Qi ∩ Qj �= ∅, then there exists a cube R in Qi ∩ Qj such
that Qi ∪ Qj ⊂ NR. Moreover, if Ω is a δ-John, then there is a distinguished cube Q0 ∈ W
that can be connected with every cube Q ∈ W by a chain of cubes Q0, Q1, . . . , Qk from W
and such that Q ⊂ ρQi, i = 1, 2, . . . , k, for some ρ = ρ(n, δ).

Now we will give the global higher norm inequality for the composite operator �kGm(u)
based on Theorem 2.8.

Theorem 3.2 Let u ∈ Lt
loc(M,Λl) be a smooth differential form defined on a bounded do-

main M, G be Green’s operator, and � be the Laplace–Beltrami operator, l = 1, 2, . . . , n,
t > 1. Then �kGm(u) ∈ Ls

loc(M,Λl) for any constant s > 0 such that 1
s + 1

n – 1
t > 0. Moreover,

there exists a constant C, independent of u, such that

∥
∥�kGm(u)

∥
∥

s,M ≤ C|M|1/s+1/n–1/t‖u‖t,M (3.1)

for any positive integer k < m.

Proof From Lemma 3.1, we know that there exists a sequence of cubes W = {Bi} such that
⋃

i Bi = M and
∑

Bi∈W χ√
5/4Bi

≤ N · χM(x) for all x ∈ M, where N > 1 is some constant.
Hence, for u ∈ Lt

loc(M,Λl) , using Theorem 2.8, we have

∥
∥�kGm(u)

∥
∥

s,M ≤
∑

Bi∈W

∥
∥�kGm(u)

∥
∥

s,Bi

≤
∑

Bi∈W

C1|Bi|1/s+1/n–1/t‖u‖t,σBi

≤ C1|M|1/s+1/n–1/t
∑

Bi∈W

(∫

σBi

|u|t dx
)1/t

= C1|M|1/s+1/n–1/t
∑

Bi∈W

(∫

M
|u|t dx · χσBi

)1/t

= C1|M|1/s+1/n–1/tN ·
(∫

M
|u|t dx

)1/t

= C1N |M|1/s+1/n–1/t‖u‖t,M

= C2|M|1/s+1/n–1/t‖u‖t,M, (3.2)
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where C2 = C1N is independent of u and all Bi. Thus we complete the proof of Theo-
rem 3.2. �

In Theorem 3.2, if we assume that s > t, then Theorem 3.2 reduces to the global higher
norm estimate for composite operator �kGm. Next, we consider the following global norm
comparison equipped with Radon measure based on Theorem 3.2.

Theorem 3.3 Let u ∈ Lt
loc(M,Λl) be a smooth differential form defined on a bounded do-

main M, G be Green’s operator, � be the Laplace–Beltrami operator, and �1(y) and �2(y) be
two continuous nonnegative functions defined on (0, +∞) with conditions: (1) limy→0�1(y) =
0; (2) limy→0�2(y) = ∞, l = 1, 2, . . . , n, t > 1. Then �kGm(u) ∈ Ls

loc(M,Λl) for any constant
s > 0 such that 1

s + 1
n – 1

t > 0. Moreover, there exists a constant C, independent of u, such
that

∥
∥�kGm(u)

∥
∥

s,M,ν1
≤ C|M|1/s+1/n–1/t‖u‖t,M,ν2 (3.3)

for any positive integer k < m and the Radon measure ν1, ν2 defined by

dν1 = �1
(
dist(x, ∂M)

)
dx, dν2 = �2

(
dist(x, ∂M)

)
dx.

Proof From Theorem 3.2, we know that there exists a constant C1, independent of u, such
that

∥
∥�kGm(u)

∥
∥

s,M ≤ C1|M|1/s+1/n–1/t‖u‖t,M. (3.4)

Since limy→0�1(y) = 0, for any small positive number ε, there exists δ(ε) > 0 such that
�1(dist(x, ∂M)) < ε for all x ∈ M with dist(x, ∂M) < δ. Let M′ = {x ∈ M, dist(x, ∂M) < δ} and
M′′ = M – M′. Then for all x ∈ M′′, we have

δ ≤ dist(x, ∂M) < diam(M).

Therefore by the continuity and nonnegativity of �1 we have that there exists C2 > 0 such
that

0 < �1
(
dist(x, ∂M)

)
< C2

for all x ∈ M′′. Thus we have

∥
∥�kGm(u)

∥
∥

s,M,ν1

=
(∫

M

∣
∣�kGm(u)

∣
∣s · �1

(
dist(x, ∂M)

)
dx

) 1
s

≤
(

ε

∫

M′

∣
∣�kGm(u)

∣
∣s dx + C2

∫

M′′

∣
∣�kGm(u)

∣
∣s dx

) 1
s

≤ C3

(∫

M

∣
∣�kGm(u)

∣
∣s dx

) 1
s
, (3.5)
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where C3 = max{ε 1
s , C2

1
s }. Combining (3.5) and (3.4), we have

∥
∥�kGm(u)

∥
∥

s,M,ν1
≤ C3

∥
∥�kGm(u)

∥
∥

s,M ≤ C4|B|1/s+1/n–1/t‖u‖t,M. (3.6)

Note that limy→0
1

�2(y) = 0. Then there exists δ1(ε) > 0 such that 1
�2(dist(x,∂M)) < ε for all

x ∈ M with dist(x, ∂M) < δ1. Let M′
1 = {x ∈ M, dist(x, ∂M) < δ1} and M′′

1 = M – M′
1. Then for

all x ∈ M′′
1 , we have

δ1 ≤ dist(x, ∂M) < diam(M).

