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Abstract
Let {fk}∞k=1 be a Fibonacci sequence with f1 = f2 = 1. In this paper, we find a simple
form gn such that

lim
n→∞

{( ∞∑
k=n

ak

)–1

– gn

}
= 0,

where ak = 1
f2k
, 1
fk fk+m

, or 1
f23k
. For example, we show that

lim
n→∞

{( ∞∑
k=n

1

f 23k

)–1

–
(
f 23n – f

2
3n–3 +

4
9
(–1)n

)}
= 0.
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1 Introduction
Last decade many mathematicians were interested in finding the formula for the integer
part of the reciprocal tails of the convergent series. Precisely, one can see the explicit value
of �(

∑∞
k=n ak)–1� when

∑∞
k=1 ak converges. This problem starts from the reciprocal sum of

Fibonacci numbers. Let f0 = 0, f1 = f2 = 1, and fn+2 = fn + fn+1 for any n ∈N. In [6], Ohtsuka
and Nakamura proved

⌊( ∞∑
k=n

1
fk

)–1⌋
=

⎧⎨
⎩

fn–2, n ≥ 2 is even;

fn–2 – 1, n ≥ 1 is odd,
(1.1)

and

⌊( ∞∑
k=n

1
f 2
k

)–1⌋
=

⎧⎨
⎩

fn–1fn – 1, n ≥ 2 is even;

fn–1fn, n ≥ 1 is odd,
(1.2)
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where �x� is the floor function. See more results for subsequences of Fibonacci numbers in
[11, 12], Pell numbers in [1, 13], and Mathieu series in [4]. Also, recently many interesting
results on special numbers have been obtained in [7–9]. The following natural question
on the asymptotic behavior can be raised.

Question Let
∑∞

k=1 ak be a convergent series. Can we find a suitable function gn such that

( ∞∑
k=n

ak

)–1

∼ gn?

Here the notation An ∼ Bn means that limn→∞(An – Bn) = 0.

In [3], we proved that

( ∞∑
k=n

1
fmk–�

)–1

∼ fmn–� – fm(n–1)–�

for any m ∈N and 0 ≤ � ≤ m – 1. In fact, we proved

fmn–� – fm(n–1)–� –
1
fn

<

( ∞∑
k=n

1
fmk–�

)–1

< fmn–� – fm(n–1)–� +
1
fn

.

In the special case when m = 1 and � = 0, the above equation is reduced to

lim
n→∞

{( ∞∑
k=n

1
fk

)–1

– fn–2

}
= 0.

In [3], we also proved the generalization of (1.1) as the following formula:

⌊( ∞∑
k=n

1
fmk–�

)–1⌋
=

⎧⎨
⎩

fmn–� – fm(n–1)–� – 1, m(n + 1) + � is even;

fmn–� – fm(n–1)–�, m(n + 1) + � is odd,

for any m ∈N and 0 ≤ � ≤ m – 1. One can see the results for the product of two Fibonacci
numbers in [5].

In this paper, we study the asymptotic behavior of the reciprocal sum of

f 2
k , fkfk+m, f 2

3k

for k, m ∈N. Precisely, we prove that

( ∞∑
k=n

1
fkfk+2�

)–1

∼ gn,�, � = 0, 1, 2, . . . ,

( ∞∑
k=n

1
fkfk+2�–1

)–1

∼ hn,�, � = 1, 2, 3, . . . ,
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where

gn,� := fn+�–1fn+� –
(
f 2
� + (–1)�

) (–1)n

3
,

hn,� := f 2
n+�–1 –

(
f�–1f� + (–1)�

) (–1)n

3
.

For the proof of our main theorem, we prove the following inequalities:
(i) gn,0 < (

∑∞
k=n

1
f 2
k

)–1 < gn,0 + cn for all n ≥ 1,

(ii) gn,� – cn < (
∑∞

k=n
1

fk fk+2�
)–1 ≤ gn,� for all � ≥ 1 and n ≥ 2� – 1,

(iii) hn,� – cn < (
∑∞

k=n
1

fk fk+2�–1
)–1 < hn,� for all � ≥ 1 and n ≥ 2� – 2.

Here cn = 1/fn. We believe that the conditions n ≥ 2� – 1 and n ≥ 2� – 2 can be removed.
However, it is enough to prove the inequalities for sufficiently large n for the study of
asymptotic behavior as n → ∞. As an application of the above results, we can obtain

⌊( ∞∑
k=n

1
fkfk+m

)–1⌋

for all m ∈N. For example, our formulas imply that

⌊( ∞∑
k=n

1
fkfk+8

)–1⌋
=

⎧⎨
⎩

fn+3fn+4 – 4, n is even;

fn+3fn+4 + 3, n is odd,

and

⌊( ∞∑
k=n

1
fkfk+7

)–1⌋
=

⎧⎨
⎩

f 2
n+3 – 3, n is even;

f 2
n+3 + 2, n is odd.

