
Xu et al. Journal of Inequalities and Applications        (2020) 2020:100 
https://doi.org/10.1186/s13660-020-02364-2

R E S E A R C H Open Access

Time-delayed local feedback control for a
chaotic finance system
Erfeng Xu1, Yingrui Zhang2 and Yonggang Chen3*

*Correspondence:
happycygzmd@tom.com
3School of Mathematical Sciences,
Henan Institute of Science and
Technology, Xinxiang, China
Full list of author information is
available at the end of the article

Abstract
In this paper, we consider the local control problem for a chaotic finance system via
the time-delayed feedback. Using the Lyapunov–Krasovskii stability theorem, the
quadratic system theory, some integral inequalities, and rigorous mathematical
analysis, we obtain a local stabilization condition by means of linear matrix
inequalities. Then we discuss the estimate of the region of asymptotic stability and
give the corresponding optimization problem. Also, we address the local control
problem under the nondelayed feedback. Finally, we present numerical simulations
to show the effectiveness of the proposed results.
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1 Introduction
In the past several decades, the dynamical behaviors have attracted significant research
attention for various kinds of nonlinear finance systems [1–6]. It has been widely iden-
tified that the chaotic behavior is encountered in financial/economic systems. Moreover,
it has been well acknowledged that the existence of the chaotic phenomenon in finan-
cial/economic systems will lead to a possible uncertainty in the macroeconomic opera-
tion. Hence it is important to investigate stabilization and synchronization problems for
various kinds of chaotic finance systems [7–12]. For example, the stabilization problem
has been studied in [9] for an uncertain fractional-order finance system via the adaptive
sliding-mode strategy, and in [11] the stabilization and synchronization problems have
been addressed for an uncertain financial hyperchaotic system by using the impulsive con-
trol approach. In [12] the adaptive control scheme has been used to control a novel finance
system.

In [13, 14] the time-delayed feedback control (TDFC) has been recognized as an effective
method for controlling chaos in nonlinear dynamical systems. Compared with some other
control schemes, the TDFC is more convenient to be implemented in practice since it does
not require the reference signal that corresponds to the unstable periodic orbit. Over the
past more than a decade, the TDFC has been extensively utilized to control the nonlinear
finance systems [15–19]. For example, the minimum entropy algorithm has been applied
in [16] for controlling chaos in the Behrens–Feichtinger model through TDFC, and in [18]
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the dynamical behavior has been studied for a nonlinear finance system under TDFC by
using the characteristic equation of the linearized model. In [19] the H∞ control problem
has been addressed for a finance system with external disturbance via TDFC.

Nevertheless, it should be pointed out that the results in [16, 17] are mainly based on
the numerical simulations, and the discussions in [15, 18] are based on the characteristic
equations of the corresponding linearized models. It is obvious that the theoretical analy-
sis in [16, 17] is absent, and the application ranges of the results in [15, 18] are unknown. In
addition, it is worth mentioning that all unstable equilibrium points in [19] are controlled
by a unified delayed feedback controller, and this makes the resultant design condition a
bit rigorous.

The finance systems discussed in the existing literature are essentially nonlinear
quadratic systems. The stability analysis and control design for quadratic systems have
also received wide investigations in the past more than a decade [20–25]. In particular,
in [23–25] the time delay is incorporated in the considered models. However, note that
the results in [23–25] are concerned with models with a single state delay and cannot be
applied to the finance system subject to TDFC. Moreover, the analysis approaches used in
[23–25] are somewhat conservative.

Motivated by these discussions, this paper is concerned with the TDFC problem for a
chaotic finance system by using the quadratic system theory. By incorporating an aug-
mented Lyapunov–Krasovskii (L–K) functional, some integral inequalities, and rigorous
mathematical analysis the local control design conditions are first obtained in the context
of linear matrix inequalities (LMIs). Then the paper discusses the estimate of the stability
region and proposes the corresponding optimization problems. Finally, numerical simu-
lations demonstrate the effectiveness of the obtained results. The main contributions of
this paper are as follows: (1) a new local stabilization condition is established for a typical
finance system under the TDFC strategy, and (2) the estimate of the region of asymptotic
stability is discussed for the first time, and the corresponding optimization problem is for-
mulated.

