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Abstract
We develop the Crank–Nicolson finite element (CNFE) method for the
two-dimensional (2D) uniform transmission line equation, study the stability and
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of the obtained theoretical results by means of numerical tests.
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1 Introduction
Let Θ be an open bounded region in R

2. We consider the uniform transmission line equa-
tion in the region Θ :

⎧
⎪⎪⎨

⎪⎪⎩

σVt + Vtt – �V + δV = F(x, y, t), (x, y) ∈ Θ , t ∈ (0, T),

V (x, y, t) = V0(x, y, t), (x, y) ∈ ∂Θ , t ∈ (0, T),

V (x, y, 0) = H0(x, y), Vt(x, y, 0) = H1(x, y), (x, y) ∈ Θ ,

(1)

where V represents the unknown voltage or current, Vt = ∂V /∂t, Vtt = ∂2V /∂t2, �V =
∂2V /∂x2 + ∂2V /∂y2, F(x, y, t) represents the source term, V0(x, y, t) is the boundary value,
H0(x, y) and H1(x, y) stand for initial values, T is the final moment, and σ = RG(ĈL)–1 > 0
and δ = (ĈR + LG)(ĈL)–1 > 0 due to G standing for the conductivity in the uniform trans-
mission line, R for the impedance in the uniform transmission line, L for the inductance,
and Ĉ for the electric capacity in the uniform transmission line. For convenience, we will
premise that V0(x, y, t) = 0 in theoretical discussion.

The uniform transmission line equation known as the telegraph equation is a crucial
physical equation and has largely extensive applications (see [1, 2]). Nevertheless, when
its source term, boundary value, or initial values are complex, or its coefficients σ and δ

are discontinuous, it has no genuine solution, so that we have to rely on numeric solutions.
The finite element (FE) method is one of most effective numerical methods and is used to

solve many partial differential equations (see, e.g., [3–6]), whereas the Crank–Nicolson FE
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(CNFE) method has not been used to solve the uniform transmission line equation. Hence,
in this paper, we intend to develop the CNFE method for the 2D uniform transmission
line equation, analyze the stability and existence as well as errors for the CNFE solutions
of the 2D uniform transmission line equation, and verify the correctness of the obtained
theoretical results via numerical tests.

Although the collocation spectral method, space-time finite element method, and fi-
nite difference scheme (see [7–14]) have been used to solve the uniform transmission line
equation, they are different from the CNFE method, whereas the CNFE method has more
merits than the methods mentioned; for example, the CNFE method for the 2D uniform
transmission line equation is unconditionally stable, resulting in that it can ensure that the
numerical solution is absolutely convergent and can obtain optimal order error estimates
for the CNFE solutions unmatched for the above methods.

The paper is organized as follows. In Sect. 2, we firstly construct the CNFE model for
the 2D uniform transmission line equation and analyze the existence, uniqueness, stability,
and convergence of the CNFE solutions. Afterward, in Sect. 3, we use some numerical tests
to verify the correctness of the obtained theoretical results. Lastly, we summarize the main
conclusions and give some prospection in Sect. 4.

2 The CNFE method for the 2D uniform transmission line equation
2.1 The weak form of the 2D uniform transmission line equation
We will use the classical Sobolev spaces and norms (see, e.g., [15, 16]). Let U = H1

0 (Θ).
Using Green’s formula, we can derive the following weak form for the 2D uniform trans-
mission line equation (1).

Problem 1 Find V ∈ H2(0, T ;U) such that
⎧
⎨

⎩

(Vtt ,ϑ) + (∇V ,∇ϑ) + σ (Vt ,ϑ) + δ(V ,ϑ) = (F ,ϑ), ϑ ∈U,

V (x, y, 0) = H0(x, y), Vt(x, y, 0) = H1(x, y), (x, y) ∈ Θ ,
(2)

where (·, ·) stands for the inner product in L2(Θ), and a(ω,υ) = (∇ω,∇υ).

For Problem 1, we have the following conclusion of the existence, uniqueness, and sta-
bility of the weak solution.

Theorem 1 If F ∈ L2(0, T ; L2(Θ)), H1 ∈ L2(Θ), and H0 ∈ H1(Θ), then the weak formula-
tion (2) has a unique weak solution V ∈ H2(0, T ;U) meeting the stability

‖Vt‖0 + ‖V‖1 ≤ C̃
(‖H0‖1 + ‖H1‖0 + ‖F‖L2(H–1)

)
, (3)

where C̃ = 2
√

max{1, δ, 1/(2σ )}/ min{1, δ}.

