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Abstract
This paper explores a delayed Nicholson-type system involving patch structure.
Applying differential inequality techniques and the fluctuation lemma, we establish a
new sufficient condition which guarantees the existence of positive asymptotically
almost periodic solutions for the addressed system. The results of this article are
completely new and supplement the previous publications.
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1 Introduction
As we all know, periodicity is important in real surroundings and the world, but almost pe-
riodicity is always more accurate, more realistic, and more general than periodicity when
adding varied environmental factors. In comparison with periodic effects, almost periodic
effects are more frequent in lots of real world applications [1–4]. In particular, the exis-
tence and global stability of almost periodic solutions for the famous scalar Nicholson’s
blowflies equation

x′(t) = –a(t)x(t) +
m∑

j=1

βj(t)x
(
t – τj(t)

)
e–γj(t)x(t–τj(t)) (1.1)

and the Nicholson’s blowflies systems with patch structure

x′
i(t) = –aii(t)xi(t) +

n∑

j=1,j �=i

aij(t)xj(t) +
m∑

j=1

βij(t)

× xi
(
t – τij(t)

)
e–γij(t)xi(t–τij(t)), i ∈ Q := {1, 2, . . . , n}, (1.2)

have been extensively investigated in previous studies [5, 6] and [7], respectively. It is easy
to know that scalar Nicholson’s blowflies Eq. (1.1) is a special case of Nicholson’s blowflies
system (1.2), where xi(t) denotes the density of the ith-population at time t, aij(t) (i �= j) is
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the rate of the population moving from class j to class i at time t, aii(t) is the coefficient
of instantaneous loss (which integrates both the death rate and the dispersal rates of the
population in class i moving to the other classes), βij(t)xi(t –τij(t))e–γij(t)xi(t–τij(t)) is the birth
function, βij(t) is the birth rate for the species, 1

γij(t) is the ith-population reproducing at
its maximum rate, and τij(t) is the generation time of the ith-population at time t. For the
feedback function xe–x and its derivative 1–x

ex , the author in [8] pointed out that there exist
two fixed positive numbers κ and κ̃ such that

κ ≈ 0.7215355, κ̃ ≈ 1.342276,
1 – κ

eκ
=

1
e2 ,

sup
x≥κ

∣∣∣∣
1 – x

ex

∣∣∣∣ =
1
e2 , κe–κ = κ̃e–κ̃ .

(1.3)

It is worth noting that the global exponential stability of almost periodic solutions of (1.1)
has been shown in [5, 6] under the restriction that the almost periodic solution exists
in a small interval [κ , κ̃] ≈ [0.7215355, 1.342276], and the global exponential stability of
(1.2) has been established in [7] where the authors adopted the restraint that the almost
periodic solution exists in a small domain

[κ , κ̃] × · · · × [κ , κ̃]︸ ︷︷ ︸
n

= [0.7215355, 1.342276] × · · · × [0.7215355, 1.342276]︸ ︷︷ ︸
n

. (1.4)

Obviously, the above restriction and restraint do not accord with the biological signifi-
cance of the population models.

On the other hand,

γij(t) ≥ 1 for all t ∈R, i ∈ Q, j ∈ I := {1, 2, . . . , m}, (1.5)

has been made as the crucial assumption in [5–7]. It should be mentioned that the sta-
bility of a class of delayed nonlinear density-dependent mortality Nicholson’s blowflies
model has been investigated in [9–12] without assumption (1.5), when the maximum re-
producing rate is not limited (i.e. 1

γij(t) maybe sufficiently large). However, there is no re-
search work on the global exponential stability of almost periodic solutions for Nicholson’s
blowflies Eq. (1.1) without assumption (1.5) and avoiding [κ , κ̃] as the existence interval
for almost periodic solutions. In particular, to the best of our knowledge, there has not
yet been research work on the global stability of almost periodic solutions of Nicholson’s
blowflies systems with patch structure and nonlinear density-dependent mortality terms
when the almost periodic solutions do not belong to the above domain (1.4).

Regarding the above discussions, in this paper, without adopting [κ , κ̃] × · · · × [κ , κ̃]︸ ︷︷ ︸
n

as

the existence domain of almost periodic solutions, we establish the existence and global
exponential stability of positive almost periodic solutions for Nicholson’s blowflies systems
involving patch structure and nonlinear density-dependent mortality terms. Our results
improve and complement some existing ones in the recent publications [5–7, 12], and its
effectiveness is demonstrated by some numerical examples.

This paper is organized as follows: In Sect. 2, some necessary definitions, lemmas, and
assumptions are presented. In Sect. 3, the existence and global attractivity of positive
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asymptotically almost periodic solutions are demonstrated by virtue of some differential
inequalities and analytic techniques. To verify our theoretical results, a numerical exper-
iment is carried out in Sect. 4. Conclusions are drawn in Sect. 5.

2 Preliminary results
Throughout this paper, it will be assumed that

σi = max
j∈I

sup
t∈[t0,+∞)

τij(t) > 0, lim inf
t→+∞

[
aii(t) –

n∑

j=1,j �=i

aij(t)

]
> 0, (2.1)

γ – = min
i∈Q

lim inf
t→+∞ γij(t) > 0, lim sup

t→+∞
γij(t) ≤ 1, i ∈ Q, j ∈ I. (2.2)

For x = (x1, . . . , xn) ∈R
n, define

|x| =
(|x1|, . . . , |xn|

)
, ‖x‖ = max

i∈Q
|xi|.

Let R+ = [0, +∞) and C+ =
∏n

i=1 C([–σi, 0],R+). For J,J1,J2 ⊆R, denote

W0
(
R

+,J
)

=
{
ν : ν ∈ C

(
R

+,J
)
, lim

t→+∞ν(t) = 0
}

,

and let BC(J1,J2) be the set of bounded and continuous functions from J1 to J2.

Definition 2.1 (see [1, 2]) A subset P of R is said to be relatively dense in R if there exists
a constant l > 0 such that [t, t + l] ∩ P �= ∅ (t ∈ R). u ∈ BC(R,J) is almost periodic on R if,
for any ε > 0, the set T(u, ε) = {δ : |u(t + δ) – u(t)| < ε,∀t ∈R} is relatively dense.

Definition 2.2 (see [1, 2]) u ∈ C(R+,J) is asymptotically almost periodic if there exist an
almost periodic function h and a continuous function g ∈ W0(R+,J) such that u = h + g .

For J ⊆ R, we denote the set of almost periodic functions from R to J by AP(R,J). The
set of asymptotic almost periodic functions will be represented by AAP(R,J). In addition,
AP(R,J) is a proper subspace of AAP(R,J) [1, 2].

Remark 2.1 (see [1, p. 64, Remark 5.16]) The decomposition given in Definition 2.2 is
unique.

Hereafter, let aii,γij ∈ AAP(R, (0, +∞)), aij (i �= j), βij, τij ∈ AAP(R,R+), and

aij = ah
ij + ag

ij, βij = βh
ij + β

g
ij , γij = γ h

ij + γ
g
ij , τij = τ h

ij + τ
g
ij , (2.3)

where ah
ii,γ h

ij ∈ AP(R, (0, +∞)), ah
ij (i �= j), βh

ij , τ h
ij ∈ AP(R,R+), ag

ij,β
g
ij ,γ

g
ij , τ g

ij ∈ W0(R+,R+),
lim inft→+∞ βij(t) > 0, and i ∈ Q, j ∈ I .

Then, we need to introduce a nonlinear almost periodic differential system

x′
i(t) = –ah

ii(t)xi(t)

+
n∑

j=1,j �=i

ah
ij(t)xj(t) +

m∑

j=1

βh
ij (t)xi

(
t – τ h

ij (t)
)
e–γ h

ij (t)xi(t–τh
ij (t)), (1.2)h
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with the following admissible initial conditions:

xi(t0 + θ ) = ϕi(θ ), θ ∈ [–σi, 0],ϕ = (ϕ1, . . . ,ϕn) ∈ C+ and ϕi(0) > 0, (2.4)

where i ∈ Q.
We set x(t; t0,ϕ) for a solution of (1.2) with initial value problem (2.4), and the maxi-

mal right-interval of existence of x(t; t0,ϕ) is marked by [t0,η(ϕ)). Then, the existence and
uniqueness of x(t; t0,ϕ) are easy to obtain from [8].

