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1 Introduction and preliminaries
A function Υ : W → R on an interval of real line, for all w1, w2 ∈W and κ ∈ [0, 1], is called
convex if the following inequality holds:

Υ
(
κw1 + (1 – κ)w2

) ≤ κΥ (w1) + (1 – κ)Υ (w2). (1)

Due to the importance of convex functions, many authors have given results not only for
convex functions but also for their generalizations. The Hermite–Hadamard inequality
[9] on a real interval was defined by

Υ

(
w1 + w2

2

)
≤ 1

w2 – w1

∫ w2

w1

Υ (u) du ≤ Υ (w1) + Υ (w2)
2

(2)

for all w1, w2 ∈W with w1 < w2. Then Fejér [8] proved the following inequality:

Υ

(
w1 + w2

2

)∫ w2

w1

�(u) du ≤ 1
w2 – w1

∫ w2

w1

Υ (u) � (u) du

≤ Υ (w1) + Υ (w2)
2

∫ w2

w1

�(u) du, (3)

where � : [w1, w2] → R is nonnegative, integrable, and symmetric to (w1 + w2)/2, called
Hermite–Hadamard–Fejér inequality. Inequalities (2) and (3) have been further general-
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ized in different ways not only for classical integral but also for other generalized integrals
such as Riemann–Liouville fractional integral, Katugampola, ψ-Riemann–Liouville, and
conformable fractional integrals etc. For more results and details see [1, 4–7, 17–23, 26–
30].

Definition 1.1 ([11, 12]) Suppose an interval W ⊂ (0,∞) = R+ and p ∈ R \ {0}. Then a
function Υ : W →R is called p-convex if

Υ
([

κwp
1 + (1 – κ)wp

2
] 1

p
) ≤ κΥ (w1) + (1 – κ)Υ (w2) (4)

holds for all w1, w2 ∈W and κ ∈ [0, 1]. If inequality (4) is in opposite order, then Υ is called
p-concave function.

Definition 1.2 ([14]) Let Υ ∈ L[w1, w2]. The left- and right-sided Riemann–Liouville frac-
tional integrals Jα

w1+Υ and Jα
w2–Υ of order α ∈ C with R(α) > 0 and w2 > w1 ≥ 0 are given

by

Jα
w1+Υ (u) =

1
Γ (α)

∫ u

w1

(u – v)α–1Υ (v) dv, u > w1,

and

Jα
w2–Υ (u) =

1
Γ (α)

∫ w2

u
(v – u)α–1Υ (v) dv, u < w2,

respectively, where Γ (·) is the gamma function.

Abdeljawad [2] defined the conformable fractional integral as follows.

Definition 1.3 ([2]) Let α ∈ (n, n + 1] and γ = α – n. Then the left- and right-sided con-
formable fractional integrals of order α > 0 are given by

Jw1
α Υ (u) =

1
n!

∫ u

w1

(u – v)n(v – w1)γ –1Υ (v) dv,

and

w2 JαΥ (u) =
1
n!

∫ w2

u
(v – u)n(w2 – v)γ –1Υ (v) dv,

respectively.

Note that for α = n + 1 then γ = 1, where n = 0, 1, 2, . . . , and in this case conformable
fractional integrals become Riemann–Liouville fractional integrals.

The classical beta function and hypergeometric function are defined, respectively, by

β(w1, w2) =
∫ 1

0
uw1–1(1 – u)w2–1 du
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and

2F1(w1, w2; u; v) =
1

β(w2, u – w2)

∫ 1

0
uw2–1(1 – u)u–w2–1(1 – vu)–w1 du,

with u > w2 > 0, |v| < 1.
The incomplete beta function is defined as follows:

βu(w1, w2) =
∫ u

0
vw1–1(1 – v)w2–1 dv, u ∈ [0, 1].

The relationship between the classical beta function and the incomplete beta function is
given as follows:

β(w1, w2) = βu(w1, w2) + β1–u(w1, w2).

2 Hermite–Hadamard type inequalities
In this section we prove some Hermite–Hadamard type inequalities for p-convex func-
tions via conformable fractional integral.

Theorem 2.1 Let Υ : [w1, w2] ⊂ (0,∞) → R be a p-convex function such that Υ ∈
L[w1, w2] and α > 0. Then

(i) for p > 0, we have

Υ

([
wp

1 + wp
2

2

]1/p)

≤ Γ (α + 1)
2Γ (α – n)(wp

2 – wp
1)α

[
Jwp

1
α (Υ ◦ φ)

(
wp

2
)

+ wp
2 Jα(Υ ◦ φ)

(
wp

1
)]

≤ Υ (wp
1) + Υ (wp

2)
2

, (5)

here φ(u) = u
1
p for all u ∈ [wp

1, wp
2];

(ii) for p < 0, we have

Υ

([
wp

1 + wp
2

2

]1/p)

≤ Γ (α + 1)
2Γ (α – n)(wp

1 – wp
2)α

[wp
1 Jα(Υ ◦ φ)

(
wp

2
)

+ Jwp
2

α (Υ ◦ φ)
(
wp

1
)]

≤ Υ (wp
1) + Υ (wp

2)
2

, (6)

here φ(u) = u
1
p for all u ∈ [wp

2, wp
1].