Proof Since (2) is a linear equation system with respect to unknown function V , it has
a unique solution if and only if it has merely a zero solution as F(x, y, t) = H0(x, y) =
H1(x, y) = 0.

Taking ϑ = Vt in the first equation in Problem 1, we get

d‖Vt‖2
0

2 dt
+

d‖∇V‖2
0

2 dt
+ σ‖Vt‖2

0 + δ
d‖V‖2

0
2 dt

= (F , Vt). (4)
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Integrating (4) from 0 to t ∈ [0, T] and using the Hölder and Cauchy inequalities, we get

‖Vt‖2
0 + ‖∇V‖2

0 + 2σ

∫ t

0
‖Vt‖2

0 dt + δ‖V‖2
0

= ‖G‖2
0 + ‖∇H‖2

0 + δ‖H‖2
0 + 2

∫ t

0
(F , Vt) dt

≤ ‖G‖2
0 + ‖∇H‖2

0 + δ‖H‖2
0 +

1
2σ

∫ t

0
‖F‖2

0 dt + 2σ

∫ t

0
‖Vt‖2

0 dt. (5)

Thereupon, when F(x, y, t) = H0(x, y) = H1(x, y) = 0, we obtain ‖V‖0 = ‖∇V‖0 = 0, which
implies u = 0, that is, the weak formulation (2) has a unique solution V ∈ H1

0 (Θ). Further,
from (5) we obtain (3). This completes the proof of Theorem 1. �

2.2 The CNFE method for the 2D uniform transmission line equation
To solve Problem 1 by the CNFE method, let �h be a uniformly regular triangulation on
Θ̄ (see, e.g., [16]). The FE subspace is defined as

Uh =
{
υh ∈ H1

0 (Θ) ∩ C(Θ̄) : υh|K ∈ Pl(K), K ∈ �h
}

, (6)

where Pl(K) is formed by lth-degree polynomials on K ∈ �h.
For integer N > 0, let �t = T/N , and let V n

h be the FE approximations to the solutions V
in Problem 2 at tn = n�t (0 ≤ n ≤ N ), ∂̄V n

h = (V n+1
h – V n–1

h )/(2�t), ∂̄2V n
h = (V n+1

h – 2V n
h +

V n–1
h )/�t2, and f n = g(x, y, tn). Then we can establish the following CNFE model for the

2D uniform transmission line equation.

Problem 2 Find V n
h ∈Uh such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(V n+1
h – 2V n

h + V n–1
h ,ϑh) + �t2

2 (∇V n+1
h + ∇V n–1

h ,∇ϑh)

+ σ�t
2 (V n+1

h – V n–1
h ,ϑh) + δ�t2

2 (V n+1
h + V n–1

h ,ϑh)

= �t2(F(tn),ϑh), ϑh ∈ Uh, 1 ≤ n ≤ N – 1,

V 0
h (x, y) = RhG(x, y), V 1

h (x, y) = V 0
h + 2�tRhH(x, y), (x, y) ∈ Θ ,

(7)

where F(tn) = F(x, y, tn), and Ph : U →Uh is the Ritz projection (see [16]).

When g ∈ Hl+1(Θ)∩H1
0 (Θ), the Ritz projection has the following boundedness and error

estimates (see, e.g., [16]):

‖Phg‖0 ≤ C‖g‖0 and ‖g – Phg‖0 ≤ Chl+1‖g‖l+1, (8)

where ‖ · ‖0 and ‖ · ‖l represent, respectively, the norms in L2(Θ) and Hl(Θ), and C > 0
stands for a generic constant independent of �t and h, different at different places.

Moreover, when g ∈ H1
0 (Ω), it satisfies the Poincaré inequality

Cp‖g‖1 ≤ |g|1 ≤ ‖g‖1

for some Cp > 0.
For Problem 2, we have the existence, uniqueness, and stability of CNFE solutions.
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Theorem 2 If F ∈ L2(0, T ; L2(Θ)), H0 ∈ H1(Θ), and H1 ∈ H1(Θ), then Problem 2 has
a unique sequence of solutions V n

h ∈ Uh (n = 1, 2, . . . , K ) satisfying the following uncondi-
tionally stability:

∥
∥V n

h
∥
∥

1 ≤
( 8 + C2

p + δ

C2
p min{1, δ}

)1/2(‖∇H0‖0 + ‖∇H1‖0
)

+

(
�t

σ min{1, δ}
n∑

j=1

∥
∥F(tj)

∥
∥2

0

)1/2

. (9)

Proof Since scheme (7) is a linear equation system with respect to V n+1
h , to prove that

Problem 2 has a unique sequence of solutions, it suffices to check that it has merely zero
solutions as H0(x, y) = H1(x, y) = F(x, y, t) = 0.