Lemma 2.1 (see [12, Lemma 2.1]) Let A and δ be constants and satisfy that

A > 1, e <
1
δ

≤ e2 and δ = Ae–A. (2.5)

Then δA > 1
e .

Lemma 2.2 x(t; t0,ϕ) is positive and bounded on [t0,η(ϕ)), and η(ϕ) = +∞.

Proof First, we state that

xi(t) > 0 for all t ∈ [t0,η(ϕ)), i ∈ Q. (2.6)

Otherwise, we can find i0 ∈ Q and t̄i0 ∈ (t0,η(ϕ)) to satisfy that

xi0 (t̄i0 ) = 0, xj(t) > 0 for all t ∈ [t0, t̄i0 ), j ∈ Q.

From the facts that
⎧
⎨

⎩
xi0 (t0) = ϕi0 (0) > 0,

x′
i0 (t) ≥ –ai0i0 (t)xi0 (t) +

∑m
j=1 βi0j(t)xi0 (t – τi0j(t))e–γi0 j(t)xi0 (t–τi0 j(t)), t ∈ [t0, t̄i0 ),

we obtain

0 = xi0 (t̄i0 )

≥ e–
∫ t̄i0

t0 ai0i0 (u) duxi0 (t0) + e–
∫ t̄i0

t0 ai0i0 (u) du

×
∫ t̄i0

t0

e
∫ s

t0
ai0i0 (v) dv

m∑

j=1

βi0j(s)xi0
(
s – τi0j(s)

)
e–γi0 j(s)xi0 (s–τi0 j(s)) ds

> 0,

which is a contradiction and completes the above statement.
Now we evidence that η(ϕ) = +∞. For all t ∈ [t0,η(ϕ)), i ∈ Q, we define yi(t) =

maxt0–σi≤s≤t xi(s) and y(t) = maxi∈Q yi(t), we gain

x′
i(t) ≤

n∑

j=1,j �=i

αij(t)xj(t) +
m∑

j=1

βij(t)xi
(
t – τij(t)

)

≤
[ n∑

j=1,j �=i

αij(t) +
m∑

j=1

βij(t)

]
y(t)
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and

xi(t) ≤ xi(t0) +
∫ t

t0

[ n∑

j=1,j �=i

αij(v) +
m∑

j=1

βij(v)

]
y(v) dv,

≤ ‖ϕ‖ +
∫ t

t0

[ n∑

j=1,j �=i

αij(v) +
m∑

j=1

βij(v)

]
y(v) dv,

which suggests that

y(t) ≤ ‖ϕ‖ +
∫ t

t0

[ n∑

j=1,j �=i

αij(v) +
m∑

j=1

βij(v)

]
y(v) dv.

Hence, by the Gronwall–Bellman inequality, we obtain

xi(t) ≤ yi(t) ≤ y(t) ≤ ‖ϕ‖e
∫ t

t0
[
∑n

j=1,j �=i αij(v)+
∑m

j=1 βij(v)] dv, ∀t ∈ [t0,η(ϕ)), i ∈ Q.

It follows from Theorem 2.3.1 in [13] that η(ϕ) = +∞, and then xi(t) > 0 for all t ∈ [t0, +∞).
Next, we demonstrate that x(t) is bounded on [t0, +∞). For t ∈ [t0 – σi, +∞) and i ∈ Q,

we define

Mi(t) = max
{
ξ : ξ ≤ t, xi(ξ ) = max

t0–σi≤s≤t
xi(s)

}
.

Suppose that x(t) is unbounded on [t0, +∞). Then we can choose i∗ ∈ Q and a strictly
monotone increasing sequence {ζn}+∞

n=1 such that limn→+∞ ζn = +∞,

xi∗
(
Mi∗ (ζn)

)
= max

j∈Q

{
xj
(
Mj(ζn)

)}
, lim

n→+∞ xi∗
(
Mi∗ (ζn)

)
= +∞, (2.7)

and then

lim
n→+∞ Mi∗ (ζn) = +∞. (2.8)

It follows that there exists n∗ > 0 satisfying

Mi∗ (ζn) > t0, xi∗
(
Mi∗ (ζn)

)
> sup

t∈[t0,+∞)

∑m
j=1

βi∗ j(t)
γi∗ j(t)

1
e

[ai∗i∗ (t) –
∑n

j=1,j �=i∗ ai∗j(t)]
(2.9)

for all n > n∗.
According to the fact supu≥0 ue–u = 1

e , it follows from (1.2) and (2.1) that, for all n > n∗,

0 ≤ x′
i∗
(
Mi∗ (ζn)

)

= –ai∗i∗
(
Mi∗ (ζn)

)
xi∗

(
Mi∗ (ζn)

)
+

n∑

j=1,j �=i

ai∗j
(
Mi∗ (ζn)

)
xj
(
Mi∗ (ζn)

)

+
m∑

j=1

βi∗j(Mi∗ (ζn))
γi∗j(Mi∗ (ζn))

γi∗j
(
Mi∗ (ζn)

)
xi∗

(
Mi∗ (ζn) – τi∗j

(
Mi∗ (ζn)

))
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× e–γi∗ j(Mi∗ (ζn))xi∗ (Mi∗ (ζn)–τi∗ j(Mi∗ (ζn)))

≤
[

–ai∗i∗
(
Mi∗ (ζn)

)
+

n∑

j=1,j �=i

ai∗j
(
Mi∗ (ζn)

)
]

xi∗
(
Mi∗ (ζn)

)
+

m∑

j=1

βi∗j(Mi∗ (ζn))
γi∗j(Mi∗ (ζn))

1
e

and

xi∗
(
Mi∗ (ζn)

) ≤
∑m

j=1
βi∗ j(Mi∗ (ζn))
γi∗ j(Mi∗ (ζn))

1
e

ai∗i∗ (Mi∗ (ζn)) –
∑n

j=1,j �=i∗ ai∗j(Mi∗ (ζn))
,

which contradicts (2.9) and suggests that x(t) is bounded on [t0, +∞). �

Lemma 2.3 Assume that

lim inf
t→+∞

[ n∑

j=1,j �=i

aij(t)
aii(t)

+
m∑

j=1

βij(t)
aii(t)

]
> 1, (2.10)

e < lim inf
t→+∞

[ ∑m
j=1

βij(t)
γij(t)

aii(t) –
∑n

j=1,j �=i aij(t)

]
≤ lim sup

t→+∞

[ ∑m
j=1

βij(t)
γij(t)

aii(t) –
∑n

j=1,j �=i aij(t)

]
< e2, (2.11)

and

lim inft→+∞ ln(
∑m

j=1 βij(t)
aii(t)–

∑n
j=1,j �=i aij(t) ) > κ

γ –

lim inft→+∞(
∑m

j=1 βij(t)

aii(t)–
∑n

j=1,j �=i aij(t) )

max1≤i≤n lim supt→+∞[

∑m
j=1

βij(t)
γij(t)

aii(t)–
∑n

j=1,j �=i aij(t) ]

> κ
γ –

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, i ∈ Q, (2.12)

hold. Then

κ

γ – < l := lim inf
t→+∞ xi(t; t0,ϕ) ≤ L := lim sup

t→+∞
xi(t; t0,ϕ) < A, i ∈ Q, (2.13)

where κ is defined in (1.3),

δ =
1

max1≤i≤n lim supt→+∞[
∑m

j=1
βij(t)
γij(t)

aii(t)–
∑n

j=1,j �=i aij(t) ]

, A > 1, and δ = Ae–A.

Proof From Lemmas 2.1 and 2.2, we can designate il, iL ∈ Q such that

0 ≤ l = lim inf
t→+∞ xil (t) = min

i∈Q
lim inf
t→+∞ xi(t)

≤ L = lim sup
t→+∞

xiL (t) = max
i∈Q

lim sup
t→+∞

xi(t) < +∞.

