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Abstract
We say that a Drazin invertible operator T on Hilbert space is of class [DN] if
TDT∗ = T∗TD. The authors in (Oper. Matrices 12(2):465–487, 2018) studied several
properties of this class. We prove the Fuglede–Putnam commutativity theorem for
D-normal operators. Also, we show that T has the Bishop property (β). Finally, we
generalize a very famous result on products of normal operators due to I. Kaplansky
to D-normal matrices.
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1 Introduction
Let H be a complex Hilbert space. By B(H) we denote the space of all bounded linear op-
erators on H and by I = IH the identity operator. If T ∈ B(H), then T∗ denotes the adjoint
of T . By N (T), R(T), and σ (T) we denote the null space, the range, and the spectrum of
T , respectively. For convenience, we write T – λ instead of T – λI .

Property (β) has been introduced by Bishop [4] and is defined as follows.

Definition 1.1 An operator T ∈ B(H) is said to have the Bishop property (β) (shortly,
property (β)) if for every open set D of C and every sequence of analytic functions fn :
D −→ H such that (T – μ)fn(μ) −→ 0 uniformly on all compact subsets of D, then also
fn(μ) −→ 0, again locally uniformly on D.

It is well known that every normal operator has property (β). The study of operators
satisfying property (β) is of significant interest and is currently being done by a number
of mathematicians around the world (see [3, 12]).

Definition 1.2 Let T ∈ B(H). The operator T is said to have the single-valued extension
property at λ ∈ C (abbreviated SVEP at λ) if for every neighborhood D of λ, the only
analytic function f : D −→H that satisfies the equation

(T – μ)f (μ) = 0
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is the constant function f ≡ 0.
The operator T is said to have the SVEP if T has the SVEP at every λ ∈ C.

The quasinilpotent part and the analytic core of (T – λ) are, respectively, defined by

H0(T – λ) =
{

x ∈H : lim
n−→∞

∥∥(T – λ)nx
∥∥ 1

n = 0
}

and

K0(T – λ) =
{

x ∈H : there exist a sequence (xn) ⊂H and a constant δ > 0

such that (T – λ)x1 = x, (T – λ)xn+1 = xn, and ‖xn‖ ≤ δn‖x‖
for all n ∈N

}
.

The subspace C(T) in purely algebraic terms was introduced by Saphar [13].

Definition 1.3 Let T be a linear operator on H. The algebraic core C(T) is is the greatest
subspace M of H for which T(M) = M.

For bounded linear operators, the Drazin inverse was introduced and studied by Caradus
[6]. It is shown that the Drazin inverse is helpful in analyzing Markov chains, difference
equation, differential equations, Cauchy problems, and iterative procedures [2, 5].

Definition 1.4 For T ∈ B(H), suppose that there exists an operator TD ∈ B(H) satisfying
the following three operator equations:

TTD = TDT , TDTTD = TD, Tk+1TD = Tk ,

where k = ind(T), the index of T , is the smallest nonnegative integer for which R(Tk) =
R(Tk+1) and N (Tk) = N (Tk+1). Then TD is called a Drazin inverse of T .

In particular, when ind(T) = 1, the operator TD is called the group inverse of T and is
denoted by T�. Clearly, ind(T) = 0 if and only if T is invertible, and in this case, TD = T–1.

Remark 1.5 Let T be Drazin invertible.
1. The spectral idempotent Tπ of T corresponding to {0} is given by Tπ = I – TTD.

The operator matrix form of T with respect to the space decomposition
H = N (Tπ ) ⊕R(Tπ ) is given by T = T1 ⊕ T2, where T1 is invertible, and T2 is
nilpotent.

2. • H0(T) = R(Tπ ) = N (TD) = N (Tk),
• K0(T) = N (Tπ ) = R(TD) = R(Tk),
where k = ind(T).

For T ∈ B(H), it is well known that the Drazin inverse TD of T is unique if it exists, and
then (T∗)D = (TD)∗.