Notation. The superscript “T” is the transpose of a matrix. For a matrix P, P > 0 (P ≥ 0)
means that P is symmetric and positive definite (positive semidefinite). By ‖ · ‖ we de-
note the 2-norm of a vector and by λ(·)M the maximum eigenvalue value of a matrix. The
symmetric terms in a matrix are denoted by ∗.

2 Problem formulation
In [1, 2] the finance model composed of four subblocks (i.e., production, money, stock,
and labor force) has been purified and simplified as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = f1(y(t) – SV)x(t) + f2z(t),

ẏ(t) = f3(BEN – αy(t) – βx2(t)),

ż(t) = –f4z(t) – f5x(t),

(1)

where x(t), y(t), z(t), SV, and BEN denote, respectively, the interest rate, the investment
demand, the price index, the amount of savings, and the benefit rate of investment; α, β ,
and fi (i = 1, 2, . . . , 5) are all constants. Model (1) is obtained through careful analysis and
many experiments. We see that nine independent parameters are involved in the model. By
choosing an appropriate coordinate system and setting an appropriate dimension to every
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state variable, model (1) has been further simplified for convenience of analysis [1, 2]. The
further simplified model contains only three most important parameters and is described
as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = x3(t) + (x2(t) – a)x1(t),

ẋ2(t) = 1 – bx2(t) – x2
1(t),

ẋ3(t) = –x1(t) – cx3(t),

(2)

where a, b, and c are some positive scalars representing, respectively, the saving amount,
the cost per investment, and the demand elasticity of commercial markets.

Denote � � c – b – abc. It is easy to see that if � < 0, then model (2) has a unique fixed
point (0, 1/b, 0), and if � > 0, then model (2) has three fixed points

(0, 1/b, 0),
(±√

�/c, (ac + 1)/c,∓√
�/c3

)
.

For the finance model (2), it has been verified that the dynamic behaviors are highly
correlated with parameters a, b, and c. In many cases the fixed points of system (2) are
unstable. For example, when we choose a = 3, b = 0.1, and c = 1 or a = 2.5, b = 0.2, and
c = 1.2, a chaotic behavior occurs in system (2).

Letting x(t) � [x1(t)x2(t)x3(t)]T and

A �

⎡

⎢
⎣

–a 0 1
0 –b 0

–1 0 –c

⎤

⎥
⎦ , f

(
x(t)

)
�

⎡

⎢
⎣

x1(t)x2(t)
1 – x2

1(t)
0

⎤

⎥
⎦ ,

the chaotic finance system (2) can be read as follows:

ẋ(t) = Ax(t) + f
(
x(t)

)
+ u(t). (3)

In this paper, we apply the TDFC scheme

u(t) = K
(
x(t) – x(t – τ )

)
, (4)

where K is the controller gain matrix.
Denoting a fixed point by x∗, we see that

Ax∗ + f
(
x∗) = 0. (5)

Denoting e(t) � x(t) – x∗ and using (3)–(5), we have the closed-loop dynamics

ė(t) =(A + K)e(t) – Ke(t – τ ) + f
(
x(t)

)
– f

(
x∗). (6)

Note that f (x(t)) – f (x∗) = Fe(t) + g(e(t)), where

F =

⎡

⎢
⎣

x∗
2 x∗

1 0
–2x∗

1 0 0
0 0 0

⎤

⎥
⎦ , g(e) =

⎡

⎢
⎣

e1e2

–e2
1

0

⎤

⎥
⎦ =

⎡

⎢
⎣

eT B1

eT B2

eT B3

⎤

⎥
⎦ e � B(e)e
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with

B1 =

⎡

⎢
⎣

0 1/2 0
1/2 0 0
0 0 0

⎤

⎥
⎦ , B2 =

⎡

⎢
⎣

–1 0 0
0 0 0
0 0 0

⎤

⎥
⎦ , B3 = 03×3.

Then we obtain the following closed-loop dynamics:

ė(t) =
[
A + F + K + B(e)

]
e(t) – Ke(t – τ ). (7)

The initial condition associated with system (7) is denoted by e(s) = φ(s), s ∈ [–τ , 0).
Moreover, it is reasonable to assume that the initial condition φ(s) (s ∈ [–τ , 0)) satisfies
the open-loop dynamics φ̇(s) = [A + F + B(φ)]φ(s).