By the fluctuation lemma [14, Lemma A.1], one can select a sequence {t∗
k }+∞

k=1 satisfying

lim
k→+∞

t∗
k = +∞, lim

k→+∞
xiL

(
t∗
k
)

= L = lim sup
t→+∞

xiL (t), lim
k→+∞

x′
iL
(
t∗
k
)

= 0. (2.14)
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Now, we show that l > 0. By way of contradiction, we assume that

lim inf
t→+∞ xil (t) = min

i∈Q
lim inf
t→+∞ xi(t) = 0. (2.15)

Let

ωi(t) = max
{
ξ : ξ ≤ t, xi(ξ ) = min

t0≤s≤t
xi(s)

}

for each t ≥ t0. From (2.15), we can choose i∗∗ ∈ Q and a strictly monotone increasing
sequence {ξn}+∞

n=1 such that limn→+∞ ξn = +∞,

xi∗∗
(
ωi∗∗ (ξn)

)
= min

j∈Q

{
xj
(
ωj(ξn)

)}
, lim

n→+∞ xi∗∗
(
ωi∗∗ (ξn)

)
= 0, (2.16)

and then

lim
n→+∞ωi∗∗ (ξn) = +∞. (2.17)

According to (2.17), one can find that there exists n∗∗ > 0 such that, for n > n∗∗ and j ∈ I ,

ωi∗∗ (ξn) > t0 + σi∗∗ ,

0 ≥ x′
i∗∗
(
ωi∗∗ (ξn)

)

= –ai∗∗i∗∗
(
ωi∗∗ (ξn)

)
xi∗∗

(
ωi∗∗ (ξn)

)
+

n∑

j=1,j �=i∗∗
ai∗∗j

(
ωi∗∗ (ξn)

)
xj
(
ωi∗∗ (ξn)

)

+
m∑

j=1

βi∗∗j
(
ωi∗∗ (ξn)

)
xi∗∗

(
ωi∗∗ (ξn) – τi∗∗j

(
ωi∗∗ (ξn)

))

× e–γi∗∗ j(ωi∗∗ (ξn))xi∗∗ (ωi∗∗ (ξn)–τi∗∗ j(ωi∗∗ (ξn)))

and

ai∗∗i∗∗
(
ωi∗∗ (ξn)

)
xi∗∗

(
ωi∗∗ (ξn)

)

≥
m∑

j=1

βi∗∗j
(
ωi∗∗ (ξn)

)
xi∗∗

(
ωi∗∗ (ξn) – τi∗∗j

(
ωi∗∗ (ξn)

))

× e–γi∗∗ j(ωi∗∗ (ξn))xi∗∗ (ωi∗∗ (ξn)–τi∗∗ j(ωi∗∗ (ξn))), n > n∗∗,

which together with (2.16) and the fact that lim inft→+∞ βi∗∗j(t) > 0 gives

lim
n→+∞ xi∗∗

(
ωi∗∗ (ξn) – τi∗∗j

(
ωi∗∗ (ξn)

))
= 0, j ∈ Q. (2.18)

Note that

1 ≥
n∑

j=1,j �=i∗∗

ai∗∗j(ωi∗∗ (ξn))xj(ωi∗∗ (ξn))
ai∗∗i∗∗ (ωi∗∗ (ξn))xi∗∗ (ωi∗∗ (ξn))
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+
m∑

j=1

βi∗∗j(ωi∗∗ (ξn))xi∗∗ (ωi∗∗ (ξn) – τi∗∗j(ωi∗∗ (ξn)))
ai∗∗i∗∗ (ωi∗∗ (ξn))xi∗∗ (ωi∗∗ (ξn))

× e–γi∗∗ j(ωi∗∗ (ξn))xi∗∗ (ωi∗∗ (ξn)–τi∗∗ j(ωi∗∗ (ξn)))

≥
n∑

j=1,j �=i∗∗

ai∗∗j(ωi∗∗ (ξn))
ai∗∗i∗∗ (ωi∗∗ (ξn))

+
m∑

j=1

βi∗∗j(ωi∗∗ (ξn))
ai∗∗i∗∗ (ωi∗∗ (ξn))

× e–γi∗∗ j(ωi∗∗ (ξn))xi∗∗ (ωi∗∗ (ξn)–τi∗∗ j(ωi∗∗ (ξn))), n > n∗∗.

Letting n → +∞, it follows from (2.10) and (2.18) that

1 ≥ lim
n→+∞

[ n∑

j=1,j �=i∗∗

ai∗∗j(ωi∗∗ (ξn))
ai∗∗i∗∗ (ωi∗∗ (ξn))

+
m∑

j=1

βi∗∗j(ωi∗∗ (ξn))
ai∗∗i∗∗ (ωi∗∗ (ξn))

]

≥ lim inf
t→+∞

[ n∑

j=1,j �=i∗∗

ai∗∗j(t)
ai∗∗i∗∗ (t)

+
m∑

j=1

βi∗∗j(t)
ai∗∗i∗∗ (t)

]

> 1,

which is a contradiction. Hence, l > 0.
Furthermore, from the asymptotically almost periodicity of (1.2), we can select a

subsequence of {k}k≥1 such that limk→+∞ aiLj(t∗
k ), limk→+∞ βiLq(t∗

k ), limk→+∞ γiLq(t∗
k ),

limk→+∞ xj(t∗
k ), and limk→+∞ xiL (t∗

k – τiLq(t∗
k )) exist for all j ∈ Q, q ∈ I . In addition, from

(1.2) and (2.14), we have

0 = lim
k→+∞

x′
iL
(
t∗
k
)

= – lim
k→+∞

aiLiL
(
t∗
k
)
L +

n∑

j=1,j �=iL
lim

k→+∞
aiLj

(
t∗
k
)

lim
k→+∞

xj
(
t∗
k
)

+
m∑

j=1

lim
k→+∞

βiLj(t∗
k )

γiLj(t∗
k )

lim
k→+∞

γiLj
(
t∗
k
)
xiL

(
t∗
k – τiLj

(
t∗
k
))

× e– limk→+∞ γiLj(t
∗
k ) limk→+∞ xiL (t∗k –τiLj(t

∗
k ))

≤ – lim
k→+∞

aiLiL
(
t∗
k
)
L +

n∑

j=1,j �=iL
lim

k→+∞
aiLj

(
t∗
k
)
L +

m∑

j=1

lim
k→+∞

βiLj(t∗
k )

γiLj(t∗
k )

1
e

,

which, together with the definitions of δ and A, entails that

L ≤ lim
k→+∞

[ ∑m
j=1

βiLj(t
∗
k )

γiLj(t
∗
k )

1
e

aiLiL (t∗
k ) –

∑n
j=1,j �=iL aiLj(t∗

k )

]

≤ 1
e

max
1≤i≤n

lim sup
t→+∞

[ ∑m
j=1

βij(t)
γij(t)

aii(t) –
∑n

j=1,j �=i aij(t)

]

< A. (2.19)

Finally, we show that l > κ
γ – . Again from the fluctuation lemma [14, Lemma A.1] and

the asymptotically almost periodicity of (1.2), we can pick a sequence {t∗∗
k }+∞

k=1 such that
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limk→+∞ t∗∗
k = +∞,

lim
k→+∞

xil
(
t∗∗
k
)

= l = lim inf
t→+∞ xil (t) and lim

k→+∞
x′

il
(
t∗∗
k
)

= 0, (2.20)

and limk→+∞ ailj(t∗∗
k ), limk→+∞ βilq(t∗∗

k ), limk→+∞ γilq(t∗∗
k ), limk→+∞ xj(t∗∗

k ),
limk→+∞ xil (t∗∗

k – τilq(t∗∗
k )) exist for all j ∈ Q, q ∈ I .