Lemma 1.6 ([5]) Let S, T ∈ B(H) be Drazin invertible. Then
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(i) ST is Drazin invertible if and only if TS is Drazin invertible, ind(ST) ≤ ind(TS) + 1,
and (ST)D = S[(TS)D]2T .

(ii) If S is idempotent, then SD = S.
(iii) If ST = TS, then (ST)D = TDSD = SDTD, SDT = TSD, and STD = TDS.

Definition 1.7 ([7]) Let T ∈ B(H) be Drazin invertible. T is called a D-normal operator
if

TDT∗ = T∗TD.

The class of all D-normal operators is denoted by [DN].

Proposition 1.8 Let T ∈ B(H) be Drazin invertible. Then T is D-normal if and only if TD

is normal.

Proof Let T be D-normal. Then TDT∗ = T∗TD and, by Lemma 1.6(3), TD(T∗)D =
(T∗)DTD. Since (T∗)D = (TD)∗ , TD is normal. Now let TD be normal. Since TDT = TTD,
by the Fuglede theorem, TDT∗ = T∗TD. Therefore T is D-normal. �

D-normal operators were introduced and studied by Dana and Yousefi [7]. The authors
in [8, 9] studied several properties of this class.

2 Fuglede–Putnam theorem for D-normal operators
The Fuglede–Putnam theorem is a very useful tool when dealing with products (and even
sums) involving normal operators. As an application of this theorem, we can name Ka-
plansky theorem [10]. Many mathematicians attempt to extend this theorem to nonnor-
mal operators (see [14]).

The Hilbert–Schmidt operators inH form an idealH in the algebraB(H) of all operators
in H. The ideal H itself is a Hilbert space with inner product

〈X, Y 〉 =
∑

〈Xei, Yei〉 = tr
(
Y ∗X

)
= tr

(
XY ∗),

where {ei} is any orthonormal basis of H. For each pair of operators S, T ∈ B(H), there is
an operator Γ defined on B(H) by the formula Γ X = SXT as in [3]. The adjoint and the
Drazin inverse of Γ are given by the formulas

Γ ∗X = S∗XT∗ and Γ DX = SDXTD.

We say that normal operators S, T satisfy the Fuglede–Putnam theorem if SX = XT im-
plies S∗X = XT∗. The aim of this section is to show that if S, T are of class [DN] and T is
invertible, then for a Hilbert–Schmidt operator X,

SX = XT implies S∗X = XT∗.

Theorem 2.1 Let S, T , X ∈ B(H) be such that S and T are Drazin invertible. If SX = XT ,
then SDX = XTD.
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Proof There exists a scalar polynomial g such that (S ⊕ T)D = g(S ⊕ T) [5]. This implies
that SD = g(S) and TD = g(T). Hence SDX = g(S)X = Xg(T) = XTD. �

Lemma 2.2 If S, T ∈ [DN], then the operator Γ is of class [DN].

Proof By hypothesis, SDS∗ = S∗SD and TDT∗ = T∗TD. For any pair S, T ∈ B(H),

(
Γ ∗Γ D – Γ DΓ ∗)X = Γ ∗Γ DX – Γ DΓ ∗X

= Γ ∗(SDXTD)
– Γ D(

S∗XT∗)

= S∗(SDXTD)
T∗ – SD(

S∗XT∗)TD

= 0,

which implies that Γ is of class [DN]. �

Theorem 2.3 Let S, T ∈ [DN] nr such that T is invertible, and let X be a Hilbert–Schmidt
operator. If SX = XT , then S∗X = XT∗.