In this paper, we assume that the initial condition φ(s) (s ∈ [–τ , 0)) of the closed-loop
dynamics (7) belongs to a set of the following form:

Xρ =
{
φ(s) ∈ C1[–τ , 0] : max

s∈[–τ ,0]

∥
∥φ(s)

∥
∥ ≤ ρ

}
, (8)

where ρ > 0 is a scalar to be maximized.
For system (2), it is almost impossible to design the controller (4) such that the closed-

loop dynamics (7) is globally asymptotically stable. The main aim of this paper designing
the time-delayed feedback controller (4) such that the closed-loop error dynamics (7) is
locally asymptotically stable. Meanwhile, we would like to obtain an estimate (of the form
Xρ ) of the asymptotic stability region.

For the local analysis of dynamics (7), we introduce the box

X = [–ē1, ē1] × [–ē2, ē2] × [–ē3, ē3], (9)

which can be equivalently written as follows:

X = Co{v1, v2, . . . , v8} =
{

e ∈R
3 : |hie| ≤ ēi, i = 1, 2, 3

}
, (10)

where “Co” is the convex hull, and vi, hj (i = 1, 2, . . . , 8, j = 1, 2, 3) are given as

v1 = [–ē1 –ē2 –ē3]T , v2 = [–ē1 –ē2 ē3]T ,

v3 = [–ē1 ē2 –ē3]T , v4 = [–ē1 ē2 ē3]T ,

v5 = [ē1 –ē2 –ē3]T , v6 = [ē1 –ē2 ē3]T ,

v7 = [ē1 ē2 –ē3]T , v8 = [ē1 ē2 ē3]T ,

h1 = [1 0 0], h2 = [0 1 0], h3 = [0 0 1].

Next, we introduce several indispensable integral inequalities.

Lemma 1 ([26, 27]) For a given n × n matrix Z > 0, two scalars a and b satisfying b > a
and a differentiable vector function ω(t) ∈R

n, we have the following integral inequalities:

(1) (b – a)
∫ b

a
ωT (s)Zρ(s) ds
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≥
(∫ b

a
ω(s) ds

)T

Z
(∫ b

a
ρ(s) ds

)

+ 3ΩT
1 ZΩ1,

(2) (b – a)
∫ b

a
ωT (s)Zω(s) ds ≥

(∫ b

a
ω(s) ds

)T

× Z
(∫ b

a
ω(s) ds

)

+ 3ΩT
1 ZΩ1 + 5ΩT

2 ZΩ2,

(3)
(b – a)2

2

∫ b

a

∫ b

θ

ω(s) ds dθ ≥
(∫ b

a

∫ b

θ

ω(s) ds dθ

)T

× Z
(∫ b

a

∫ b

θ

ω(s) ds dθ

)

+ 8ΩT
3 ZΩ3,

where

Ω1 =
∫ b

a
ω(s) ds –

2
b – a

∫ b

a

∫ b

θ

ω(s) ds dθ ,

Ω2 =
∫ b

a
ω(s) ds –

6
b – a

∫ b

a

∫ b

θ

ω(s) ds dθ

+
12

(b – a)2

∫ b

a

∫ b

λ

∫ b

θ

ω(s) ds dθ dλ,

Ω3 =
∫ b

a

∫ b

θ

ω(s) ds dθ –
3

b – a

∫ b

a

∫ b

λ

∫ b

θ

ω(s) ds dθ dλ.

3 Main results
In this section, we first consider the local stabilization problem by using the L–K stability
theory and the quadratic system theory in the context of LMIs.

For presentation convenience, we denote

ϑ1(t) �
∫ t

t–τ

e(s) ds, ϑ2(t) �
∫ 0

–τ

∫ t

t+θ

e(s) ds dθ ,

E(R, 1) �
{

e ∈ R
3 : eT Re ≤ 1, R > 0

}
, D(κ) �

{
e ∈R

3 : ‖e‖2 ≤ κ2}.