In the final section, we discuss the reciprocal sum of f 2
mk for m ≥ 2. If m = 3, then we

prove that

( ∞∑
k=n

1
f 2
3k

)–1

∼ g̃n,

where g̃n = f 2
3n – f 2

3n–3 + 4
9 (–1)n.

As in [3, 6], the following lemma plays an important role in proving the essential in-
equalities.

Lemma 1.1 ([6]) Let {an}∞n=1 and {bn}∞n=1 be sequences with limn→∞ an = 0. If an < bn + an+1

holds for any n ∈N, then

an <
∞∑

k=n

bk

holds for any n ∈N.

We use the following relation when we calculate Fibonacci numbers.
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Lemma 1.2 ([2], Catalan’s identity) For any n, k ∈N, we have

f 2
n = fn+kfn–k + (–1)n+kf 2

k .

The following lemma is useful when we get a lower bound of formulas containing Fi-
bonacci numbers. It comes from the identity

fm+n = fm–1fn + fmfn+1.

Lemma 1.3 For any m, n ∈ N, we have fm+n > fm+1fn.

Remark 1.4 The Fibonacci numbers fn can be written as the closed form by Binet’s formula
[10]

fn =
αn – βn

α – β
,

where α > β are two solutions of x2 – x – 1 = 0. The infinite sum
∑∞

k=1
1
fk

is known to be
irrational, but it is unknown whether

∑∞
k=1

1
f 2
k

is irrational or not.

2 Reciprocal sum of f 2
k

In [6], Ohtsuka and Nakamura proved the following inequalities:
(i) fn–1fn – 1 < (

∑∞
k=n

1
f 2
k

)–1 < fn–1fn, when n is even,

(ii) fn–1fn < (
∑∞

k=n
1
f 2
k

)–1 < fn–1fn + 1, when n is odd.
Now we will prove the inequalities which are sharper than (i) and (ii). In this section, let

gn = gn,0 = fn–1fn –
1
3

(–1)n.

In fact, gn can be written as

gn = fn–1fn –
1
3

(–1)n

=
{

fn–2fn+1 + (–1)n} –
1
3

(–1)n

= f 2
n – f 2

n–1 +
2
3

(–1)n. (2.1)

Theorem 2.1 For any n ∈N, we have

gn <

( ∞∑
k=n

1
f 2
k

)–1

< gn + cn,

where cn = 1/fn.

To prove Theorem 2.1, we need the following formula.

Proposition 2.2 For any n ∈N, we have

(gn+1 – gn)f 2
n – gngn+1 =

1
9

.
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Proof Note that

(gn+1 – gn)f 2
n =

{
fnfn+1 – fn–1fn +

2
3

(–1)n
}

f 2
n

= f 4
n +

2
3

(–1)nf 2
n .

By Catalan’s identity, we have

gngn+1 =
{

fn–1fn –
1
3

(–1)n
}{

fnfn+1 +
1
3

(–1)n
}

= f 2
n (fn+1fn–1) –

1
3

(–1)nfn(fn+1 – fn–1) –
1
9

= f 2
n
(
f 2
n + (–1)n) –

1
3

(–1)nf 2
n –

1
9

= f 4
n +

2
3

(–1)nf 2
n –

1
9

.

The desired result comes from the above two identities. �

Now we prove Theorem 2.1. By Proposition 2.2, we have

1
gn

–
1

gn+1
–

1
f 2
n

=
(gn+1 – gn)f 2

n – gngn+1

gngn+1f 2
n

=
1

9gngn+1f 2
n

> 0.

It follows that

1
gn

>
1
f 2
n

+
1

gn+1

for all n ∈N. By Lemma 1.1, we obtain

1
gn

>
∞∑

k=n

1
f 2
k

. (2.2)

For the proof of the converse inequality, we compute

1
gn + cn

–
1

gn+1 + cn+1
–

1
f 2
n

=
(gn+1 – gn) – (cn – cn+1)

(gn + cn)(gn+1 + cn+1)
–

1
f 2
n

<
gn+1 – gn

(gn + cn)(gn+1 + cn+1)
–

1
f 2
n

=
A

(gn + cn)(gn+1 + cn+1)f 2
n

,

where

A = (gn+1 – gn)f 2
n – (gn + cn)(gn+1 + cn+1).