Proof Let Γ be the Hilbert–Schmidt operator defined by Γ Y = SYT–1, where Y ∈ B(H).
Since S, T are of class [DN], by Lemma 2.2, Γ is of class [DN]. The hypothesis SX = XT
implies that Γ X = X and Γ DX = X and also

∥∥Γ ∗X
∥∥2 =

〈
Γ ∗X,Γ ∗X

〉

=
〈
Γ ∗(Γ D)2X,Γ ∗(Γ D)2X

〉

=
〈
Γ

(
Γ D)2∗

Γ ∗(Γ D)2X, X
〉

=
〈
Γ DX,Γ DX

〉

= ‖X‖2.

On the other hand,

〈
Γ ∗X, X

〉
=

〈
Γ ∗X,

(
Γ D)2X

〉

=
〈(
Γ D)2∗

Γ ∗X, X
〉

=
〈
Γ D∗X, X

〉

=
〈
X,Γ DX

〉

= 〈X, X〉.

So we have

∥∥Γ ∗X – X
∥∥2 =

〈
Γ ∗X – X,Γ ∗X – X

〉

=
〈
Γ ∗X,Γ ∗X

〉
–

〈
Γ ∗X, X

〉
–

〈
X,Γ ∗X

〉
+ 〈X, X〉

=
∥∥Γ ∗X

∥∥2 –
〈
Γ ∗X, X

〉
–

〈
X,Γ ∗X

〉
+ ‖X‖2

= 0.

Therefore Γ ∗X = X, and hence S∗X = XT∗. �
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Here we give an example that if X ∈ B(H) and S, T ∈ [DN] satisfy SX = XT , then we
cannot get S∗X = XT∗. Just consider the operator S = X =

( 0 0
1 0

)
and T = 0. Then SX = XT ,

but S∗X =
( 1 0

0 0

)
and XT∗ =

( 0 0
0 0

)
.

3 Bishop property for D-normal operators
We start this section with the matrix representation for T ∈ [DN].

Lemma 3.1 If T ∈ [DN], then R(TD) reduces T .

Proof Since T ∈ [DN], TDT∗ = T∗TD. Obviously, R(TD) is invariant under T . We will
show that R(TD) is invariant under T∗. Let x ∈ R(TD). Then x = TDy for some y ∈ H,
and T∗x = T∗TDy = TDT∗y ∈ R(TD). Thus R(TD) is invariant under T∗, and R(TD) re-
duces T . �

Theorem 3.2 If T is of class [DN], then T has the following matrix representation: T =( T1 0
0 T2

)
on H = R(TD) ⊕N (TD), where T1 = T |R(TD) is also of class [N], and T2 is a nilpo-

tent operator with nilpotency ind(T). Furthermore, σ (T) = σ (T1) ∪ {0}.

Proof By Lemma 3.1, R(TD) reduces T . Hence T has the matrix representation T =( T1 0
0 T2

)
on H = R(TD) ⊕ N (T∗D). Note that since T ∈ [DN], N (TD) = N (T∗D). Let P be

the orthogonal projection onto R(TD). Then

(
T1 0
0 0

)
= TP = PT = PTP.

Hence

P
(
TDT∗)P =

(
TD

1 T∗
1 0

0 0

)

and

P
(
T∗TD)

P =

(
T∗

1 TD
1 0

0 0

)
.

Since T ∈ [DN], P(T∗TD)P = P(TDT∗)P, implying T∗
1 TD

1 = TD
1 T∗

1 . Hence T1 ∈ [DN]. On
the other hand, by Remark 1.5, T1 is invertible. So T1 ∈ [N].

For any z =
( z1

z2

) ∈H,

〈
TD

2 z2, z2
〉

=
〈
TD(I – P)z, (I – P)z

〉

=
〈
(I – P)z,

(
TD)∗(I – P)z

〉

= 0.