Proof (i) Since Υ is a p-convex function on [w1, w2], we have

Υ

([
xp + yp

2

] 1
p
)

≤ Υ (x) + Υ (y)
2

.
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Taking xp = κwp
1 + (1 – κ)wp

2 and yp = (1 – κ)wp
1 + κwp

2 with κ ∈ [0, 1], we get

Υ

([
wp

1 + wp
2

2

] 1
p
)

≤ Υ ([κwp
1 + (1 – κ)wp

2]
1
p ) + Υ ([(1 – κ)wp

1 + κwp
2]

1
p )

2
. (7)

Multiplying (7) by 1
n!κ

n(1–κ)α–n–1, with κ ∈ (0, 1), α > 0, on both sides and then integrating
about κ over [0, 1], we find

2
n!

Υ

([
wp

1 + wp
2

2

] 1
p
)∫ 1

0
κn(1 – κ)α–n–1 dκ

≤ 1
n!

∫ 1

0
κn(1 – κ)α–n–1Υ

([
κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

+
1
n!

∫ 1

0
κn(1 – κ)α–n–1Υ

([
(1 – κ)wp

1 + κwp
2
] 1

p
)

dκ

= I1 + I2. (8)

By setting u = κwp
1 + (1 – κ)wp

2, we have

I1 =
1
n!

∫ 1

0
κn(1 – κ)α–n–1Υ

([
κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

=
1
n!

∫ wp
1

wp
2

(
u – wp

2

wp
1 – wp

2

)n(
1 –

u – wp
2

wp
1 – wp

2

)α–n–1

(Υ ◦ φ)(u)
du

wp
1 – wp

2

=
1

n!(wp
2 – wp

1)α

∫ wp
2

wp
1

(
wp

2 – u
)n(u – wp

1
)α–n–1(Υ ◦ φ)(u) du

=
1

(wp
2 – wp

1)α
Jwp

1
α (Υ ◦ φ)

(
wp

2
)
. (9)

Similarly, by setting u = κwp
2 + (1 – κ)wp

1, we have

I2 =
1
n!

∫ 1

0
κn(1 – κ)α–n–1Υ

([
κwp

2 + (1 – κ)wp
1
] 1

p
)

dκ

=
1
n!

∫ wp
2

wp
1

(
u – wp

1

wp
2 – wp

1

)n(
1 –

u – wp
1

wp
2 – wp

1

)α–n–1

(Υ ◦ φ)(u)
du

wp
2 – wp

1

=
1

n!(wp
2 – wp

1)α

∫ wp
2

wp
1

(
u – wp

1
)n(wp

2 – u
)α–n–1(Υ ◦ φ)(u) du

=
1

(wp
2 – wp

1)α
wp

2 Jα(Υ ◦ φ)
(
wp

1
)
. (10)

Thus, by putting values of I1 and I2 in (8), the first inequality of (5) is achieved. For another
inequality, we note that

Υ
([

κwp
1 + (1 – κ)wp

2
] 1

p
)

+ Υ
([

κwp
2 + (1 – κ)wp

1
] 1

p
) ≤ [

Υ (w1) + Υ (w2)
]
. (11)
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Multiplying (11) by 1
n!κ

n(1 – κ)α–n–1, with κ ∈ (0, 1), α > 0, on both sides and then inte-
grating about κ over [0, 1], we achieve the second inequality of (5). This completes the
proof.

(ii) Proof is identical to that of (i). �

Remark 2.1 In Theorem 2.1:
1. If we let p = 1 in (i), we get Theorem 2.1 in [25].
2. If we let p = –1 in (ii), we get Theorem 2.1 in [3].
3. If we let p = 1 and α = n + 1 in (i), we get Theorem 2 in [24].
4. If we let p = –1 and α = n + 1 in (ii), we get Theorem 4 in [13].

Lemma 2.1 Let Υ : [w1, w2] ⊂ (0,∞) → R be a differentiable function on (w1, w2) with
w1 < w2 such that Υ ′ ∈ L[w1, w2] and α > 0. Then

(i) for p > 0, we have

1
Υ (w1, w2;α;β ; J)

=
wp

2 – wp
1

2p

∫ 1

0

(
β1–κ (n + 1,α – n) – βκ (n + 1,α – n)

)

× A
1
p –1
κ Υ ′([κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ , (12)

here Aκ = [κwp
1 + (1 – κ)wp

2] and

1
Υ (w1, w2;α;β ; J)

= β(n + 1,α – n)
(

Υ (w1) + Υ (w2)
2

)

–
n!

2(wp
2 – wp

1)α
[
Jwp

1
α (Υ ◦ φ)

(
wp

2
)

+ wp
2 Jα(Υ ◦ φ)

(1
p
)]

;

(ii) for p < 0, we have

2
Υ (w1, w2;α;β ; J)

=
wp

1 – wp
2

2p

∫ 1

0

(
βκ (n + 1,α – n) – β1–κ (n + 1,α – n)

)

× B
1
p –1
κ Υ ′([κwp

2 + (1 – κ)wp
1
] 1

p
)

dκ , (13)

here Bκ = [κwp
2 + (1 – κ)wp

1] and

2
Υ (w1, w2;α;β ; J)

= β(n + 1,α – n)
(

Υ (w1) + Υ (w2)
2

)

–
n!