From the fact that

lim
k→+∞

γil j
(
t∗∗
k
)≤ 1 and min

[a,b]⊆[0,+∞)
ue–u = min

{
ae–a, be–b},

one can see

lim
k→+∞

xil
(
t∗∗
k – τil j

(
t∗∗
k
))

e– limk→+∞ γil j(t
∗∗
k )xil (t∗∗

k –τil j(t
∗∗
k ))

≥ lim
k→+∞

xil
(
t∗∗
k – τil j

(
t∗∗
k
))

e– limk→+∞ xil (t∗∗
k –τil j(t

∗∗
k ))

≥ min
{

le–l, Le–L}. (2.21)

Consequently, according to (2.20) and (2.21), we gain

0 = lim
k→+∞

x′
il
(
t∗∗
k
)

≥ – lim
k→+∞

ailil
(
t∗∗
k
)
l +

n∑

j=1,j �=il
lim

k→+∞
ailj

(
t∗∗
k
)
l

+
m∑

j=1

lim
k→+∞

βil j
(
t∗∗
k
)
xil
(
t∗∗
k – τil j

(
t∗∗
k
))

e–xil (t∗∗
k –τil j(t

∗∗
k ))

≥ – lim
k→+∞

ailil
(
t∗∗
k
)
l +

n∑

j=1,j �=il
lim

k→+∞
ailj

(
t∗∗
k
)
l

+ min
{

le–l, Le–L}
m∑

j=1

lim
k→+∞

βil j
(
t∗∗
k
)
. (2.22)

If le–l = min{le–l, Le–L}, (2.12) and (2.22) yield

l ≥ ln

(
lim

k→+∞

∑m
j=1 βil j(t∗∗

k )
ailil (t∗∗

k ) –
∑n

j=1,j �=il ailj(t∗∗
k )

)

≥ lim inf
t→+∞ ln

( ∑m
j=1 βil j(t)

ailil (t) –
∑n

j=1,j �=il ailj(t)

)

>
κ

γ – . (2.23)

If Le–L = min{le–l, Le–L} < le–l , (2.19) indicates that

1 < L ≤ A, Le–L ≥ Ae–A,
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together with (2.12) and (2.22), we obtain

l ≥ Ae–A

limk→+∞
ail il (t∗∗

k )–
∑n

j=1,j �=il
ail j(t

∗∗
k )

∑m
j=1 βil j(t

∗∗
k )

≥
lim inft→+∞(

∑m
j=1 βil j(t)

ail il (t)–
∑n

j=1,j �=il
ail j(t) )

max1≤i≤n lim supt→+∞[
∑m

j=1
βij(t)
γij(t)

aii(t)–
∑n

j=1,j �=i aij(t) ]

>
κ

γ – . (2.24)

This finishes the proof of Lemma 2.3. �

Lemma 2.4 Assume that all the assumptions adopted in Lemma 2.3 are satisfied, and
let xh(t) = xh(t; t0,ϕ) be a solution of the initial value problem (1.2)h and (2.4). Then xh(t)
is positive and bounded on [t0, +∞), κ

γ – < lim inft→+∞ xh
i (t) ≤ lim supt→+∞ xh

i (t) < A, and
there is t∗

ϕ ∈ [t0, +∞) such that

κ

γ – < xh
i (t) < A for all t ∈ [t∗

ϕ , +∞), i ∈ Q. (2.25)

Proof From (2.1), (2.2), (2.10), (2.11), (2.12) and the definition of asymptotically almost
periodic function, one can easily find that

lim inf
t→+∞

[
ah

ii(t) –
n∑

j=1,j �=i

ah
ij(t)

]
> 0, i ∈ Q,

lim inf
t→+∞

[ n∑

j=1,j �=i

ah
ij(t)

ah
ii(t)

+
m∑

j=1

βh
ij (t)

ah
ii(t)

]
> 1, i ∈ Q,

e < lim inf
t→+∞

[ ∑m
j=1

βh
ij (t)

γ h
ij (t)

ah
ii(t) –

∑n
j=1,j �=i ah

ij(t)

]
≤ lim sup

t→+∞

[ ∑m
j=1

βh
ij (t)

γ h
ij (t)

ah
ii(t) –

∑n
j=1,j �=i ah

ij(t)

]
< e2, i ∈ Q,

lim inf
t→+∞ ln

( ∑m
j=1 βh

ij (t)
ah

ii(t) –
∑n

j=1,j �=i ah
ij(t)

)
>

κ

γ – ,

lim inft→+∞(
∑m

j=1 βh
ij (t)

ah
ii(t)–

∑n
j=1,j �=i ah

ij(t)
)

max1≤i≤n lim supt→+∞[

∑m
j=1

βh
ij (t)

γ h
ij (t)

ah
ii(t)–

∑n
j=1,j �=i ah

ij(t)
]

>
κ

γ – , i ∈ Q,

and

δ =
1

max1≤i≤n lim supt→+∞[
∑m

j=1
βij(t)
γij(t)

aii(t)–
∑n

j=1,j �=i aij(t) ]

=
1

max1≤i≤n lim supt→+∞[

∑m
j=1

βh
ij (t)

γ h
ij (t)

ah
ii(t)–

∑n
j=1,j �=i ah

ij(t)
]

.
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Then, by applying a similar argument as Lemma 2.3, we can obtain

κ

γ – < lim inf
t→+∞ xh

i (t) ≤ lim sup
t→+∞

xh
i (t) < A, i ∈ Q,

which proves Lemma 2.4. �

Lemma 2.5 Let assumptions adopted in Lemma 2.3 hold, and xh(t) = xh(t; t0,ϕ) be a solu-
tion of equation (1.2)h and (2.4). Then, for any ε > 0, we can choose a relatively dense subset
Pε of R with the property that, for each δ ∈ Pε , there exists T = T(δ) > 0 satisfying

∥∥xh(t + δ) – xh(t)
∥∥ <

ε

2
for all t > T .

Proof According to the fact

lim sup
t→+∞

[ ∑m
j=1

βh
ij (t)

γ h
ij (t)

ah
ii(t) –

∑n
j=1,j �=i ah

ij(t)

]
< e2,

we have

lim sup
t→+∞

[
–ah

ii(t) +
n∑

j=1,j �=i

ah
ij(t) +

m∑

j=1

βh
ij (t)

γ h
ij (t)e2

]
< 0,

which implies that there exists a constant 0 < � < γ –

2 such that

lim sup
t→+∞

[
–ah

ii(t) +
n∑

j=1,j �=i

ah
ij(t) +

m∑

j=1

βh
ij (t)

(γ h
ij (t) – � )e2

]
< 0.

From (2.1), (2.2), and Lemma 2.4, we can choose positive constants T1 > max{0, t∗
ϕ} and ζ

to satisfy that

γ h
ij (t)xh

i
(
t – τ h

ij (t)
)

> κ , γ h
ij (t) < 1 + � , ∀t ≥ T1, i ∈ Q,

and

–ah
ii(t) +

n∑

j=1,j �=i

ah
ij(t) +

1
e2

m∑

j=1

βh
ij (t)

≤ –ah
ii(t) +

n∑

j=1,j �=i

ah
ij(t) +

1
e2

m∑

j=1

βh
ij (t)

γ h
ij (t) – �

< –ζ .

This means there exist two constants η > 0 and λ ∈ (0, 1] such that, for i ∈ Q,

sup
t∈[T1,+∞)

{
–
[
ah

ii(t) – λ
]

+
n∑

j=1,j �=i

ah
ij(t) +

m∑

j=1

βh
ij (t)

γ h
ij (t) – �

1
e2 eλσi

}
< –η. (2.26)
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Define

xh
i (t) ≡ xh

i (t0 – σi), for all t ∈ (–∞, t0 – σi], i ∈ Q, (2.27)

and

Ai(δ, t)

= –
[
ah

ii(t + δ) – ah
ii(t)

]
xh

i (t + δ) +
n∑

j=1,j �=i

[
ah

ij(t + δ) – ah
ij(t)

]
xh

j (t + δ)

+
m∑

j=1

[
βh

ij (t + δ) – βh
ij (t)

]
xh

i
(
t + δ – τ h

ij (t + δ)
)
e–γ h

ij (t+δ)xh
i (t+δ–τh

ij (t+δ))

+
m∑

j=1

βh
ij (t)

[
xh

i
(
t + δ – τ h

ij (t + δ)
)
e–γ h

ij (t+δ)xh
i (t+δ–τh

ij (t+δ))

– xh
i
(
t – τ h

ij (t) + δ
)
e–γ h

ij (t+δ)xh
i (t–τh

ij (t)+δ)]

+
m∑

j=1

βh
ij (t)

[
xh

i
(
t – τ h

ij (t) + δ
)
e–γ h

ij (t+δ)xh
i (t–τh

ij (t)+δ)

– xh
i
(
t – τ h

ij (t) + δ
)
e–γ h

ij (t)xh
i (t–τh

ij (t)+δ)] for all t ∈R, i ∈ Q. (2.28)