Therefore TD
2 = 0. Then T2 is a nilpotent operator. Since R(TD) reduces T , σ (T) = σ (T1)∪

σ (T2) = σ (T1) ∪ {0}. �

Theorem 3.3 If T ∈ [DN], then T has property (β).
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Proof If D ⊂ C is an open neighborhood of λ ∈ C and fm (m = 1, 2, . . .) are vector-valued
analytic functions on D such that (T – μ)fm(μ) −→ 0 uniformly on every compact subset
of D, then we decompose H as H = R(TD) ⊕ N (TD), and by Theorem 3.2 T =

( T1 0
0 T2

)

where T1 ∈ [N], and T2 is a nilpotent operator with nilpotency ind(T). The convergence
(T – μ)fm(μ) −→ 0 implies

(
T1 – μ 0

0 T2 – μ

)(
fm1 (μ)
fm2 (μ)

)
=

(
(T1 – μ)fm1 (μ)
(T2 – μ)fm2 (μ)

)

Since T2 is nilpotent, it has property (β), and therefore fm2 (μ) −→ 0. Also, since T1 is
normal, it has property (β). So by Theorem 3.39 in [11], T has property (β). �

From the theorem we immediately have the following:

Corollary 3.4 If T ∈ [DN], then T has the SVEP.

The following example shows that for a D-normal operator T , the corresponding eigen-
spaces need not be reducing subspaces of T .

Example 3.5 T =
( 0 1

0 0

)
. Clearly, T is a D-normal operator, and the eigenspace of T is

( x
0
)
,

but it is not a reducing subspace of T .

Theorem 3.6 Suppose that T ∈ [DN]. Then C(TD) is invariant under T∗.

Proof By the definition of algebraic core of TD, TD(C(TD)) = C(TD). Since T ∈ [DN],
T∗TD = TDT∗. So we have T∗TDC(TD) = TDT∗C(TD). This implies T∗C(TD) = TDT∗ ×
C(TD). Now, since C(TD) is the greatest subspace satisfying TD(C(TD)) = C(TD), we have
T∗C(TD) ⊆ C(TD). Thus C(TD) is invariant under T∗. �

Theorem 3.7 If T ∈ [DN], then the following properties hold:
1. H0(TD – λ) is a reducing subspace of T .
2. x ∈ H0(T) if and only if T∗x ∈ H0(T).
3. H0(TD – λ) = N (TD – λ) = N (TD – λ)∗. In particular, H0(T) = N (TD) = N ((TD)∗).
4. If M is an invariant subspace of T and T1 = T |M on H = M⊕M⊥, then

H0(TD
1 – λ) = N (TD

1 – λ) = N (TD
1 – λ)∗

Proof 1. Since T ∈ [DN], (TD – λ)T∗ = T∗(TD – λ) ,and hence for x ∈ H0(TD – λ), we have

lim
n→∞

∥∥(
TD – λ

)nT∗x
∥∥ 1

n = lim
n→∞

∥∥T∗(TD – λ
)nx

∥∥ 1
n

≤ lim
n→∞

∥∥T∗∥∥ 1
n
∥∥(

TD – λ
)nx

∥∥ 1
n

= 0.

Hence T∗x ∈ H0(TD – λ). It is easy to see that Tx ∈ H0(TD – λ).
2. We have H0(T) = N (TD). On the other hand, (TD)D = T2TD. It is clear that N (TD) =

N (T2TD). So, H0(T) = H0(TD).
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If x ∈ H0(T) = H0(TD), then we easily get that T∗x ∈ H0(T). To prove the converse, let
T∗x ∈ H0(T). For every n > 1, we have

∥∥(
TD)nT∗x

∥∥2 =
〈(

TD)nT∗x,
(
TD)nT∗x

〉

=
〈
T∗(TD)nx, T∗(TD)nx

〉

=
〈(

T∗D)nTT∗(TD)nx, x
〉

=
〈
T

(
T∗D)nT∗(TD)nx, x

〉

=
〈
T

(
TD)n(T∗D)nT∗x, x

〉

=
〈(

T∗D)n–1x,
(
T∗D)n–1x

〉

=
∥∥(

T∗D)n–1x
∥∥2

=
∥∥(

TD)n–1x
∥∥2.