Theorem 1 Let ē1 > 0, ē2 > 0, ē3 > 0, δ > 0, and τ > 0 be given scalars. The closed-loop
dynamics (7) is locally asymptotically stable if there exist 9 × 9-dimensional symmetric
matrix P = (Pij)3×3 and 3 × 3-dimensional matrices Q > 0, Z > 0, R > 0, X, and Y such that
the following LMIs hold:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ
vi
11 Φ12 Φ13 Φ14 Φ

vi
15

∗ Φ22 Φ23 Φ24 –δY T

∗ ∗ Φ33 Φ34 PT
12

∗ ∗ ∗ Φ44 PT
13

∗ ∗ ∗ ∗ Φ55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, i = 1, 2, . . . , 8, (11)

P +

⎡

⎢
⎣

Π11 6Z –24Z/τ
∗ Π22 Π23

∗ ∗ Π33

⎤

⎥
⎦ ≥ 0, (12)

hT
1 h1 ≤ ē2

1R, hT
2 h2 ≤ ē2

2R, hT
3 h3 ≤ ē2

3R, (13)
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where Pij, 1 ≤ i ≤ j ≤ 3, are 3 × 3-dimensional, and

Φ
vi
11 = X

[
A + F + B(vi)

]
+

[
A + F + B(vi)

]T XT + Y

+ Y T + P12 + PT
12 + τ

(
P13 + PT

13
)

+ Q – 9Z,

Φ12 = 3Z – Y – P12, Φ13 = P22 – P13 + τPT
23 – 24Z/τ ,

Φ14 = P23 + τP33 + 60Z/
(
τ 2), Φ22 = –Q – 9Z,

Φ
vi
15 = – X + δ

[
A + F + B(vi

]T XT + δY T + P11,

Φ23 = – P22 + 36Z/τ , Φ24 = –P23 – 60Z/
(
τ 2),

Φ33 = – P23 – PT
23 – 192Z/

(
τ 2), Φ44 = –720Z/

(
τ 4),

Φ34 = – P33 + 360Z/
(
τ 3), Φ55 = τ 2Z – δ(X + X)T ,

Π11 = –R + 6τZ, Π22 = (4Q + 18Z)/τ ,

Π23 = –6(Q + 8Z)/
(
τ 2), Π33 = 12(Q + 12Z)/

(
τ 3).

Moreover, if there exists feasible solutions, then the controller gain is given by the matrix
K = X–1Y .

Proof Choose the following augmented L–K functional:

V (t) =ηT (t)Pη(t) +
∫ t

t–τ

eT (s)Qe(s) ds + τ

∫ 0

–τ

∫ t

t+θ

ėT (s)Zė(s) ds dθ , (14)

where η(t) = [eT (t) ϑT
1 (t) ϑT

2 (t)]T .
Through some direct calculations, we can obtain that

V̇ (t) = 2ηT (t)Pη̇(t) + eT (t)Qe(t) – eT (t – τ )Qe(t – τ )

+ τ 2ėT (t)Zė(t) – τ

∫ t

t–τ

ėT (s)Zė(s) ds. (15)

Using the second inequality in Lemma 1, we see that

– τ

∫ t

t–τ

ėT (s)Zė(s) ds ≤ –

⎡

⎢
⎣

ξ1(t)
ξ2(t)
ξ3(t)

⎤

⎥
⎦

T ⎡

⎢
⎣

Z 0 0
0 3Z 0
0 0 5Z

⎤

⎥
⎦

⎡

⎢
⎣

ξ1(t)
ξ2(t)
ξ3(t)

⎤

⎥
⎦ , (16)

where

ξ1(t) = e(t) – e(t – τ ), ξ2(t) = e(t) + e(t – τ ) – (2/τ )ϑ1(t),

ξ3(t) = e(t) – e(t – τ ) + (6/τ )ϑ1(t) –
(
12/τ 2)ϑ2(t).

Denoting Ã(e) � A + F + K + B(e), from (7) it follows that

2
[
eT (t) + δėT (t)

]
X

[
Ã(e)e(t) – Ke(t – τ ) – ė(t)

]
= 0. (17)
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Adding the left side of (17) to V̇ (t) and using (16) yield that

V̇ (t) ≤ ζ T (t)Φ(e)ζ (t), (18)

where ζ (t) = [eT (t) eT (t – τ ) ϑT
1 (t) ϑT

2 (t) ėT (t)]T , and

Φ(e) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ11(e) Φ̃12 Φ13 Φ14 Φ15(e)
∗ Φ22 Φ23 Φ24 –δKT XT

∗ ∗ Φ33 Φ34 PT
12

∗ ∗ ∗ Φ44 PT
13

∗ ∗ ∗ ∗ Φ55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

with

Φ11(e) = X
[
A + F + B(e) + K

]
+

[
A + F + B(e) + K

]T XT + P12

+ PT
12 + τ

(
P13 + PT

13
)

+ Q – 9Z, Φ̃12 = 3Z – KT XT – P12,

Φ15(e) = –X + δ
[
A + F + B(e) + K

]T XT + P11.