2(wp
1 – wp

2)α
[wp

1 Jα(Υ ◦ φ)
(
wp

2
)

+ Jwp
2

α (Υ ◦ φ)
(
wp

1
)]

.
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Proof (i) Consider

∫ 1

0

(
β1–κ (n + 1,α – n) – βκ (n + 1,α – n)

)
A

1
p –1
κ Υ ′([κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

=
∫ 1

0
β1–κ (n + 1,α – n)A

1
p –1
κ Υ ′([κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

–
∫ 1

0
βκ (n + 1,α – n)A

1
p –1
κ Υ ′([κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

= I1 – I2. (14)

Then, by integration by parts, we have

I1 =
∫ 1

0
β1–κ (n + 1,α – n)A

1
p –1
κ Υ ′([κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

=
∫ 1

0

(∫ 1–κ

0
un(1 – u)α–n–1 du

)
A

1
p –1
κ Υ ′([κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

=
p

wp
2 – wp

1
β(n + 1,α – n)Υ (w2)

–
p

wp
2 – wp

1

∫ 1

0
(1 – κ)nκα–n–1Υ

([
κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

=
p

wp
2 – wp

1
β(n + 1,α – n)Υ (w2)

–
p

wp
2 – wp

1

∫ wp
1

wp
2

(
1 –

x – wp
2

wp
1 – wp

2

)n( x – wp
2

wp
1 – wp

2

)α–n–1 (Υ ◦ φ)(x)
wp

1 – wp
2

dx

=
p

wp
2 – wp

1
β(n + 1,α – n)Υ (w2) –

n!
(wp

2 – wp
1)α+1

wp
2 Jα(Υ ◦ φ)

(
wp

1
)
. (15)

Similarly, we have

I2 =
∫ 1

0
βκ (n + 1,α – n)Υ ′([κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

=
∫ 1

0

(∫ κ

0
un(1 – u)α–n–1 du

)
Υ ′([κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

= –
p

wp
2 – wp

1
β(n + 1,α – n)Υ (w1)

+
p

wp
2 – wp

1

∫ 1

0
κn(1 – κ)α–n–1Υ

([
κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

= –
p

wp
2 – wp

1
β(n + 1,α – n)Υ (w1)

+
p

wp
2 – wp

1

∫ wp
1

wp
2

(
x – wp

2

wp
1 – wp

2

)n(
1 –

x – wp
2

wp
1 – wp

2

)α–n–1 (Υ ◦ φ)(x)
wp

1 – wp
2

dx

= –
p

wp
2 – wp

1
β(n + 1,α – n)Υ (w1) +

n!
(wp

2 – wp
1)α+1

Jwp
1

α (Υ ◦ φ)
(
wp

2
)
. (16)



Mehreen and Anwar Journal of Inequalities and Applications        (2020) 2020:107 Page 7 of 18

By substituting values of I1 and I2 in (14) and then multiplying by wp
2–wp

1
2 , we get

(12).
(ii) Proof is similar to that of (i). �

Remark 2.2 By taking p = –1 in Lemma 2.1, we obtain Lemma 2.1 in [3].

Theorem 2.2 Let Υ : [w1, w2] ⊂ (0,∞) → R be a differentiable function on (w1, w2) with
w1 < w2 such that Υ ′ ∈ L[w1, w2] and α > 0. If |Υ ′|q, where q ≥ 1, is a p-convex function,
then

(i) for p > 0, we have

∣
∣1
Υ (w1, w2;α;β ; J)

∣
∣ ≤ wp

2 – wp
1

2p
λ1–1/q(λ1

∣
∣Υ ′(w1)

∣
∣q + λ2

∣
∣Υ ′(w2)

∣
∣q)1/q, (17)

here

λ = β(n + 1,α – n + 1) – β(n + 1,α – n) + β(n + 2,α – n),

λ1 =
w1–p

2
2 2F1

(
1 –

1
p

, 2; 3; 1 –
wp

1

wp
2

)
and λ2 =

w1–p
2
2 2F1

(
1 –

1
p

, 1; 3; 1 –
wp

1

wp
2

)
;

(ii) for p < 0, we have

∣∣2
Υ (w1, w2;α;β ; J)
∣∣ ≤ wp

1 – wp
2

2p
λ

1–1/q
3

(
λ4

∣∣Υ ′(w1)
∣∣q + λ5

∣∣Υ ′(w2)
∣∣q)1/q, (18)

here

λ3 = β(n + 1,α – n + 1) – β(n + 2,α – n),

λ4 =
wp–1

2
2 2F1

(
1 –

1
p

, 1; 3; 1 –
wp

2

wp
1

)
and λ5 =

wp–1
2
2 2F1

(
1 –

1
p

, 2; 3; 1 –
wp

2

wp
1

)
.