So, for every n > 1,

∥∥(
TD)nT∗x

∥∥2 =
∥∥(

TD)n–1x
∥∥2, (3.1)

and for n = 1,

∥∥TDT∗x
∥∥2 =

∥∥TTDx
∥∥2.

According to (3.1),

lim
n→∞

∥∥(
TD)n–1x

∥∥ 1
n–1 = lim

n→∞
(∥∥(

TD)nT∗x
∥∥ 1

n
) n

n–1 = 0.

Thus x ∈ H0(TD) = H0(T).
3. Notice that for a totally paranormal operator T , H0(T – λ) = N (T – λ) for every λ ∈C

[1]. The class of totally paranormal operators includes the class of hyponormal operators
and hence normal operators. In view of normality TD, we have

H0
(
TD – λ

)
= N

(
TD – λ

)
= N

(
TD – λ

)∗.

For λ = 0, H0(TD) = N (TD) = N (TD)∗.
3. By Proposition 2.6 of [7], TD

1 = TD|M is hyponormal, and hence H0(TD
1 – λ) =

N (TD
1 – λ) = N (TD

1 – λ)∗. �

4 Generalization of Kaplansky theorem for D-normal matrices
Let Mn(C) be the set of n × n complex matrices. In this section, we are mainly interested
in generalizing the following famous result on products of normal operators, due to I. Ka-
plansky, to D-normal matrices.

Theorem 4.1 ([10]) Let A and B be two bounded operators on a Hilbert space such that
AB and A are normal. Then B commutes with AA∗ iff BA is normal.
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Proposition 4.2 Let A, B ∈Mn(C) be such that AB is D-normal. Then

A∗AB = BAA∗ �⇒ BA is D-normal.

Proof Let A = UP, where P is positive, and U is unitary. Note that there exists a positive
semidefinite K ∈Mn(C) such that A = KU . We obtain

P2B = A∗AB

= (BA)A∗

= BK2.

Hence, since P and K are positive semidefinite, PB = BK . Then PBU = BKU . So PBU =
BUP. Thus

U∗ABU = U∗UPBU = PBU = BA.

Hence BA is unitary equivalent to a D-normal operator, and thus by [7, Proposition 2.6],
it is D-normal itself. �

Remark 4.3 Using a similar method as in Proposition 4.2, we can show that for A, B ∈
Mn(C), by the Kaplansky theorem the condition that A is normal is superfluous.

Proposition 4.4 Let A, B ∈Mn(C) be such that AB is D-normal. Then

A∗(AB)D = (BA)DA∗ ⇐⇒ BA is D-normal.

Proof Let AB and BA be D-normal matrices. Then by Lemma 1.6(i)

A(BA)D = AB
(
(AB)2)DA

= (AB)DA.

Hence, by the Fuglede–Putnam theorem,

A
(
(BA)D)∗ =

(
(AB)D)∗A.

So,

A∗A
(
(BA)D)2B = B

(
(AB)D)2AA∗.

Hence

A∗(AB)D = (BA)DA∗.

Conversely, if A∗(AB)D = (BA)DA∗, then A∗A((BA)D)2B = B((AB)D)2AA∗. Let A = UP,
where P is positive, and U is unitary. Note that there exists a positive semidefinite K ∈
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Mn(C) such that A = KU . So P2((BA)D)2B = B((AB)D)2K2. Hence, since P and K are posi-
tive semidefinite, P((BA)D)2B = B((AB)D)2K . So we have

P
(
(BA)D)2BU = B

(
(AB)D)2KU . (4.1)

Now

U∗(AB)DU = U∗A
(
(BA)D)2BU (by Lemma 1.6)

= U∗UP
(
(BA)D)2BU

= B
(
(AB)D)2KU (by (4.1))

= B
(
(AB)D)2A

= (BA)D.

Hence (BA)D is unitary equivalent to a normal operator and thus is normal itself. �
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