Choosing ϑh = V n+1
h – V n–1

h in the first equation in (7) and applying the Hölder and
Cauchy inequalities, we get

∥
∥V n+1

h – V n
h
∥
∥2

0 –
∥
∥V n

h – V n–1
h

∥
∥2

0 +
�t2

2
(∥
∥∇V n+1

h
∥
∥2

0 –
∥
∥∇V n–1

h
∥
∥2

0

)

+
σ�t

2
∥
∥V n+1

h – V n–1
h

∥
∥2

0 +
δ�t2

2
(∥
∥V n+1

h
∥
∥2

0 –
∥
∥V n–1

h
∥
∥2

0

)

= �t2(F(tn), V n+1
h – V n–1

h
)

0

≤ �t3

2σ

∥
∥F(tn)

∥
∥2

0 +
σ�t

2
∥
∥V n+1

h – V n–1
h

∥
∥2

0. (10)

Furthermore, we get

∥
∥V n+1

h – V n
h
∥
∥2

0 –
∥
∥V n

h – V n–1
h

∥
∥2

0 +
�t2

2
(∥
∥∇V n+1

h
∥
∥2

0 –
∥
∥∇V n–1

h
∥
∥2

0

)

+
δ�t2

2
(∥
∥V n+1

h
∥
∥2

0 –
∥
∥V n–1

h
∥
∥2

0

) ≤ �t3

2σ

∥
∥F(tn)

∥
∥2

0. (11)

Summing (11) from 1 to n, by the second formula in (7) and the Poincaré inequality we
get

∥
∥V n+1

h – V n
h
∥
∥2

0 +
�t2

2
(∥
∥∇V n+1

h
∥
∥2

0 +
∥
∥∇V n

h
∥
∥2

0

)
+

δ�t2

2
(∥
∥V n+1

h
∥
∥2

0 +
∥
∥V n

h
∥
∥2

0

)

≤ ∥
∥V 1

h – V 0
h
∥
∥2

0 +
�t2

2
(∥
∥∇V 1

h
∥
∥2

0 +
∥
∥∇V 0

h
∥
∥2

0

)

+
δ�t2

2
(∥
∥V 1

h
∥
∥2

0 +
∥
∥V 0

h
∥
∥2

0

)
+

�t3

2σ

n∑

j=1

∥
∥F(tj)

∥
∥2

0

≤ 4�t2

C2
p

‖∇RhH0‖2
0 +

�t2

2
(‖∇RhH0‖2

0 + ‖∇RhH1‖2
0
)

+
δ�t2

2C2
P

(‖∇RhH0‖2
0 + ‖∇RhH1‖2

0
)

+
�t3

2σ

n∑

j=1

∥
∥F(tj)

∥
∥2

0

≤
(

4�t2

C2
p

+
�t2

2
+

δ�t2

2C2
P

)
(‖∇H‖2

0 + ‖∇G‖2
0
)

+
�t3

2σ

n∑

j=1

∥
∥F(tj)

∥
∥2

0 (12)
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for n = 1, 2, . . . , N – 1. Thereupon, by (12) we have ‖∇V n
h ‖ = ‖V n

h ‖ = 0 (n = 1, . . . , N ) as
H0(x, y) = H1(x, y) = F(x, y, t) = 0, which shows that V n

h = 0 (n = 1, 2, . . . , N ). Hence Prob-
lem 2 has a unique set of solutions. By (12) we directly get (9), which finishes the proof of
Theorem 2. �

The set of solutions for Problem 2 has the following error estimates.

Theorem 3 Under the hypotheses of Theorem 2, we have the following error estimates be-
tween the weak solution to Problem 1 and the CNFE solutions to Problem 2:

∥
∥V (tn) – V n

h
∥
∥

1 ≤ C
(
�t2 + hl), 1 ≤ n ≤ N . (13)

Proof As Vt and Vtt are, respectively, approximated by (V n+1 – V n–1)/2�t and (V n+1 –
2V n + V n–1)/�t2, we get the following time semidiscrete scheme for Problem 1:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(V n+1 – 2V n + V n–1,ϑ) + �t2

2 (∇V n+1 + ∇V n–1,∇ϑ)

+ σ�t
2 (V n+1 – V n–1,ϑ) + δ�t2

2 (V n+1 + V n–1,ϑ)

= �t2(F(tn),ϑ), v ∈ U , 1 ≤ n ≤ K – 1,

V 0(x, y) = H0(x, y), V 1(x, y) = H1(x, y), (x, y) ∈ Θ .