Proof (i) Let Aκ = [κwp
1 + (1 – κ)wp

2]. Applying Lemma 2.1, power mean inequality, and
p-convexity of |Υ ′|q, we find

∣∣1
Υ (w1, w2;α;β ; J)
∣∣

=
∣∣
∣∣
wp

2 – wp
1

2p

∫ 1

0

{
β1–κ (n + 1,α – n) – βκ (n + 1,α – n)

}

× A
1
p –1
κ Υ ′([κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

∣
∣∣
∣

≤ wp
2 – wp

1
2p

(∫ 1

0

{
β1–κ (n + 1,α – n) – βκ (n + 1,α – n)

}
dκ

)1–1/q

×
(∫ 1

0
A

1
p –1
κ

∣∣Υ ′([κwp
1 + (1 – κ)wp

2
] 1

p
)∣∣q dκ

)1/q

≤ wp
2 – wp

1
2p

λ1–1/q
(∫ 1

0
A

1
p –1
κ

[
κ
∣∣Υ ′(w1)

∣∣q + (1 – κ)
∣∣Υ ′(w2)

∣∣q]dκ

)1/q

=
wp

2 – wp
1

2p
λ1–1/q(λ1

∣
∣Υ ′(w1)

∣
∣q + λ2

∣
∣Υ ′(w2)

∣
∣q)1/q, (19)
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where

λ =
∫ 1

0

(
β1–κ (n + 1,α – n) – βκ (n + 1,α – n)

)
dκ

=
∫ 1

0

(∫ 1–κ

0
un(1 – u)α–n–1 du

)
dκ +

∫ 1

0

(∫ κ

0
un(1 – u)α–n–1 du

)
dκ

= κ

(∫ 1–κ

0
un(1 – u)α–n–1 du

)∣
∣∣
∣

1

0
+

∫ 1

0
κ(1 – κ)nκα–n–1 dκ

+ κ

(∫ κ

0
un(1 – u)α–n–1 du

)∣
∣∣
∣

1

0
+

∫ 1

0
κn+1(1 – κ)α–n–1 dκ

= β(n + 1,α – n + 1) – β(n + 1,α – n) + β(n + 2,α – n),

λ1 =
∫ 1

0
κA

1
p –1
κ dκ =

w1–p
2
2 2F1

(
1 –

1
p

, 2; 3; 1 –
wp

1

wp
2

)
,

and

λ2 =
∫ 1

0
(1 – κ)A

1
p –1
κ dκ =

w1–p
2
2 2F1

(
1 –

1
p

, 1; 3; 1 –
wp

1

wp
2

)
.

Hence the proof is completed.
(ii) Proof is similar to that of (i). �

Remark 2.3 By letting p = –1 in Theorem 2.2, we obtain Theorem 2.2 in [3].

Now, for the next two results, we consider the case when p > 0 and leave the case when
p < 0 for the reader.

Theorem 2.3 Let Υ : [w1, w2] ⊂ (0,∞) → R be a differentiable function on (w1, w2) with
w1 < w2 such that Υ ′ ∈ L[w1, w2] and α > 0. If |Υ ′|q, where q ≥ 1, is a p-convex function,
then for p > 0, we have

∣
∣1
Υ (w1, w2;α;β ; J)

∣
∣

≤ wp
2 – wp

1
2p

μ1–1/q((μ1 – μ2)
∣
∣Υ ′(w1)

∣
∣q + (μ3 – μ4)

∣
∣Υ ′(w2)

∣
∣q)1/q, (20)

here

μ =
w1–p

2
2 2F1

(
1 –

1
p

, 1; 2; 1 –
wp

1

wp
2

)
,

μ1 =
1
2
β(n + 1,α – n + 2),

μ2 =
1
2
(
β(n + 1,α – n) – β(n + 3,α – n)

)
,

μ3 = β(n + 2,α – n + 1) –
1
2
β(n + 1,α – n + 2),
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and

μ4 =
1
2
β(n + 1,α – n) +

1
2
β(n + 3,α – n) – β(n + 2,α – n).

Proof Applying Lemma 2.1, power mean inequality, and p-convexity of |Υ ′|q, we have

∣
∣1
Υ (w1, w2;α;β ; J)

∣
∣

=
∣∣
∣∣
wp

2 – wp
1

2p

∫ 1

0

{
β1–κ (n + 1,α – n) – βκ (n + 1,α – n)

}

× A
1
p –1
κ Υ ′([κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

∣∣
∣∣

≤ wp
2 – wp

1
2p

(∫ 1

0
A

1
p –1
κ dκ

)1–1/q

×
(∫ 1

0

{
β1–κ (n + 1,α – n) – βκ (n + 1,α – n)

}∣∣Υ ′([κwp
1 + (1 – κ)wp

2
] 1

p
)∣∣q dκ

)1/q

≤ wp
2 – wp

1
2p

μ1–1/q
(∫ 1

0

{
β1–κ (n + 1,α – n) – βκ (n + 1,α – n)

}

× [
κ
∣∣Υ ′(w1)

∣∣q + (1 – κ)
∣∣Υ ′(w2)

∣∣q]dκ

)1/q

=
wp

2 – wp
1

2p
μ1–1/q((μ1 – μ2)

∣
∣Υ ′(w1)

∣
∣q + (μ3 – μ4)

∣
∣Υ ′(w2)

∣
∣q)1/q, (21)

where

μ =
∫ 1

0
A

1
p –1
κ dκ =

w1–p
2
2 2F1

(
1 –

1
p

, 1; 2; 1 –
wp

1

wp
2

)
,

μ1 =
∫ 1

0
κβ1–κ (n + 1,α – n) dκ =

1
2
β(n + 1,α – n + 2),

μ2 =
∫ 1

0
κβκ (n + 1,α – n) =

1
2
(
β(n + 1,α – n) – β(n + 3,α – n)

)
,

μ3 =
∫ 1

0
(1 – κ)β1–κ (n + 1,α – n) dκ = β(n + 2,α – n + 1) –

1
2
β(n + 1,α – n + 2),

and

μ4 =
∫ 1

0
(1 – κ)βκ (n + 1,α – n) dκ

=
1
2
β(n + 1,α – n) +

1
2
β(n + 3,α – n) – β(n + 2,α – n).