By Proposition 2.2, we have

A =
1
9

– cngn+1 – cn+1gn – cncn+1 <
1
9

– cngn+1 < 0,
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Table 1 Some values of (
∑∞

k=n
1
f2k
)–1

n (
∑∞

k=n
1
f2k
)–1 f 2n – f 2n–1 n (

∑∞
k=n

1
f2k
)–1 f 2n – f 2n–1

3 2.3456 . . . 3 4 5.6714 . . . 5
5 15.3351 . . . 16 6 39.6673 . . . 39
7 104.3335 . . . 105 8 272.6667 . . . 272
9 714.3333 . . . 715 10 1869.6666 . . . 1869

since cngn+1 = fn+1 –
1
3 (–1)n+1

fn ≥ fn+1 – 1
3 ≥ 2

3 for all n ∈N. Thus we obtain

1
gn + cn

<
1
f 2
n

+
1

gn+1 + cn+1

for all n ∈N. By Lemma 1.1 again, we obtain

1
gn + cn

<
∞∑

k=n

1
f 2
k

. (2.3)

By (2.2) and (2.3), we complete the proof of Theorem 2.1.

Remark 2.3 The inequalities of Theorem 2.1 imply

lim
n→∞

{( ∞∑
k=n

1
f 2
k

)–1

– gn

}
= 0.

See Table 1.

3 Reciprocal sum of fkfk+m when m is even
In Sects. 3 and 4, we deal with the value of

( ∞∑
k=n

1
fkfk+m

)–1

.

In fact, we can compute the explicit value when m = 2. Note that

∞∑
k=n

1
fkfk+2

=
∞∑

k=n

(
1
fk

–
1

fk+2

)
1

fk+2 – fk

=
∞∑

k=n

(
1

fkfk+1
–

1
fk+1fk+2

)

=
1

fnfn+1
.

Hence it holds that, for all n ∈N,

( ∞∑
k=n

1
fkfk+2

)–1

= fnfn+1.
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However, it is difficult to find the explicit value of

( ∞∑
k=n

1
fkfk+m

)–1

except for m = 2.
Throughout this section, we assume that m is even, so that m = 2� for some � ∈ N. In

this case, we define

gn = gn,� = fn+�–1fn+� –
(
f 2
� + (–1)�

) (–1)n

3
.

For simplicity, we write I1 := f 2
� + (–1)�.

Proposition 3.1 For any n ∈N, we have

(gn+1 – gn)fnfn+2� – gngn+1 = –
5
9

I2
1 +

2
3

(–1)�I1.

Proof Write gn = fn+�–1fn+� – (–1)n

3 I1. Note that

(gn+1 – gn)fnfn+2�

=
{(

fn+�fn+�+1 +
(–1)n

3
I1

)
–

(
fn+�–1fn+� –

(–1)n

3
I1

)}
fnfn+2�

=
{

f 2
n+� +

2
3

(–1)nI1

}{
f 2
n+� – (–1)nf 2

�

}
.

Since f 2
� = I1 – (–1)�, we have

(gn+1 – gn)fnfn+2�

= f 4
n+� + (–1)n+�f 2

n+� –
(–1)n

3
I1f 2

n+� –
2
3

I2
1 +

2
3

(–1)�I1. (3.1)

Note that

gngn+1 =
(

fn+�–1fn+� –
(–1)n

3
I1

)(
fn+�fn+�+1 +

(–1)n

3
I1

)

= f 2
n+�fn+�–1fn+�+1 –

(–1)n

3
I1f 2

n+� –
1
9

I2
1 .

By Lemma 1.2, fn+�–1fn+�+1 = f 2
n+� + (–1)n+�. Thus we have

gngn+1 = f 4
n+� + (–1)n+�f 2

n+� –
(–1)n

3
I1f 2

n+� –
1
9

I2
1 . (3.2)

By (3.1) and (3.2), we complete the proof. �

See Table 2. If m = 4, then gn,2 = fn+1fn+2 – 2
3 (–1)n.
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Table 2 Some values of (
∑∞

k=n
1

fk fk+4
)–1

n (
∑∞

k=n
1

fk fk+4
)–1 gn,2 n (

∑∞
k=n

1
fk fk+4

)–1 gn,2

3 15.6521 . . . 15.6666 4 39.3277 . . . 39.3333
5 104.6645 . . . 104.6666 6 272.3325 . . . 272.3333
7 714.6663 . . . 714.6666 8 1869.3332 . . . 1869.3333
9 4895.6666 . . . 4895.6666 10 12,815.3333 . . . 12,815.3333

Theorem 3.2 If m = 2� for some � ∈N, then for any n ≥ 2� – 1, we have

gn – cn <

( ∞∑
k=n

1
fkfk+m

)–1

≤ gn,

where cn = 1/fn.

For example, if � = 4, then gn = fn+3fn+4 – 10(–1)n

3 . Thus we have

⌊( ∞∑
k=n

1
fkfk+8

)–1⌋
=

⎧⎨
⎩

fn+3fn+4 – 4, n is even;

fn+3fn+4 + 3, n is odd.