(14)

Let En
1 = V (tn) – V n, En

2 = V n – RhV n, and en
3 = RhV n – V n

h .
(1) Estimate for En

1 .
Using Taylor’s formula to (2) at t = tn, subtracting (14), and choosing ϑ = En+1

1 – En–1
1 , by

Green’s formula and the Hölder and Cauchy inequalities we get

∥
∥En+1

1 – En
1
∥
∥2

0 –
∥
∥En

1 – En–1
1

∥
∥2

0 +
�t2

2
(∥
∥∇En+1

1
∥
∥2

0 –
∥
∥∇En–1

1
∥
∥2

0

)

+ σ�t
∥
∥En+1

1 – En–1
1

∥
∥2

0 + δ�t2(∥∥En+1
1

∥
∥2

0 –
∥
∥En–1

1
∥
∥2

0

)

=
�t4

12
(
Vtttt

(
ξn

1
)
, En+1

1 – En–1
1

)
–

�t4

2
(
�Vtt

(
ξn

2
)
, En+1

1 – En–1
1

)

+
σ�t4

6
(
Vttt

(
ξn

3
)
, En+1

1 – En
1
)

+
δ�t4

2
(
Vtt

(
ξn

2
)
, En+1

1 – En–1
1

)

≤ σ�t
∥
∥En+1

1 – En–1
1

∥
∥2

0 +
�t7

144σ
‖Vtttt

(
ξn

1
)‖2

0 +
�t7

4σ
‖�Vtt

(
ξn

2
)‖2

0

+
σ�t7

36
‖Vttt

(
ξn

3
)‖2

0 +
δ2�t7

4σ
‖Vtt

(
ξn

2
)‖2

0, (15)

where tn ≤ ξn
1 , ξn

2 , ξn
3 ≤ tn+1. Since E1

1 = E0
1 = 0, simplifying and summing (15) from 1 to n,

we get

2
∥
∥En+1

1 – En
1
∥
∥2

0 + �t2(∥∥∇En+1
1

∥
∥2

0 +
∥
∥∇En

1
∥
∥2

0

)
+ 2δ�t2(∥∥En+1

1
∥
∥2

0 +
∥
∥En

1
∥
∥2

0

)

≤ C2(V )min{1, 2δ}�t6, (16)

where C2(V ) = 1
72σ min{1,2δ} [‖Vtttt(ξn

1 )‖2
0 + 18‖�Vtt(ξn

2 )‖2
0 + 4σ 2‖Vttt(ξn

3 )‖2
0 + 36δ2‖Vtt(ξn

2 )‖2
0].

Furthermore, we get

∥
∥En

1
∥
∥

1 ≤ C(V )�t2. (17)
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(2) Estimate for E2.
The estimate of E2 may be directly obtained from (8) as V n ∈ Hl+1(Θ):

∥
∥En

2
∥
∥

1 ≤ Chl, n = 1, 2, . . . , N . (18)

(3) Estimate for E3 = RhV n – V n
h .

Subtracting Problem 2 from (14) and choosing ϑ = ϑh ∈ Uh, we get

(
V n+1 – V n+1

h – 2
(
V n – V n

h
)

+ V n–1 – V n–1
h ,ϑh

)

+
�t2

2
(∇(

V n+1 – V n+1
h

)
+ ∇(

V n–1 – V n–1
h

)
,∇ϑh

)

+
σ�t

2
(
V n+1 – V n+1

h –
(
V n–1 – V n–1

h
)
,ϑh

)

+
δ�t2

2
(
V n+1 – V n+1

h + V n–1 – V n–1
h ,ϑh

)
= 0, ϑh ∈ Uh. (19)

Using the property of Rh, (8), (19), Taylor’s formula, and the Hölder and Cauchy inequali-
ties, we get

∥
∥En+1

3 – En
3
∥
∥2

0 –
∥
∥En

3 – En–1
3

∥
∥2

0 +
�t2

2
(∥
∥∇En+1

3
∥
∥2

0 –
∥
∥∇En–1

3
∥
∥2

0

)