Hence the proof is completed. �

Theorem 2.4 Let Υ : [w1, w2] ⊂ (0,∞) → R be a differentiable function on (w1, w2) with
w1 < w2 such that Υ ′ ∈ L[w1, w2] and α > 0. If |Υ ′|q, where q, l > 1 with 1

q + 1
l = 1, is a
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p-convex function, then

∣∣1
Υ (w1, w2;α;β ; J)
∣∣

≤ wp
2 – wp

1
2p

ν
1
l
(
ν1

∣∣Υ ′(w1)
∣∣q + ν2

∣∣Υ ′(w2)
∣∣q)1/q, (22)

here

ν = 2
∫ 1

2

0

(∫ 1–κ

κ

un(1 – u)α–n–1 du
)

dκ ,

ν1 =
wq(1–p)

2
2 2F1

(
q
(

1 –
1
p

)
, 2; 3; 1 –

wp
1

wp
2

)
,

ν2 =
wq(1–p)

2
2 2F1

(
q
(

1 –
1
p

)
, 1; 3; 1 –

wp
1

wp
2

)
.

Proof Let Aκ = [κwp
1 + (1 – κ)wp

2]. Applying Lemma 2.1, Hölder’s inequality, and p-
convexity of |Υ ′|q, we have

∣
∣1
Υ (w1, w2;α;β ; J)

∣
∣

=
∣∣∣
∣
wp

2 – wp
1

2p

∫ 1

0

{
β1–κ (n + 1,α – n) – βκ (n + 1,α – n)

}

× A
1
p –1
κ Υ ′([κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

∣∣
∣∣

≤ wp
2 – wp

1
2p

(∫ 1

0

∣∣β1–κ (n + 1,α – n) – βκ (n + 1,α – n)
∣∣l dκ

) 1
l

×
(∫ 1

0
A

q( 1
p –1)

κ

∣
∣Υ ′([κwp

1 + (1 – κ)wp
2
] 1

p
)∣∣q dκ

)1/q

≤ wp
2 – wp

1
2p

ν
1
l

(∫ 1

0
A

q( 1
p –1)

κ

[
κ
∣∣Υ ′(w1)

∣∣q + (1 – κ)
∣∣Υ ′(w2)

∣∣q]dκ

)1/q

=
wp

2 – wp
1

2p
ν

1
p
(
ν1

∣∣Υ ′(w1)
∣∣q + ν

∣∣Υ ′(w2)
∣∣q)1/q, (23)

where

ν =
∫ 1

0

∣
∣β1–κ (n + 1,α – n) – βκ (n + 1,α – n)

∣
∣l dκ

=
∫ 1

2

0

(
β1–κ (n + 1,α – n) – βκ (n + 1,α – n)

)l dκ

+
∫ 1

1
2

(
βκ (n + 1,α – n) – β1–κ (n + 1,α – n)

)l dκ

=
∫ 1

2

0

(∫ 1–κ

κ

un(1 – u)α–n–1 du
)l

dκ +
∫ 1

1
2

(∫ κ

1–κ

un(1 – u)α–n–1 du
)l

dκ

= 2
∫ 1

2

0

(∫ 1–κ

κ

un(1 – u)α–n–1 du
)l

dκ ,
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ν1 =
∫ 1

0
κA

q( 1
p –1)

κ dκ =
wq(1–p)

2
2 2F1

(
q
(

1 –
1
p

)
, 2; 3; 1 –

wp
1

wp
2

)
,

and

ν2 =
∫ 1

0
(1 – κ)A

q( 1
p –1)

κ dκ =
wq(1–p)

2
2 2F1

(
q
(

1 –
1
p

)
, 1; 3; 1 –

wp
1

wp
2

)
.

Hence the proof is completed. �

3 Hermite–Hadamard–Fejér type inequalities
In this section we prove some Hermite–Hadamard–Fejér type inequalities for p-convex
functions via conformable fractional integral. First we give the following useful defini-
tion.

Definition 3.1 ([15]) Let p ∈ R \ {0}. A function � : [w1, w2] ⊆ (0,∞) → R is called p-
symmetric around [ wp

1+wp
2

2 ]1/p if

�(x) = �
([

wp
1 + wp

2 – xp] 1
p
)

holds for all x ∈ [w1, w2].

Now we prove the following identity.

Lemma 3.1 Let p ∈ R \ {0}. If � : [w1, w2] ⊆ (0,∞) → R is integrable and p-symmetric
around [ wp

1+wp
2

2 ]1/p, then
(i) for p > 0, we have

Jwp
1

α (� ◦ φ)
(
wp

2
)

= wp
2 Jα(� ◦ φ)

(
wp

1
)

=
1
2
[
Jwp

1
α (� ◦ φ)

(
wp

2
)

+ wp
2 Jα(� ◦ φ)

(
wp

1
)]

, (24)

with α > 0 and φ(u) = u
1
p , for all u ∈ [wp

1, wp
2];

(ii) for p < 0, we have

Jwp
2

α (� ◦ φ)
(
wp

1
)

= wp
1 Jα(� ◦ φ)

(
wp

2
)

=
1
2
[
Jwp

2
α (� ◦ φ)

(
wp

1
)

+ wp
1 Jα(� ◦ φ)

(
wp

2
)]

, (25)

with α > 0 and φ(u) = u
1
p , for all u ∈ [wp

2, wp
1].