In view of Lemma 2.4, one can see that xh(t) and the right-hand side of (1.2)h are
bounded. It follows from (2.27) that xh(t) is uniformly continuous on R. Therefore, for
any ε > 0, we can choose a sufficiently small constant ε∗ > 0 such that

|ah
ij(t) – ah

ij(t + δ)| < ε∗, |βh
ij (t) – βh

ij (t + δ)| < ε∗,
|γ h

ij (t) – γ h
ij (t + δ)| < ε∗, |τ h

ij (t) – τ h
ij (t + δ)| < ε∗,

}

follows that

∣∣Ai(δ, t)
∣∣ <

1
2
ηε, (2.29)

where t ∈R, i ∈ Q, j ∈ I .
Furthermore, for ε∗ > 0, from the uniformly almost periodic family theory in [2, p. 19,

Corollary 2.3], one can choose a relatively dense subset Pε∗ of R such that

|ah
ij(t) – ah

ij(t + δ)| < ε∗, |βh
ij (t) – βh

ij (t + δ)| < ε∗,
|γ h

ij (t) – γ h
ij (t + δ)| < ε∗, |τ h

ij (t) – τ h
ij (t + δ)| < ε∗,

}

δ ∈ Pε∗ , t ∈R, i ∈ Q, j ∈ I. (2.30)

Denote Pε = Pε∗ for any δ ∈ Pε , from (2.29) and (2.30), we have

∣∣Ai(δ, t)
∣∣ <

1
2
ηε for all t ∈R, i ∈ Q. (2.31)
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Let Λ0 ≥ max{|t0| + T1 + maxi∈Q σi, |t0| + T1 + maxi∈Q σi – δ}. For t ∈R, denote

u(t) =
(
u1(t), u2(t), . . . , un(t)

)
, ui(t) = xh

i (t + δ) – xh
i (t),

and

U(t) =
(
U1(t), U2(t), . . . , Un(t)

)
, Ui(t) = eλtui(t),

where i ∈ Q. Let it be such an index that

∣∣Uit (t)
∣∣ =

∥∥U(t)
∥∥. (2.32)

Then, for all t ≥ Λ0, we have

u′
i(t) = –ah

ii(t)
[
xh

i (t + δ) – xh
i (t)

]
+

n∑

j=1,j �=i

ah
ij(t)

[
xh

j (t + δ) – xh
j (t)

]

+
m∑

j=1

βh
ij (t)

[
xh

i
(
t – τ h

ij (t) + δ
)
e–γ h

ij (t)xh
i (t–τh

ij (t)+δ)

– xh
i
(
t – τ h

ij (t)
)
e–γ h

ij (t)xh
i (t–τh

ij (t))] + Ai(δ, t). (2.33)

From (2.26), (2.33), and the inequality

∣∣αe–α – βe–β
∣∣≤ 1

e2 |α – β|, where α,β ∈ [κ , +∞), (2.34)

we obtain

D–(∣∣Uis (s)
∣∣)∣∣

s=t

≤ λeλt∣∣uit (t)
∣∣ + eλt

{
–ah

it it (t)
[
xh

it (t + δ) – xh
it (t)

]
sgn

(
xh

it (t + δ) – xh
it (t)

)

+
n∑

j=1,j �=it

ah
it j(t)

∣∣xh
j (t + δ) – xh

j (t)
∣∣ +

m∑

j=1

βh
it j(t)

× ∣∣xh
it

(
t – τ h

it j(t) + δ
)
e–γ h

it j(t)xh
it (t–τh

it j(t)+δ) – xh
it

(
t – τ h

it j(t)
)
e–γ h

it j(t)xh
it (t–τh

it j(t))∣∣

+
∣∣Ait (δ, t)

∣∣
}

= λeλt∣∣uit (t)
∣∣ + eλt

{
–ah

it it (t)
[
xh

it (t + δ) – xh
it (t)

]
sgn

(
xh

it (t + δ) – xh
it (t)

)

+
n∑

j=1,j �=it

ah
it j(t)

∣∣xh
j (t + δ) – xh

j (t)
∣∣ +

m∑

j=1

βh
it j(t)

γ h
it j(t)

× ∣∣γ h
it j(t)xh

it

(
t – τ h

it j(t) + δ
)
e–γ h

it j(t)xh
it (t–τh

it j(t)+δ)
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– γ h
it j(t)xh

it

(
t – τ h

it j(t)
)
e–γ h

it j(t)xh
it (t–τh

it j(t))∣∣ +
∣∣Ait (δ, t)

∣∣
}

≤ λeλt∣∣uit (t)
∣∣ + eλt

{
–ah

it it (t)
∣∣uit (t)

∣∣ +
n∑

j=1,j �=it

ah
it j(t)

∣∣uj(t)
∣∣

+
m∑

j=1

βh
it j(t)

1
e2

∣∣uit
(
t – τ h

it j(t)
)∣∣ +

∣∣Ait (δ, t)
∣∣
}

≤ λeλt∣∣uit (t)
∣∣ + eλt

{
–ah

it it (t)
∣∣uit (t)

∣∣ +
n∑

j=1,j �=it

ah
it j(t)

∣∣uj(t)
∣∣

+
m∑

j=1

βh
it j(t)

γ h
it j(t) – �

1
e2

∣∣uit
(
t – τ h

it j(t)
)∣∣ +

∣∣Ait (δ, t)
∣∣
}

= –
[
ah

it it (t) – λ
]∣∣Uit (t)

∣∣ +
n∑

j=1,j �=it

ah
it j(t)

∣∣Uj(t)
∣∣

+
m∑

j=1

βh
it j(t)

γ h
it j(t) – �

1
e2 eλτh

it j(t)∣∣Uit
(
t – τ h

it j(t)
)∣∣ + eλt∣∣Ait (δ, t)

∣∣ for all t ≥ Λ0. (2.35)

Let

E(t) = sup
–∞<s≤t

{
eλs∥∥u(s)

∥∥}.

It is obvious that eλt‖u(t)‖ ≤ E(t), and E(t) is nondecreasing.
Now, the remaining proof will be divided into two steps.
Step one. If E(t) > eλt‖u(t)‖ for all t ≥ Λ0, we assert that

E(t) ≡ ∥∥U(Λ0)
∥∥ for all t ≥ Λ0. (2.36)

In the contrary case, one can pick Λ1 > Λ0 such that E(Λ1) > E(Λ0). From the fact that

eλt∥∥u(t)
∥∥≤ E(Λ0) for all t ≤ Λ0,

we can find that there exists β∗ ∈ (Λ0,Λ1) such that

eλβ∗∥∥u
(
β∗)∥∥ = E(Λ1) ≥ E

(
β∗),

which contradicts the fact that E(β∗) > eλβ∗‖u(β∗)‖ and proves (2.36). Then we can select
Λ2 > Λ0 satisfying

∥∥u(t)
∥∥≤ e–λtE(t) = e–λtE(Λ0) <

ε

2
for all t ≥ Λ2. (2.37)
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Step two. If there exists ς ≥ Λ0 such that E(ς ) = eλς‖u(ς )‖, from (2.35) and the definition
of E(t), we have

0 ≤ D–(∣∣Uis (s)
∣∣)∣∣

s=ς

≤ –
[
ah

iς iς (t) – λ
]∣∣Uiς (ς )

∣∣ +
n∑

j=1,j �=iς

ah
iς j(t)

∣∣Uj(ς )
∣∣

+
m∑

j=1

βh
iς j(ς )

γ h
iς j(ς ) – �

1
e2 eλτh

iς j(ς )∣∣Uiς
(
ς – τ h

iς j(ς )
)∣∣ + eλς

∣∣Aiς (δ,ς )
∣∣

≤
{

–
[
ah

iς iς (t) – λ
]

+
n∑

j=1,j �=iς

ah
iς j(t) +

m∑

j=1

βh
iς j(ς )

γ h
iς j(ς ) – �

1
e2 eλτh

iς j(ς )
}

E(ς )

+
1
2
ηεeλς

< –ηE(ς ) +
1
2
ηεeλς , (2.38)

which leads to

eλς
∥∥u(ς )

∥∥ = E(ς ) <
ε

2
eλς and

∥∥u(ς )
∥∥ <

ε

2
. (2.39)

For any t > ς satisfying E(t) = eλt‖u(t)‖, by using the similar method to the proof of
(2.39), we can get

eλt∥∥u(t)
∥∥ <

ε

2
eλt and

∥∥u(t)
∥∥ <

ε

2
. (2.40)

Furthermore, if E(t) > eλt‖u(t)‖ and t > ς , one can pick Λ3 ∈ [ς , t) such that

E(Λ3) = eλΛ3
∥∥u(Λ3)

∥∥ and E(s) > eλs∥∥u(s)
∥∥ for all s ∈ (Λ3, t],

together with (2.39) and (2.40), we have

∥∥u(Λ3)
∥∥ <

ε

2
. (2.41)

With a similar proof in step one, we can entail that

E(s) ≡ E(Λ3) is a constant for all s ∈ (Λ3, t],

which together with (2.41) leads to

∥∥u(t)
∥∥ < e–λtE(t) = e–λtE(Λ3) =

∥∥u(Λ3)
∥∥e–λ(t–Λ3) <

ε

2
.