+
σ�t

2
∥
∥En+1

3 – En–1
3

∥
∥2

0 + δ�t2(∥∥En+1
3

∥
∥2

0 –
∥
∥En–1

3
∥
∥2

0

)

=
(
V n+1 – 2V n + V n–1 –

(
V n+1

h – 2V n
h + V n–1

h
)
, En+1

3 – En–1
3

)

+
(
RhV n+1 – V n+1 – 2

(
RhV n – V n) +

(
RhV n–1 – V n–1), En+1

3 – En–1
3

)

+
�t2

2
(∇(

V n+1 – V n+1
h

)
+ ∇(

V n–1 – V n–1
h

)
,∇(

En+1
3 – En–1

3
))

+
�t2

2
(∇(

RhV n+1 – V n+1) + ∇(
RhV n–1 – V n–1),∇(

En+1
3 – En–1

3
))

+
δ�t2

2
(
V n+1 – V n+1

h + V n–1 – V n–1
h , En+1

3 – En–1
3

)

+
δ�t2

2
(
RhV n+1 – V n+1 + RhV n–1 – V n–1, En+1

3 – En–1
3

)

=
(
RhV n+1 – V n+1 – 2

(
RhV n – V n) +

(
RhV n–1 – V n–1), En+1

3 – En–1
3

)

+
δ�t2

2
(
RhV n+1 – V n+1 + RhV n–1 – V n–1, En+1

3 – En–1
3

)

≤ σ�t
2

∥
∥En+1

3 – En–1
3

∥
∥2

0 + C�t3h2(l+1), n = 0, 1, . . . , N – 1. (20)

Noting that E1
3 = E0

3 = 0 and summing (20) from 1 to n, we get

∥
∥En+1

3 – En
3
∥
∥2

0 +
�t2

2
(∥
∥∇En+1

3
∥
∥2

0 +
∥
∥∇En

3
∥
∥2

0

)
+ δ�t2(∥∥En+1

3
∥
∥2

0 +
∥
∥En

3
∥
∥2

0

)

≤ C�t2h2(l+1), n = 1, 2, . . . , N . (21)
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Thereupon, we get

∥
∥En

3
∥
∥

1 ≤ Chl+1, n = 1, 2, . . . , N . (22)

Uniting (17)–(18) and (22), we gain (13), which completes the proof of Theorem 3. �

Remark 1 The order of error estimates in Theorem 3 is optimal. Theorems 2 explains that
the CNFE method (Problem 2) for the 2D uniform transmission line equation has a unique
set of solutions that is unconditionally stable, so that it is unconditionally convergent and
continuously depends on the initial value and source term. This shows that Problem 2 is
theoretically reliable and effective for settling the 2D uniform transmission line equation.

3 Numerical tests
We employ some numerical tests to verify the correctness of the theoretical consequences
of the CNFE method (Problem 2) of the 2D uniform transmission line equation, which can
settle out the genuine solution, but usually it has no genuine solution.

In the 2D uniform transmission line equation (1), we choose Θ̄ = [–1, 1] × [–1, 1],
σ = 2, δ = 1, V0(±1, y, t) = exp(–t)(1 – cos 2πy) (–1 ≤ y ≤ 1 and t ∈ [0, T)), V0(x,±1, t) =
exp(–t)(1 – cos 2πx) (–1 ≤ x ≤ 1 and t ∈ [0, T)), H0(x, y) = 1 – cos 2πy cos 2πx, H1(x, y) =
cos 2πy cos 2πx – 1, and F(x, y, t) = 8π2 exp(–t) cos 2πy cos 2πx. Thus we can find the fol-
lowing genuine solution for the uniform transmission line equation (1):

V (x, y, t) = exp(–t)(1 – cos 2πy cos 2πx), (x, y) ∈ [–1, 1] × [–1, 1], t ∈ [0, T).

When choosing time step �t = 0.01 and adopting the uniformly regular triangulation
with h = 0.01 and the P2(K) with 2nd-degree polynomials on every triangular element, by
Theorem 3 the theoretical errors between the genuine solution and the CNFE solutions
V k

h (k = 1, 2, . . . , N ) should be O(10–4).
Employing the CNFE method (Problem 3), we can compute out the CNFE solutions at

t = 0, 0.3, 0.6, 0.9, depicted in Figs. 1, 2, 3, 4(a), respectively. The genuine solutions at the
same time nodes are depicted in Figs. 1, 2, 3, 4(b), respectively. Each pair of plots in Figs. 1,
2, 3, 4 is almost the same. The CNFE solutions after t = 0.9 tend to be stable, which agree
with cases of voltage or current in actual uniform transmission line.