Proof (i) Since � is p-symmetric around [ wp
1+wp

2
2 ]1/p, then by definition we have �(x

1
p ) =

�([wp
1 + wp

2 – x]
1
p ) for all x ∈ [wp

1, wp
2]. In the following integral, setting u = wp

1 + wp
2 – x
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gives

Jwp
1

α (� ◦ φ)
(
wp

2
)

=
1
n!

∫ wp
2

wp
1

(
wp

2 – u
)n(u – wp

1
)α–n–1 �

(
u

1
p
)

du

=
1
n!

∫ wp
2

wp
1

(
x – wp

1
)n(wp

2 – x
)α–n–1 �

([
wp

1 + wp
2 – x

] 1
p
)
dx

=
1
n!

∫ wp
2

wp
1

(
x – wp

1
)n(wp

2 – x
)α–n–1 �

(
x

1
p
)
dx

= wp
2 Jα(� ◦ φ)

(
wp

1
)
. (26)

This completes the proof.
(ii) Proof is similar to that of (i). �

Remark 3.1 In Lemma 3.1:
1. By taking α = n + 1, we obtain Lemma 1 in [16].
2. By taking α = n + 1 and p = 1, we find Lemma 3 of [10].

Corollary 3.1 Under the assumptions of Lemma 3.1:
1. If p = 1 in (i), then we get

Jw1
α � (w2) = w2 Jα � (w1) =

1
2
[
Jw1
α � (w2) + w2 Jα � (w1)

]
. (27)

2. If p = –1 in (ii), then we get

1/w1 Jα(� ◦ φ)(1/w2) = J1/w2
α (� ◦ φ)(1/w1)

=
1
2
[1/w1 Jα(� ◦ φ)(1/w2) + J1/w2

α (� ◦ φ)(1/w1)
]
. (28)

Theorem 3.2 Let p ∈ R \ {0}. Let Υ : [w1, w2] ⊂ (0,∞) → R be a p-convex function with
w1 < w2 and Υ ∈ L[w1, w2]. If � : [w1, w2] ⊆ R \ {0} → R is nonnegative, integrable, and
p-symmetric around [ wp

1+wp
2

2 ]1/p. Then
(i) for p > 0, the following inequalities hold:

Υ

([
wp

1 + wp
2

2

]1/p)[
Jwp

1
α (� ◦ φ)

(
wp

2
)

+ wp
2 Jα(� ◦ φ)

(
wp

1
)]

≤ [
Jwp

1
α

(
Υ (� ◦ φ)

)(
wp

2
)

+ wp
2 Jα

(
Υ (� ◦ φ)

)(
wp

1
)]

≤ Υ (w1) + Υ (w2)
2

[
Jwp

1
α (� ◦ φ)

(
wp

2
)

+ wp
2 Jα(� ◦ φ)

(
wp

1
)]

, (29)

with α > 0 and φ(x) = x
1
p , for all x ∈ [wp

1, wp
2];
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(ii) for p < 0, the following inequalities hold:

Υ

([
wp

1 + wp
2

2

]1/p)[
Jwp

2
α (� ◦ φ)

(
wp

1
)

+ wp
1 Jα(� ◦ φ)

(
wp

2
)]

≤ [
Jwp

2
α

(
Υ (� ◦ φ)

)(
wp

1
)

+ wp
1 Jα

(
Υ (� ◦ φ)

)(
wp

2
)]

≤ Υ (w1) + Υ (w2)
2

[
Jwp

2
α (� ◦ φ)

(
wp

1
)

+ wp
1 Jα(� ◦ φ)

(
wp

2
)]

, (30)

with α > 0 and φ(x) = x
1
p , for all x ∈ [wp

2, wp
1].

Proof (i) Since Υ is a p-convex function on [w1, w2], we have

Υ

([
xp + yp

2

] 1
p
)

≤ Υ (x) + Υ (y)
2

.

Taking xp = κwp
1 + (1 – κ)wp

2 and yp = (1 – κ)wp
1 + κwp

2 with κ ∈ [0, 1], we get

Υ

([
wp

1 + wp
2

2

] 1
p
)

≤ Υ ([κwp
1 + (1 – κ)wp

2]
1
p ) + Υ ([(1 – κ)wp

1 + κwp
2]

1
p )

2
. (31)

Multiplying (31) by 1
n!κ

n(1 – κ)α–n–1 � ([κwp
1 + (1 – κ)wp

2]
1
p ) on both sides, α > 0 and then

integrating about κ over [0, 1], we obtain

2
n!

Υ

([
wp

1 + wp
2

2

] 1
p
)∫ 1

0
κn(1 – κ)α–n–1 �

([
κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

≤ 1
n!

∫ 1

0
κn(1 – κ)α–n–1Υ

([
κwp

1 + (1 – κ)wp
2
] 1

p
)
�

([
κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

+
1
n!