Let Y � XK and note that Φ(e) is affine with respect to e1, e2, and e3. Hence, if LMIs (11)
were true, then the inequality Φ(e) < 0 could be ensured on X . Then we have

V̇ (t) < 0 (19)

on the box X , which implies that

V (t) ≤ V (0), t ≥ 0. (20)

On the other hand, using the inequalities (1) and (3) in Lemma 1, we have [28, 29]

V (t) ≥ ηT (t)Pη(t) + (1/τ )ϑT
1 (t)Qϑ1(t) + (3/τ )

[
ϑ1(t) – (2/τ )ϑ2(t)

]T

× Q
[
ϑ1(t) – (2/τ )ϑ2(t)

]
+ (2/τ )

[
τe(t) – ϑ1(t)

]T

× Z
[
τe(t) – ϑ1(t)

]
+ (4/τ )

[
τe(t) + 2ϑ1(t) – (6/τ )ϑ2(t)

]T

× Z
[
τe(t) + 2ϑ1(t) – (6/τ )ϑ2(t)

]
= ηT (t)(P + Π )η(t), (21)

where

Π =

⎡

⎢
⎣

6τZ 6Z –24Z/τ
∗ Π22 Π23

∗ ∗ Π33

⎤

⎥
⎦ .

By (12) and (21) it follows that

V (t) ≥ eT (t) Re(t), (22)



Xu et al. Journal of Inequalities and Applications        (2020) 2020:100 Page 8 of 14

which shows that the L–K functional V (t) is positive definite.
In addition, from (13) we can infer that

E(R, 1) ⊆X . (23)

For all initial conditions φ(s) ∈ Xρ satisfying V (0) ≤ 1, we can see from (20) and (22) that
all trajectories e(t) are contained in the set E(R, 1). By (19) and (23) we conclude that the
closed-loop dynamics (7) is asymptotically stable for all φ(s) satisfying V (0) ≤ 1 [20, 24],
and this completes the proof. �

Remark 1 The finance model (2) is essentially a particular kind of quadratic system [20–
25]. However, it is worth pointing out that the existing results concerning quadratic sys-
tems cannot be directly applied to the finance system (2) subject to TDFC. Moreover,
differently from the results in [23–25], the augmented L–K functional and the advanced
integral inequalities are utilized in this paper. In addition, it is worth mentioning that the
matrix P in Theorem 1 is not required to be positive definite.

Remark 2 Model (2) considered in this paper is simple yet typical. In fact, several recent
finance models are derived from model (2), such as the hyperchaotic finance system [5],
the delayed finance system [6], and fractional-order economic system [7]. The proposed
results in this paper can be readily extended to the finance systems discussed in [5, 6] and
model (1) in this paper.

If we employ the nondelayed feedback

u(t) = K
(
x(t) – x∗), (24)

then the closed-loop dynamics (7) becomes

ė(t) =
[
A + F + K + B(e)

]
e(t). (25)

Correspondingly, we easily obtain the following condition.

Corollary 1 Let ē1 > 0, ē2 > 0, ē3 > 0, and δ > 0 be given scalars. The chaotic finance system
(2) can be locally asymptotically stabilized by the feedback controller (24) with K = X–1Y if
there exist 3 × 3-dimensional matrices P > 0, X, and Y such that the following LMIs hold:

[
Ψ

vi
1 Ψ

vi
2

∗ –δ(X + X)T

]

< 0, i = 1, 2, . . . , 8, (26)

hT
1 h1 ≤ ē2

1P, hT
2 h2 ≤ ē2

2P, hT
3 h3 ≤ ē2

3P, (27)

where

Ψ
vi

1 = X
[
A + F + B(vi)

]
+

[
A + F + B(vi)