Table 1 shows the errors between the genuine solutions and the CNFE solutions and
CPU run time for t = 0.3, t = 0.6, and t = 0.9, respectively, which verifies that the cor-
rectness of the theoretical results due to both theoretical and numerical errors reaching

Figure 1 (a) The genuine solution when t = 0. (b) The CNFE solution when t = 0
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Figure 2 (a) The genuine solution when t = 0.3. (b) The CNFE solution when t = 0.3

Figure 3 (a) The genuine solution when t = 0.6. (b) The CNFE solution when t = 0.6

Figure 4 (a) The genuine solution when t = 0.9. (b) The CNFE solution when t = 0.9

O(10–4), signifies that the CNFE method is effective and reliable for calculating the 2D uni-
form transmission line equation. In Table 1, we also give the errors between the genuine
and FE solutions and CPU run times when t = 0.3, t = 0.6, and t = 0.9 using the following
FE method:

Problem 3 Find Ṽ n
h ∈Uh such that

⎧
⎪⎪⎨

⎪⎪⎩

(Ṽ n+1
h – 2Ṽ n

h + Ṽ n–1
h ,ϑh) + �t2(∇Ṽ n

h ,∇ϑh) + σ�t(Ṽ n
h – Ṽ n–1

h ,ϑh)

+ δ�t2(Ṽ n
h ,ϑh) = �t2(F(tn),ϑh), ϑh ∈ Uh, 1 ≤ n ≤ N – 1,

Ṽ 0
h (x, y) = RhG(x, y), Ṽ 1

h (x, y) = Ṽ 0
h + �tRhH(x, y), (x, y) ∈ Θ ,

(23)

where F(tn) = F(x, y, tn) and Ph : U →Uh is the Ritz projection.
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Table 1 The CPU elapsed time and the relative errors of the FE and CNFE solutions

t n FE method CNFE method
‖V(tn) – Ṽnh‖1 CPU run time ‖V(tn) – Vnh‖1 CPU run time

0.3 300 1.413276e-2 1.693 second 4.051625e-5 1.791 second
0.6 600 3.232292e-2 5.897 second 4.371744e-4 6.127 second
0.9 900 5.482546e-2 11.825 second 4.581633e-4 11.982 second

It is readily proven that Problem 3 is conditionally stable, so that it is conditionally con-
vergent, and its FE solutions only have the first-order accuracy about time, that is, we have
the following error estimates:

∥
∥V (tn) – Ṽ n

h
∥
∥

1 ≤ C
(
�t + hl), n = 1, 2, . . . , N . (24)

Therefore, if �t = 0.01 and l = 2 (also adopting second-degree elements), then the the-
oretical errors are of order O(102) only, which are consistent with numerical errors; see
Table 1. It is further shown that the CNFE method (i.e., Problem 2) has more merits than
the FE method (i.e., Problem 3) for settling the 2D uniform transmission line equation.

4 Conclusions and expectation
In our study, we have developed the CNFE method for the 2D uniform transmission line
equation and analyzed the existence, uniqueness, stability, and errors for the CNFE solu-
tions. We have also adopted some numeric tests to confirm the correctness for the CNFE
method. It has been shown, by comparing with the usual FE method, that the CNFE
method has more merits. Furthermore, it is revealed that the CNFE method is very ef-
fective for settling the 2D uniform transmission line equation.

In spite of the fact that we have only concerned with the CNFE method for the 2D uni-
form transmission line equation, the CNFE method may be applied to settle the three-
dimensional uniform transmission line equations or the uniform transmission line equa-
tion with complicated geometrical regions.

Although the CNFE method has many merits, such as unconditional stability, uncon-
ditional convergence, and the second-order accuracy in time, it has unknowns (freedom
of degrees). When adopting the P2(K) with 2nd-degree polynomials on every triangular
element in Sect. 3, we may reckon that the CNFE method has about 4×4×104 unknowns
in the FE method (see [16, Lemma 1.30]). Provided that it is applied for settling big data
processing in artificial intelligence and/or computational linguistics, there will be more
than tens of millions unknown numbers. Fortunately, a proper orthogonal decomposition
(POD) technique may be used to reduce the unknowns in the CNFE method, which can be
used to reduce many numerical methods (see, e.g., [17–22]). Our future work is reducing
the number of unknowns in the CNFE method by the POD technique.
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