∫ 1

0
κn(1 – κ)α–n–1Υ

([
(1 – κ)wp

1 + κwp
2
] 1

p
)
�

([
κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ . (32)

Since � is nonnegative, integrable, and p-symmetric with respect to [ wp
1+wp

2
2 ]1/p, then

�
([

κwp
1 + (1 – κ)wp

2
] 1

p
)

= �
([

κwp
2 + (1 – κ)wp

1
] 1

p
)
.

Also choosing u = κwp
1 + (1 – κ)wp

2 leads to

2
n!(wp

2 – wp
1)α

Υ

([
wp

1 + wp
2

2

] 1
p
)∫ wp

2

wp
1

(
wp

2 – u
)n(u – wp

1
)α–n–1 �

(
u

1
p
)

du

≤ 1
n!(wp

2 – wp
1)α

[∫ wp
2

wp
1

(
wp

2 – u
)n(u – wp

1
)α–n–1

Υ
(
u

1
p
)
�

(
u

1
p
)

du

+
∫ wp

2

wp
1

(
wp

2 – u
)n(u – wp

1
)α–n–1

Υ
([

wp
1 + wp

2 – u
] 1

p
)
�

(
u

1
p
)

du
]
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=
1

n!(wp
2 – wp

1)α

[∫ wp
2

wp
1

(
wp

2 – u
)n(u – wp

1
)α–n–1

Υ
(
u

1
p
)
�

(
u

1
p
)

du

+
∫ wp

2

wp
1

(
u – wp

1
)n(wp

2 – u
)α–n–1

Υ
(
u

1
p
)
�

([
wp

1 + wp
2 – u

] 1
p
)

du
]

. (33)

Therefore, by Lemma 3.1 we have

1
(wp

2 – wp
1)α

Υ

([
wp

1 + wp
2

2

] 1
p
)[

Jwp
1

α (� ◦ φ)
(
bp) + wp

2 Jα(� ◦ φ)
(
wp

1
)]

≤ 1
(wp

2 – wp
1)α

[
Jwp

1
α

(
Υ (� ◦ φ)

)(
wp

2
)

+ wp
2 Jα

(
Υ (� ◦ φ)

)(
wp

1
)]

. (34)

This completes the first inequality of (29). For the second inequality, we first note that if
Υ is a p-convex function, then we have

Υ
([

κwp
1 + (1 – κ)wp

2
] 1

p
)

+ Υ
([

κwp
2 + (1 – κ)wp

1
] 1

p
) ≤ [

Υ (w1) + Υ (w2)
]
. (35)

Multiplying (35) by 1
n!κ

n(1 – κ)α–n–1 � ([κwp
1 + (1 – κ)wp

2]
1
p ) on both sides, α > 0 and then

integrating about κ over [0, 1], we obtain

1
n!

∫ 1

0
κn(1 – κ)α–n–1Υ

([
κ

p
1 + (1 – κ)wp

2
] 1

p
)
�

([
κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

+
1
n!

∫ 1

0
κn(1 – κ)α–n–1Υ

([
κwp

2 + (1 – κ)wp
1
] 1

p
)
�

([
κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ

≤ [
Υ (w1) + Υ (w2)

] 1
n!

∫ 1

0
κn(1 – κ)α–n–1 �

([
κwp

1 + (1 – κ)wp
2
] 1

p
)

dκ . (36)

That is,

1
(wp

2 – wp
1)α

[
Jwp

1
α

(
Υ (� ◦ φ)

)(
wp

2
)

+ wp
2 Jα

(
Υ (� ◦ φ)

)(
wp

1
)]

≤ 1
(wp

2 – wp
1)α

[
Υ (w1) + Υ (w2)

2

][
Jwp

1
α (� ◦ φ)

(
wp

2
)

+ wp
2 Jα(� ◦ φ)

(
wp

1
)]

. (37)

This completes the proof.
(ii) Proof is similar to that of (i). �

Remark 3.2 In Theorem 3.2:
1. If α = n + 1, we obtain Theorem 9 in [16].
2. If α = n + 1 and p = 1, we find Theorem 4 in [10].

Corollary 3.3 Under the assumptions of Theorem 3.2:
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1. If p = 1, then

Υ

(
w1 + w2

2

)[
Jw1
α � (w2) + w2 Jα � (w1)

]

≤ [
Jw1
α (Υ�)(w2) + w2 Jα(Υ�)(w1)

]

≤ Υ (w1) + Υ (w2)
2

[
Jw1
α � (w2) + w2 Jα � (w1)

]
. (38)

2. If p = –1, then

Υ

(
2w1w2

w1 + w2

)[1/w1 Jα(� ◦ φ)(1/w2) + J1/w2
α (� ◦ φ)(1/w1)

]

≤ [1/w1 Jα
(
Υ (� ◦ φ)

)
(1/w2) + J1/w2

α

(
Υ (� ◦ φ)

)
(1/w1)

]

≤ Υ (w1) + Υ (w2)
2

[1/w1 Jα(� ◦ φ)(1/w2) + J1/w2
α (� ◦ φ)(1/w1)

]
. (39)

Remark 3.3 In Corollary 3.3(1), if we take α = n + 1, we get inequality (3).