]T XT + Y + Y T ,

Ψ
vi

2 = –X + δ
[
A + F + B(vi

]T XT + δY T + P.
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We further consider the estimate of the asymptotic stability region involved in Theo-
rem 1 and Corollary 1. To this end, we introduce the inequalities

⎧
⎨

⎩

P ≤ diag{P1, P2, P3}, P1 ≤ p1I,

P2 ≤ p2I, P3 ≤ p3I, Q ≤ qI, Z ≤ zI,
(28)

where Pi > 0, pi > 0 (i = 1, 2, 3), q > 0, and z > 0.
Using (28) and the Jensen integral inequalities [30], it follows that

V (0) ≤ λ1 max
s∈[–τ ,0]

∥
∥φ(s)

∥
∥2 + λ2maxs∈[–τ ,0]

∥
∥φ̇(s)

∥
∥2

≤ λ̃1 max
s∈[–τ ,0]

∥
∥φ(s)

∥
∥2 + λ̃2 max

s∈[–τ ,0]

∥
∥φ̇(s)

∥
∥2, (29)

where

λ1 =
[
λM(P1) + τ 2λM(P2) +

(
τ 4/4

)
λM(P3) + τλM(Q)

]
,

λ2 =
(
τ 3/2

)
λM(Z), λ̃1 = p1 + τ 2p2 +

(
τ 4/4

)
p3 + τq, λ̃2 =

(
τ 3/2

)
z.

Then the maximization of the estimate of the asymptotic stability region in Theorem 1
can be formulated as follows.

Problem 1 minP,P1,P2,P3,Q,Z,X,Y ,p1,p2,p3,q,z(λ̃1 + λ̃2) s.t. LMIs (11)–(13) and (28). hold.

By solving Problem 1 we can obtain the scalars λ1 and λ2. Recalling that the initial con-
dition φ(s) satisfies V (0) ≤ 1, by (29) we can require φ(s) to satisfy

λ1 max
s∈[–τ ,0]

∥
∥φ(s)

∥
∥2 + λ2 max

s∈[–τ ,0]

∥
∥φ̇(s)

∥
∥2 ≤ 1. (30)

From (30) we see that ‖φ(s)‖2
c ≤ 1/ρ1, which shows that all admissible φ(s) are contained

in the ball D(
√

1/λ1). Let us choose a box X̃ = [–ω,ω]× [–ω,ω]× [–ω,ω] such that the ball
D(

√
1/λ1) is contained in X̃ , that is,D(

√
1/λ1) ⊆ X̃ . Recalling that φ̇(s) = [A+F +B(φ)]φ(s),

we see that the matrix inequality

[
A + F + B(φ)

]T[
A + F + B(φ)

] ≤ γ I (31)

can ensure that φ̇T (s)φ̇(s) ≤ γφT (s)φ(s). Noting that φ ∈D(
√

1/λ1), it follows that the ma-
trix inequality (31) can be ensured by the LMIs

[
γ I [A + F + B(ṽi)]T

∗ I

]

≥ 0, i = 1, 2, . . . , 8, (32)

where ṽi (i = 1, 2, . . . , 8) are the vertices of the box X̃ .
By solving LMIs (32) can readily obtain the minimum γ . Furthermore, from (29) and

(31) we see that the maximum admissible bound of the initial condition set Xρ involved
in Theorem 1 can be given by ρ = 1/

√
(λ1 + γ λ2).

In Corollary 1 the ellipsoid E(P, 1) can be seen as an estimate of the asymptotic stability
region. The corresponding optimization problem can be written as
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Problem 2 minP,X,Y ,p p s.t. LMIs (26)–(27) and P ≤ pI hold.

Remark 3 In the past more than a decade the TDFC strategy has been widely applied for
controlling chaos in nonlinear finance systems [15–19]. Unlike most existing results, our
obtained results are based on the rigorous mathematical theories such as the L–K theorem
and the quadratic systems theory. Moreover, the results in this paper are based on the fi-
nance system itself, not on its linearized mode. In addition, it is worth mentioning that the
estimate Xρ and its maximization of the asymptotic stability region have been discussed
in this paper. It is obvious that our proposed results are indispensable supplements of the
existing ones.

Remark 4 The obtained results in this paper are expressed by means of LMIs, which can
be conveniently solved by Matlab LMI Control Toolbox.