Therefore by the continuity and nonnegativity of �2 we have that there exists a constant
C5 > 0 such that

0 <
1

�2(dist(x, ∂M))
< C5

for all x ∈ M′′
1 . Therefore we obtain

‖u‖t,M =
(∫

M
|u|t 1

�2(dist(x, ∂M))
dν2

) 1
t

≤
(

ε

∫

M′
1

|u|t dν2 + C5

∫

M′′
1

|u|t dν2

) 1
t

≤ C6

(∫

M
|u|t dν2

) 1
t

= C6‖u‖t,M,ν2 , (3.7)

where C6 = max{ε 1
t , C5

1
t }. By (3.6) and (3.7) we have

∥
∥�kGm(u)

∥
∥

s,M,ν1
≤ C7|M|1/s+1/n–1/t‖u‖t,M,ν2 , (3.8)

where C7 is independent of u. Thus we complete the proof of Theorem 3.3. �

In Theorem 3.3, choosing �1(y) = yp and �2(y) = y–q, 0 < p, q < ∞, we easily obtain the
following corollary.

Corollary 3.4 Let u ∈ Lt
loc(M,Λl) be a smooth differential form defined on a bounded do-

main M, G be Green’s operator, and � be the Laplace–Beltrami operator, l = 1, 2, . . . , n,
t > 1. Then �kGm(u) ∈ Ls

loc(M,Λl) for any constant s > 0. Moreover, there exists a constant
C, independent of u, such that

(∫

M

∣
∣�kGm(u)

∣
∣s · (dist(x, ∂M)

)p dx
)1/s

≤ C|M|1/s+1/n–1/t
(∫

M
|u|t 1

(dist(x, ∂M))q dx
)1/t

(3.9)

for any positive integer k < m and any real numbers 0 < p, q < ∞.
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4 Applications
In many cases, it is very difficult to give the norm estimate for a composite operator. In this
section, we give two examples to obtain the upper bounds for the norm of the composite
operator �kGm(u) as applications of Theorem 3.2.

Example 4.1 Let M = {(x1, x2) : x2
1 + x2

2 ≤ a2} ⊂ R2, and let u be the differential 1-form

u(x1, x2) = x1 dx1 – x2 dx2 (4.1)

defined on M. Then |M| = πa2, and u is a differential form satisfying the conditions of
Theorem 3.2. Thus we can estimate ‖�kGm(u)‖s,M in terms of ‖u‖t,M , where s, t are two
independent positive real numbers such that t > 1 and 1/s + 1/n – 1/t > 0. For any (x1, x2) ∈
M, we have |u| =

√
x2

1 + x2
2. By polar coordinate transformation x1 = ρ cos θ , x2 = ρ sin θ we

obtain

‖u‖t,M =
(∫

M
|u|t dx

)1/t

=
(∫ 2π

0
dθ

∫ a

0
ρt+1 dρ

)1/t

=
(

2πat+2

t + 2

)1/t

. (4.2)

Since n = 2, for any s > 0 such that 1/s + 1/n – 1/t > 0, by Theorem 3.2 we have

∥
∥�kGm(u)

∥
∥

s,M ≤ C|M|1/s+1/n–1/t‖u‖t,M

= C
(
πa2)1/s+1/2–1/t

(
2πat+2

t + 2

)1/t

= C
(
πa2)1/s+1/2

(
2at

t + 2

)1/t

(4.3)

for any positive integer k < m. Moreover, if we assume that s = 1/2 and t = 1 in (4.3), then
1/s + 1/n – 1/t > 0, satisfying the condition of Theorem 3.2, and thus we have

∥
∥�kGm(u)

∥
∥

1/2,M ≤ C
(

2
3
πa3

)

. (4.4)

Example 4.2 Let M = {(x1, x2, x3) : x2
1 + x2

2 + x2
3 ≤ a2} ⊂ R3 and u(x1, x2, x3) be a differential

2-form on M defined by

u =
x1

√
x2

1 + x2
2 + x2

3

dx2Λdx3 –
x2

√
x2

1 + x2
2 + x2

3

dx1Λdx3

+
x3

√
x2

1 + x2
2 + x2

3

dx1Λdx2. (4.5)

Then |M| = 4
3πa3 and |u| = 1, and thus we obtain

‖u‖t,M =
(∫

M
|u|t dx

)1/t

=
(∫

M
dx

)1/t

= |M|1/t =
(

4
3
πa3

)1/t

(4.6)

for any t > 1. Applying Theorem 3.2, we have �kGm(u) ∈ Ls
loc(M) for any constant s > 0

such that 1/s + 1/n – 1/t > 0. Thus we can further obtain the following upper bound for the
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norm of the composite operator �kGm(u):

∥
∥�kGm(u)

∥
∥

s,M ≤ C|M|1/s+1/n–1/t‖u‖t,M

= C
(

4
3
πa3

)1/s+1/3–1/t(4
3
πa3

)1/t

= C
(

4
3
πa3

)1/s+1/3

(4.7)

for any positive integer k < m.

Remark Examples 4.1 and 4.2 can be generalized to the n-dimensional space.

5 Conclusion
In this paper, we first give the local Ls norm estimate for the composite operators �kGm(u)
in terms of the Ls norm of u with commuting Laplace–Beltrami operator � and Green’s
operator G. At the same time, we also obtain the local and global Ls norms of �kGm(u)
in terms of the Lt norm of differential forms u for any constant s > 0 such that 1

s + 1
n –

1
t > 0. Then we establish a global higher norm estimate with Radon measure for composite
operators �kGm. At last, as applications of these results, we give two examples to estimate
the higher norm of �kGm(u).
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