Finally, the above discussion infers that there exists Λ̂ > max{ς ,Λ0,Λ2} obeying that

∥∥u(t)
∥∥≤ ε

2
< ε for all t > Λ̂,

which finishes the proof of Lemma 2.5. �
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3 Main result
Theorem 3.1 Assume that the assumptions in Lemma 2.3 hold. Then system (1.2)h has
exactly one positive almost periodic solution x∗(t), and every solution of (1.2) with initial
condition (2.4) is asymptotically almost periodic on R

+ and converges to x∗(t) as t → +∞.

Proof Let v(t) be a solution of system (1.2)h with initial condition (2.4), and

vi(t) ≡ vi(t0 – σi) for all t ∈ (–∞, t0 – σi], i ∈ Q.

We also define

Bi(q, t) = –
[
ah

ii(t + tq) – ah
ii(t)

]
vi(t + tq) +

n∑

j=1,j �=i

[
ah

ij(t + tq) – ah
ij(t)

]
vj(t + tq)

+
m∑

j=1

[
βh

ij (t + tq) – βh
ij (t)

]
vi
(
t + tq – τ h

ij (t + tq)
)
e–γ h

ij (t+tq)vi(t+tq–τh
ij (t+tq))

+
m∑

j=1

βh
ij (t)

[
vi
(
t + tq – τ h

ij (t + tq)
)
e–γ h

ij (t+tq)vi(t+tq–τh
ij (t+tq))

– vi
(
t – τ h

ij (t) + tq
)
e–γ h

ij (t+tq)vi(t–τh
ij (t)+tq)]

+
m∑

j=1

βh
ij (t)

[
vi
(
t – τ h

ij (t) + tq
)
e–γ h

ij (t+tq)vi(t–τh
ij (t)+tq)

– vi
(
t – τ h

ij (t) + tq
)
e–γ h

ij (t)vi(t–τh
ij (t)+tq)] for all t ∈R, i ∈ Q, (3.1)

where {tq}q≥1 ⊆ R is a sequence. Then

v′
i(t + tq) = –ah

ii(t)vi(t + tq) +
n∑

j=1,j �=i

ah
ij(t)vj(t + tq)

+
m∑

j=1

βh
ij (t)vi

(
t – τ h

ij (t) + tq
)
e–γ h

ij (t)vi(t–τh
ij (t)+tq) + Bi(q, t) (3.2)

for all t + tq ≥ t0, i ∈ Q. By using the proof similar to Lemma 2.5, we can choose {tq}q≥1

such that

∣∣Bi(q, t)
∣∣ <

1
q

. (3.3)

From Arzela–Ascoli lemma and the fact that the function sequence {v(t + tq)}q≥1 is uni-
formly bounded and equi-uniformly continuous, we can choose a subsequence {tqj}j≥1 of
{tq}q≥1 such that {v(t + tqj )}j≥1 (for convenience, we still denote it by {v(t + tq)}q≥1) uni-
formly converges to a continuous function x∗(t) = (x∗

1(t), x∗
2(t), . . . , x∗

n(t)) on any compact
set of R. Then, from Lemma 2.4, we have

κ

γ – < min
i∈Q

lim inf
t→+∞ vi(t) ≤ x∗

i (t) ≤ max
i∈Q

lim sup
t→+∞

vi(t) < A ∀t ∈R, i ∈ Q, (3.4)
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and

–ah
ii(t)vi(t + tq) ⇒ –ah

ii(t)x∗
i (t), i ∈ Q,

∑n
j=1,j �=i ah

ij(t)vj(t + tq) ⇒
∑n

j=1,j �=i ah
ij(t)x∗

j (t), i ∈ Q,
∑m

j=1 βh
ij (t)vi(t – τ h

ij (t) + tq)e–γ h
ij (t)vi(t–τh

ij (t)+tq)

⇒
∑m

j=1 βh
ij (t)x∗

i (t – τ h
ij (t))e–γ h

ij (t)x∗(t–τh
ij (t)), i ∈ Q,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

as q → +∞, (3.5)

on any compact set of R, where “⇒” denotes “uniformly converge”. Thus, (3.2), (3.3), and
(3.5) produce that {v′

i(t + tq)}q≥1 uniformly converges to

–ah
ii(t)x∗

i (t) +
n∑

j=1,j �=i

ah
ij(t)x∗

j (t) +
m∑

j=1

βh
ij (t)x∗

i
(
t – τ h

ij (t)
)
e–γ h

ij (t)x∗(t–τh
ij (t)), i ∈ Q,

on any compact set of R. According to the properties of the uniform convergence function
sequence, we obtain that x∗(t) is a solution of (1.2)h and

(
x∗

i (t)
)′ = –ah

ii(t)x∗
i (t) +

n∑

j=1,j �=i

ah
ij(t)x∗

j (t)

+
m∑

j=1

βh
ij (t)x∗

i
(
t – τ h

ij (t)
)
e–γ h

ij (t)x∗(t–τh
ij (t)) for all t ∈R, i ∈ Q. (3.6)

From Lemma 2.5, for any ε > 0, we can choose a relatively dense subset Pε of R with the
property that, for each δ ∈ Pε , there exists T = T(δ) > 0 satisfying

∥∥v(s + tq + δ) – v(s + tq)
∥∥ <

ε

2
for all s + tq > T

and

lim
q→+∞

∥∥v(s + tq + δ) – v(s + tq)
∥∥ =

∥∥x∗(s + δ) – x∗(s)
∥∥≤ ε

2
< ε for all s ∈R,

which implies that x∗(t) is a positive almost periodic solution of (1.2)h.
Next, we show that all the solutions of (1.2) converge to x∗(t) as t → +∞. Let x(t) be

an arbitrary solution of system (1.2) with initial value (2.4). Define y(t) = x(t) – x∗(t) and
xi(t) ≡ xi(t0 – σi) for all t ∈ (–∞, t0 – σi], let

Fi(t)

= –
[(

ah
ii(t) + ag

ii(t)
)
xi(t) – ah

ii(t)xi(t)
]

+
n∑

j=1,j �=i

[(
ah

ij(t) + ag
ij(t)

)
xj(t) – ah

ij(t)xj(t)
]

+
m∑

j=1

[(
βh

ij (t) + β
g
ij(t)

)
xi
(
t –

(
τ h

ij (t) + τ
g
ij (t)

))
e–(γ h

ij (t)+γ
g
ij (t))xi(t–(τh

ij (t)+τ
g
ij (t)))

– βh
ij (t)xi

(
t – τ h

ij (t)
)
e–γ h

ij (t)xi(t–τh
ij (t))].
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Then

y′
i(t) = –ah

ii(t)yi(t) +
n∑

j=1,j �=i

ah
ij(t)yj(t) +

m∑

j=1

βh
ij (t)

[
xi
(
t – τ h

ij (t)
)
e–γ h

ij (t)xi(t–τh
ij (t))

– x∗
i
(
t – τ h

ij (t)
)
e–γ h

ij (t)x∗
i (t–τh

ij (t))] + Fi(t) for all t ≥ t0, i ∈ Q. (3.7)

For any ε > 0, in view of the global existence and uniform continuity of x and the fact that
ag

ij,β
g
ij ,γ

g
ij , τ g

ij ∈ W0(R+,R+), we can choose a constant T∗∗
ϕ > max{T1, t∗

ϕ} such that

∣∣Fi(t)
∣∣ < η

ε

2
for all t > T∗∗

ϕ . (3.8)

Set

G(t) = sup
–∞<s≤t

{
eλs∥∥y(s)

∥∥} for all t ∈R,

and let it be such an index that

eλt∣∣yit (t)
∣∣ =

∥∥eλty(t)
∥∥.