4 Numerical simulations
In this section, we illustrate the effectiveness of our proposed results via numerical sim-
ulations. Choosing a = 2.5, b = 0.2, and c = 1.2, we easily verify that system (2) has three
unstable fixed points

P
∗
1 � (ν1,ν2, –ν3), P

∗
2 � (–ν1,ν2,ν3), P

∗
3 � (0, 5, 0),

where ν1 = 0.5774, ν2 = 3.3333, and ν3 = 0.4811.
First, we address the local stabilization problem via the time-delayed feedback controller

(4). For the fixed point P∗
1, by solving the Problem 1 with τ = 0.5, ē1 = 0.46, ē2 = 0.46, ē3 = 1,

and δ = 0.33, we obtain λ1 = 19.0787 and λ2 = 0.3153 and the following controller gain:

K =

⎡

⎢
⎣

–1.6647 2.0298 0.7061
–1.2980 –3.2695 0.1205
0.5648 –0.1501 –0.1977

⎤

⎥
⎦

(
P

∗
1
)
.

Choosing ω = 0.2290 such that D(
√

1/λ1) ⊆ X̃ and applying LMIs (32), we get the min-
imum γ = 5.6445. Then we obtain the bound ρ = 0.2190 of the initial condition set Xρ .
Similarly, for the fixed point P∗

2, we have ρ = 0.2190 and

K =

⎡

⎢
⎣

–1.6646 –2.0300 0.7064
1.2980 –3.2693 –0.1204
0.5646 0.1504 –0.1981

⎤

⎥
⎦

(
P

∗
2
)
.

Next, we consider the local stabilization problem via the nondelayed feedback controller
(24). Choosing ē1 = ē2 = 5, ē3 = 10, and δ = 1 and then solving Problem 2, we obtain the
ellipsoid E(P, 1) and the corresponding controller gains with

P =

⎡

⎢
⎣

0.0400 0.0000 –0.0000
0.0000 0.0400 –0.0000

–0.0000 –0.0000 0.0370

⎤

⎥
⎦

(
P

∗
1,P∗

2,P∗
3
)
,

K =

⎡

⎢
⎣

–9.9927 –0.5774 –1.0000
1.1548 –17.2375 –0.0000
1.0000 –0.0000 0.2000

⎤

⎥
⎦

(
P

∗
1
)
,
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Figure 1 State responses of the closed-loop
dynamics (7) (P∗

1 )

Figure 2 State responses of the closed-loop
dynamics (7) (P∗

2 )

Figure 3 State responses of the closed-loop
dynamics (25) (P∗

1 )

K =

⎡

⎢
⎣

–10.0146 0.5774 –1.0000
–1.1548 –17.1628 –0.0000
1.0000 0.0000 0.2000

⎤

⎥
⎦

(
P

∗
2
)
,

K =

⎡

⎢
⎣

–11.6791 0.0000 –1.0000
–0.0000 –17.1725 0.0000
1.0000 0.0000 0.2000

⎤

⎥
⎦

(
P

∗
3
)
.

Using the obtained controller gains, we plotted the state responses of the closed-loop
dynamics in Figs. 1–5, from which it is clear that our proposed control strategy is really
effective in controlling the chaotic finance system (2).



Xu et al. Journal of Inequalities and Applications        (2020) 2020:100 Page 12 of 14

Figure 4 State responses of the closed-loop
dynamics (25) (P∗

2 )

Figure 5 State responses of the closed-loop
dynamics (25) (P∗

3 )

5 Conclusions
In this paper, we have considered the local control problem for a chaotic finance system
via TDFC scheme. By using an augmented L–K functional, the quadratic system theory,
and rigorous mathematical analysis, we have established the local stabilization condi-
tions in terms of LMIs. Subsequently, we discussed the estimate and its maximization
of the asymptotic stability region. Finally, by simulation results we demonstrated the ef-
fectiveness of the obtained conditions. The techniques developed in this paper can be em-
ployed to investigate the synchronization problem [8, 11, 31] and the H∞ control problem
[19, 32, 33]. In addition, it is worth pointing out that there exists conservatism in our re-
sults. By utilizing the recently developed integral inequalities [34] and L–K functionals
[35, 36] we can establish less conservative results, which is our further work.
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