Lemma 3.2 Let p ∈ R \ {0} and α > 0. Let Υ : [w1, w2] ⊂ (0,∞) → R be a differentiable
mapping and Υ ∈ L[w1, w2]. If � : [w1, w2] ⊆ R \ {0} → R is nonnegative, integrable, and
p-symmetric around [ wp

1+wp
2

2 ]1/p, then
(i) for p > 0, the following inequality holds:

Υ (w1) + Υ (w2)
2

[
Jwp

1
α (� ◦ φ)

(
wp

2
)

+ wp
2 Jα(� ◦ φ)

(
wp

1
)]

–
[
Jwp

1
α

(
Υ (� ◦ φ)

)(
wp

2
)

+ wp
2 Jα

(
Υ (� ◦ φ)

)(
wp

1
)]

≤ 1
n!

∫ wp
2

wp
1

[∫ t

wp
1

(
wp

2 – s
)n(s – wp

1
)α–n–1(� ◦ φ)(s) ds

–
∫ wp

2

t

(
s – wp

1
)n(wp

2 – s
)α–n–1(� ◦ φ)(s) ds

]
(Υ ◦ φ)′(t) dt, (40)

where φ(x) = x1/p for all x ∈ [wp
1, wp

2];
(ii) for p < 0, the following inequality holds:

Υ (w1) + Υ (w2)
2

[
Jwp

2
α (� ◦ φ)

(
wp

1
)

+ wp
1 Jα(� ◦ φ)

(
wp

2
)]

–
[
Jwp

2
α

(
Υ (� ◦ φ)

)(
wp

1
)

+ wp
1 Jα

(
Υ (� ◦ φ)

)(
wp

2
)]

≤ 1
n!

∫ wp
1

wp
2

[∫ t

wp
2

(
wp

1 – s
)n(s – wp

2
)α–n–1(� ◦ φ)(s) ds

–
∫ wp

1

t

(
s – wp

2
)n(wp

1 – s
)α–n–1(� ◦ φ)(s) ds

]
(Υ ◦ φ)′(t) dt, (41)

where φ(x) = x1/p for all x ∈ [wp
2, wp

1].
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Proof (i) Note that

I =
∫ wp

2

wp
1

(∫ t

wp
1

(
wp

2 – s
)n(s – wp

1
)α–n–1(� ◦ φ)(s) ds

)
(Υ ◦ φ)′(t) dt

–
∫ wp

2

wp
1

(∫ wp
2

t

(
s – wp

1
)n(wp

2 – s
)α–n–1(� ◦ φ)(s) ds

)
(Υ ◦ φ)′(t) dt

= I1 – I2. (42)

Integrating by parts and using Lemma 3.1, we get

I1 =
(∫ t

wp
1

(
wp

2 – s
)n(s – wp

1
)α–n–1(� ◦ φ)(s) ds

)
(Υ ◦ φ)(t)

∣
∣∣∣

wp
2

wp
1

–
∫ wp

2

wp
1

(
wp

2 – t
)n(t – wp

1
)α–n–1(� ◦ φ)(t)(Υ ◦ φ)(t) dt

= n!
[
(Υ ◦ φ)

(
wp

2
)
Jwp

1
α (� ◦ φ)

(
wp

2
)

– Jwp
1

α

(
Υ (� ◦ φ)

)(
wp

2
)]

= n!
[

(Υ ◦ φ)(wp
2)

2
{wp

2 Jα(� ◦ φ)
(
wp

1
)

+ Jwp
1

α (� ◦ φ)
(
wp

2
)}

– Jwp
1

α

(
Υ (� ◦ φ)

)(
wp

2
)]

. (43)

Similarly,

I2 =
(∫ wp

2

t

(
s – wp

1
)n(wp

2 – s
)α–n–1(� ◦ φ)(s) ds

)
(Υ ◦ φ)(t)

∣∣
∣∣

wp
2

wp
1

+
∫ wp

2

wp
1

(
t – wp

1
)n(wp

2 – t
)α–n–1(� ◦ φ)(t)(Υ ◦ φ)(t) dt

= n!
[
–(Υ ◦ φ)

(
wp

1
)wp

2 Jα(� ◦ φ)
(
wp

1
)

– wp
2 Jα

(
Υ (� ◦ φ)

)(
wp

1
)]

= n!
[

–(Υ ◦ φ)(wp
1)

2
{wp

2 Jα(� ◦ φ)
(
wp

1
)

+ Jwp
1

α (� ◦ φ)
(
wp

2
)}

+ wp
2 Jα

(
Υ (� ◦ φ)

)(
wp

1
)
]

. (44)

Thus from (43) and (44) we get

I = I1 – I2

= n!
[

Υ (w1) + Υ (w2)
2

[
Jwp

1
α (� ◦ φ)

(
wp

2
)

+ wp
2 Jα(� ◦ φ)

(
wp

1
)]

–
[
Jwp

1
α

(
Υ (� ◦ φ)

)(
wp

2
)

+ wp
2 Jα

(
Υ (� ◦ φ)

)(
wp

1
)]]

. (45)

Multiplying (45) by 1
n! , we obtain (40).

(ii) Proof is similar to that of (i). �

Remark 3.4 In Lemma 3.2:
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1. If we take α = n + 1, we get Lemma 2 in [16].
2. If we take α = n + 1 and p = 1, we get Lemma 4 in [10].

Lemma 3.2 also holds for convex functions and harmonically convex functions just by
taking p = 1 and p = –1, respectively. Also, from Lemma 3.2 we can establish more useful
results.
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