According to (3.4) and Lemma 2.3, one can find Tϕ,x∗ > T∗∗
ϕ such that

κ

γ – < xi(t), x∗
i (t), xh

i
(
t – τ h

ij (t)
)

for all t > Tϕ,x∗ – σi, i ∈ Q. (3.9)

Combined with (2.34) and (3.7), we gain

D–(eλs∣∣yis (s)
∣∣)∣∣

s=t

≤ –
[
ah

it it (t) – λ
]
eλt∣∣yit (t)

∣∣ +
n∑

j=1,j �=it

ah
it j(t)eλt∣∣yj(t)

∣∣ +
m∑

j=1

βh
it j(t)

1
e2 eλτh

it j(t)

× eλ(t–τh
it j(t))∣∣yit

(
t – τ h

it j(t)
)∣∣ + eλt∣∣Fit (t)

∣∣ for all t ≥ Tϕ,x∗ , i ∈ Q. (3.10)

Then, from (2.26) and (3.8), by employing the argument of Lemma 2.5, we know that
there is a constant T̃ ≥ Tϕ,x∗ such that

∥∥y(t)
∥∥ <

ε

2
for all t ≥ T̃ ,

which yields

lim
t→+∞ x(t) = x∗(t) and x(t) ∈ AAP

(
R,Rn).

It follows from the uniqueness of the limit function that (1.2)h has exactly one positive
almost periodic solution x∗(t). The proof is complete. �

Then, we will establish the existence and global exponential stability of the almost peri-
odic solution of (1.2)h. To do this end, we first show the following proposition.
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Proposition 3.1 Suppose that f (t) is an almost periodic function, then

lim sup
t→+∞

f (t) = sup
t∈R

f (t) and lim inf
t→+∞ f (t) = inf

t∈R
f (t).

Proof We only need to validate the case that lim supt→+∞ f (t) = supt∈R f (t), since the other
case that lim inft→+∞ f (t) = inft∈R f (t) can be proved similarly.

Define

A = sup
t∈R

f (t), B = lim sup
t→+∞

f (t).

It is easy to see that B ≤ A. We claim

B = A.

Otherwise, B < A, let ε0 = A–B
8 , from the definition of upper limit, there exists T = T(ε0) > 0

such that

f (t) < B + ε0 < A – 2ε0 for all t ≥ T .

According to the definition of the upper bound, one can take t0 ∈ R to satisfy that

f (t0) > A – ε0 > B + 2ε0.

Furthermore, there exists a constant l = l(ε0) > 0 such that, ∀[α,α + l] ⊂R with α ∈ R, one
can pick τ ∈ [α,α + l] satisfying that

∣∣f (t + τ ) – f (t)
∣∣ < ε0 for all t ∈R.

Letting α = T – t0 and τ ∈ [T – t0, T – t0 + l] leads to

f (t0 + τ ) > f (t0) – ε0 > A – 2ε0 > B + ε0 and t0 + τ ≥ t0 + T – t0 = T ,

which is contrary to the fact that f (t) < B + ε0 < A – 2ε0 for all t ≥ T . This finishes the proof
of Proposition 3.1. �

Theorem 3.2 Suppose that, for i ∈ Q, j ∈ I ,

γ – = min
i∈Q

inf
t∈R

γij(t) > 0, sup
t∈R

γij(t) ≤ 1, inf
t∈R

[
ah

ii(t) –
n∑

j=1,j �=i

ah
ij(t)

]
> 0, (3.11)

inf
t∈R

[ n∑

j=1,j �=i

ah
ij(t)

ah
ii(t)

+
m∑

j=1

βh
ij (t)

ah
ii(t)

]
> 1, (3.12)

e < inf
t∈R

[ ∑m
j=1

βh
ij (t)

γ h
ij (t)

ah
ii(t) –

∑n
j=1,j �=iL ah

ij(t)

]
≤ sup

t∈R

[ ∑m
j=1

βh
ij (t)

γ h
ij (t)

ah
ii(t) –

∑n
j=1,j �=iL ah

ij(t)

]
< e2, (3.13)
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inf
t∈R

ln

( ∑m
j=1 βh

ij (t)
ah

ii(t) –
∑n

j=1,j �=i ah
ij(t)

)
>

κ

γ – ,

inft∈R(
∑m

j=1 βh
ij (t)

ah
ii(t)–

∑n
j=1,j �=i ah

ij(t)
)

max1≤i≤n supt∈R[

∑m
j=1

βh
ij (t)

γ h
ij (t)

ah
ii(t)–

∑n
j=1,j �=iL

ah
ij(t)

]

>
κ

γ – ,
(3.14)

and

δ =
1

max1≤i≤n supt∈R[
∑m

j=1
βij(t)
γij(t)

aii(t)–
∑n

j=1,j �=i aij(t) ]

=
1

max1≤i≤n supt∈R[

∑m
j=1

βh
ij (t)

γ h
ij (t)

ah
ii(t)–

∑n
j=1,j �=i ah

ij(t)
]

(3.15)

are satisfied. Then system (1.2)h has exactly one positive almost periodic solution x∗(t),
which is global exponentially stable; in other words, the solution N(t; t0,ϕ) of (1.2)h with
(2.4) converges exponentially to x∗(t) as t → +∞.

Proof From Proposition 3.1, (3.11)–(3.14) imply that the assumptions in Lemmas 2.4 and
2.5 hold. Then, by using the similar proof in Theorem 3.1, we can obtain that system (1.2)h

has exactly one positive almost periodic solution x∗(t). It is sufficient to show the global
exponential stability of x∗(t). Set N(t) = N(t; t0,ϕ) and y(t) = N(t) – x∗(t), then

y′
i(t) = –ah

ii(t)yi(t) +
n∑

j=1,j �=i

ah
ij(t)yj(t) +

m∑

j=1

βh
ij (t)

× (
Ni
(
t – τ h

ij (t)
)
e–γ h

ij (t)Ni(t–τh
ij (t)) – x∗

i
(
t – τ h

ij (t)
)
e–γ h

ij (t)x∗
i (t–τh

ij (t))). (3.16)

It follows from Lemma 2.4 that there is Mϕ,x∗ > t0 such that

κ

γ – < Ni(t), x∗
i (t) for all t ∈ [Mϕ,x∗ – σi, +∞), i ∈ Q. (3.17)

Together with (3.11), we obtain

∣∣γ h
ij (t)Ni

(
t – τ h

ij (t)
)
e–γ h

ij (t)Ni(t–τh
ij (t)) – γ h

ij (t)x∗
i
(
t – τ h

ij (t)
)
e–γ h

ij (t)x∗
i (t–τh

ij (t))∣∣

≤ 1
e2 γ h

ij (t)
∣∣Ni

(
t – τ h

ij (t)
)

– x∗
i
(
t – τ h

ij (t)
)∣∣, for all t ∈ [Mϕ,x∗ – σi, +∞), (3.18)

where i ∈ Q, j ∈ I .
With the help of (3.13), we can choose λ ∈ (0, 1] such that

sup
t∈R

{
–
[
ah

ii(t) – λ
]

+
n∑

j=1,j �=i

ah
ij(t) +

m∑

j=1

βh
ij (t)

γ h
ij (t)

1
e2 eλσi

}
< 0, i ∈ Q. (3.19)

Now, we define the Lyapunov functional as follows:

Hi(t) =
∣∣yi(t)

∣∣eλt , i ∈ Q, t ∈ [t0 – σi, +∞).
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With the help of (3.16) and (3.18), we get

D–(Hi(t)
)

≤ λ
∣∣yi(t)

∣∣eλt – ah
ii(t)

∣∣yi(t)
∣∣eλt +

n∑

j=1,j �=i

ah
ij(t)

∣∣yj(t)
∣∣eλt

+
m∑

j=1

βh
ij (t)

γ h
ij (t)

eλt∣∣γ h
ij (t)Ni

(
t – τ h

ij (t)
)
e–γ h

ij (t)Ni(t–τh
ij (t))

– γ h
ij (t)x∗

i
(
t – τ h

ij (t)
)
e–γ h

ij (t)x∗
i (t–τh

ij (t)))
∣∣

≤ (
λ – ah

ii(t)
)
Hi(t) +

n∑

j=1,j �=i

ah
ij(t)Hj(t) +

m∑

j=1

βh
ij (t)
e2 eλσi Hi

(
t – τ h

ij (t)
)

≤ (
λ – ah

ii(t)
)
Hi(t)

+
n∑

j=1,j �=i

ah
ij(t)Hj(t) +

m∑

j=1

βh
ij (t)

γ h
ij (t)

1
e2 eλσi Hi

(
t – τ h

ij (t)
)
, t ≥ t0, i ∈ Q. (3.20)

In the sequel, we prove that, for all t > Mϕ,x∗ ,

Hi(t) < sup
t∈[t0–σi ,Mϕ,x∗ ]

max
j∈J

(
Hj(t) + 1

)
:= Vϕ,x∗ , i ∈ Q. (3.21)

Otherwise, there exist K∗ > Mϕ,x∗ and î ∈ Q such that

Hî
(
t∗) = Vϕ,x∗ , Hj(t) < Vϕ,x∗ for all t ∈ [t0 – σj, K∗), j ∈ Q. (3.22)

It follows from (3.19), (3.20), and (3.22) that

0 ≤ D–(Hî(t)
)∣∣

t=K∗

≤ (
λ – ah

îî

(
K∗))Hî

(
K∗)

+
n∑

j=1,j �=î

ah
îj

(
K∗)Hj

(
K∗) +

m∑

j=1

βh
îj

(K∗)

γ h
îj

(K∗)
1
e2 eλσî Hî

(
K∗ – τ h

îj

(
K∗))

≤
[
(
λ – ah

îî

(
K∗)) +

n∑

j=1,j �=î

ah
îj

(
K∗) +

m∑

j=1

βh
îj

(K∗)

γ h
îj

(K∗)
1
e2 eλσî

]
Vϕ,x∗

< 0,

which is a contradiction. Thus (3.21) holds, and it follows that

∣∣Ni(t) – x∗
i (t)

∣∣ =
∣∣yi(t)

∣∣ < Vϕ,x∗e–λt for all t > Mϕ,x∗ , i ∈ Q.

This completes the proof of Theorem 3.2. �
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4 Some numerical simulations

In this section, we give two examples with simulations to demonstrate the feasibility and
the validity of our theoretical results.

Example 4.1 Consider the following delayed Nicholson-type system involving patch
structure and asymptotically almost periodic environments:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = –(10 sin2 √

2t + 2 + 100
1+|2t| )x1(t)

+ (0.01 sin2 √
3t + 0.02 + 300

1+|2t| )x2(t)

+ 2(10 sin2 √
2t + 2 + 100

1+|3t| )(1.1 + 0.01 cos t)

× x1(t – 100 sin2 t)e–(0.9+0.01 sin
√

3t+ 100
1+|2t| )x1(t–100 sin2 t)

+ (10 sin2 √
2t + 2 + 100

1+|5t| )(1.1 + 0.01 cos
√

3t)

× x1(t – 100 cos2 t)e–(0.9+0.01 cos
√

3t+ 100
1+|2t| )x1(t–100 cos2 t),

x′
2(t) = –(10 cos2 √

2t + 2 + 100
1+|4t| )x2(t)

+ (0.01 sin2 t + 0.02 + 100
1+|5t| )x1(t)

+ 2(10 cos2 t + 2 + 100
1+|2t| )(1.1 + 0.01 cos

√
7t)

× x2(t – 150 sin2 t)e–(0.9+0.01 sin t+ 100
1+|8t| )x2(t–150 sin2 t)

+ (10 cos2 √
2 + 2 + 100

1+|2t| )(1.1 + 0.01 cos
√

5t)

× x2(t – 150 cos2 t)e–(0.9+0.01 cos t+ 200
1+|7t| )x2(t–150 cos2 t),

(4.1)

where t0 = 0.
One can easily check that (2.1), (2.2), and (2.10)–(2.13) hold for system (4.1). From

Theorem 3.1, we can obtain that every solution of (4.1) with initial value ϕ = (ϕ1,ϕ2) ∈
C([–100, 0],R+) × C([–150, 0],R+) and ϕi(0) > 0 (i = 1, 2) is asymptotically almost peri-
odic on R

+ and converges to the same almost periodic function as t → +∞. The numeric
simulations in Fig. 1 support this theoretical results.

Figure 1 Numerical solutions of (4.1) for initial value
(0.1, 0.3), (0.1, 0.15), (0.3, 0.35)



Zhang et al. Journal of Inequalities and Applications        (2020) 2020:102 Page 23 of 27

Figure 2 Numerical solutions of (4.2) for initial value
(1.1, 1.3), (1.1, 1.15), (1.3, 1.35)

Example 4.2 Consider the following delayed Nicholson-type system involving patch
structure and almost periodic environments:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = –(10 sin2 √

2t + 2)x1(t) + (0.01 sin2 √
3t + 0.02)x2(t)

+ 2(10 sin2 √
2t + 2)(1.1 + 0.01 cos t)x1(t – 100 sin2 t)

× e–(0.9+0.01 sin
√

3t)x1(t–100 sin2 t)

+ (10 sin2 √
2t + 2)(1.1 + 0.01 cos

√
3t)x1(t – 100 cos2 t)

× e–(0.9+0.01 cos
√

3t)x1(t–100 cos2 t),

x′
2(t) = –(10 cos2 √

2t + 2)x2(t) + (0.01 sin2 t + 0.02)x1(t)

+ 2(10 cos2 t + 2)(1.1 + 0.01 cos
√

7t)x2(t – 150 sin2 t)

× e–(0.9+0.01 sin t)x2(t–150 sin2 t)

+ (10 cos2 √
2t + 2)(1.1 + 0.01 cos

√
5t)x2(t – 150 cos2 t)

× e–(0.9+0.01 cos t)x2(t–150 cos2 t),

(4.2)

where t0 = 0.
Obviously, system (4.2) satisfies all the assumptions made in (3.11)–(3.15). Therefore,

by Theorem 3.2, we obtain that system (4.2) has exactly one positive almost periodic so-
lution x∗(t). In particular, the solution N(t; t0,ϕ) of (4.2) with initial value ϕ = (ϕ1,ϕ2) ∈
C([–100, 0],R+) × C([–150, 0],R+) and ϕi(0) > 0 (i = 1, 2) converges exponentially to x∗(t)
as t → +∞. Figure 2 reveals the above consequences through numerical solutions of dif-
ferent initial values.

Remark 4.1 In the above examples, lim supt∈R γij(t) ≤ 0.91 < 1, i, j = 1, 2, does not sat-
isfy assumption (1.5). Moreover, when κ

γ
> 1.5 > κ̃ , one can find that, in Theorems

3.1 and 3.2, the existence region of almost periodic solution and the attractive re-
gion of asymptotically almost periodic solutions are outside of [κ , κ̃] × · · · × [κ , κ̃]︸ ︷︷ ︸

n

=

[0.7215355, 1.342276] × · · · × [0.7215355, 1.342276]︸ ︷︷ ︸
n

. Therefore, it is not difficult to see

that all the results in references [5–7] and [15–100] cannot be applied to show the almost
periodic dynamics for system (4.1) and system (4.2).
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5 Conclusions
In this paper, we combine the Lyapunov function method with the differential inequality
method to establish some new criteria ensuring the existence and attractivity of positive
asymptotically almost periodic solutions for a class of delayed Nicholson’s blowflies sys-
tems with patch structure. The assumptions adopted in this present paper are different
from some previously known literature. Numerical simulations have been given to illus-
trate the obtained results. The approach presented in this article can be used as a possible
way to study the asymptotically almost periodic patch structure population models such
as neoclassical growth model, Mackey–Glass model, epidemical system or age-structured
population model, and so on. We leave this as our future work.
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