Proof (i) By Lemma 1.1, it is enough to show that

1
gn

≤ 1
fnfn+2�

+
1

gn+1
(3.3)

for all n ∈N. By Proposition 3.1, we have

(gn+1 – gn)fnfn+2� – gngn+1 = –
5
9

I2
1 +

2
3

(–1)�I1

= –
I1

9
(
5I1 – 6(–1)�

)

= –
I1

9
(
5f 2

� – (–1)�
) ≤ 0.

It follows that

1
gn

–
1

gn+1
–

1
fnfn+2�

=
(gn+1 – gn)fnfn+2� – gngn+1

gngn+2fnfn+2�

≤ 0,

which implies (3.3). In fact, the equality holds only when � = 1. This is the case when m = 2.
(ii) By Lemma 1.1, it is enough to show that

1
gn – cn

>
1

fnfn+2�

+
1

gn+1 – cn+1

for all n ∈N. Note that

1
gn – cn

–
1

gn+1 – cn+1
–

1
fnfn+2�

=
(gn+1 – gn) + (cn – cn+1)

(gn – cn)(gn+1 – cn+1)
–

1
fnfn+2�
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>
gn+1 – gn

(gn – cn)(gn+1 – cn+1)
–

1
fnfn+2�

=
(gn+1 – gn)fnfn+2� – (gn – cn)(gn+1 – cn+1)

(gn – cn)(gn+1 – cn+1)fnfn+2�

.

Now we will show that, for n ≥ 2� – 1, we have

(gn+1 – gn)fnfn+2� – (gn – cn)(gn+1 – cn+1) > 0.

Note that

(gn+1 – gn)fnfn+2� – (gn – cn)(gn+1 – cn+1)

=
{

(gn+1 – gn)fnfn+2� – gngn+1
}

+ {cngn+1 + cn+1gn – cncn+1}.

By Proposition 3.1, we have

(gn+1 – gn)fnfn+2� – gngn+1 = –
5
9

I2
1 +

2
3

(–1)�I1

= –
5
9

f 4
� –

4
9

(–1)�f 2
� +

1
9

> –
5
9

f 4
� –

4
9

f 2
� +

1
9

. (3.4)

By Lemma 1.3, we have

cngn+1 + cn+1gn – cncn+1

=
fn+�fn+�+1

fn
+

fn+�–1fn+�

fn+1
+

(–1)n

3

(
1
fn

–
1

fn+1

)
I1 –

1
fnfn+1

> f�+1fn+�+1 + f�fn+�–1 –
1
3

I1 – 1

> f�(fn+�+1 + fn+�–1) –
1
3

I1 – 1

> f 4
� (fn–2�+4 + fn–2�+2) –

1
3

I1 – 1.

If n ≥ 2� – 1, then fn–2�+4 + fn–2�+2 ≥ f3 + f1 = 3. Thus, we have

cngn+1 + cn+1gn – cncn+1 > 3f 4
� –

1
3

I1 – 1 > 3f 4
� –

1
3

f 2
� –

4
3

(3.5)

for n ≥ 2� – 1. From (3.4) and (3.5), we obtain

(gn+1 – gn)fnfn+2� – (gn – cn)(gn+1 – cn+1) >
22
9

f 4
� –

7
9

f 2
� –

11
9

≥ 4
9

> 0,

since f� ≥ 1. �

Remark 3.3 If � = 0, then I1 = f 2
0 + 1 = 1. Thus in the proof of Theorem 3.2 we have

(gn+1 – gn)fnfn+2� – gngn+1 = –
I1

9
(
5f 2

� – (–1)�
)

=
1
9

> 0.
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In fact, this is an identity in Proposition 2.2. Thus the inequality in Theorem 3.2 is opposite
to Theorem 2.1.

4 Reciprocal sum of fkfk+m when m is odd
Throughout this section, we assume that m is odd, so that m = 2� – 1 for some � ∈ N. In
this case, we define

hn = hn,� = f 2
n+�–1 –

(
f�–1f� + (–1)�

) (–1)n

3
.

For simplicity, we write I2 := f�–1f� + (–1)�.

Proposition 4.1 For any n ∈N, we have

(hn+1 – hn)fnfn+2�–1 – hnhn+1 = –1 +
4
3

(–1)�I2 –
5
9

I2
2 .

Proof By Catalan’s identity, we have

fnfn+2�–1 = fn(fn+2� – fn+2�–2)

= fnfn+2� – fnfn+2�–2

=
(
f 2
n+� – (–1)nf 2

�

)
–

(
f 2
n+�–1 – (–1)nf 2

�–1
)

= fn+�+1fn+�–2 – (–1)nf�+1f�–2.

Note that

(hn+1 – hn)fnfn+2�–1

=
{(

f 2
n+� – f 2

n+�–1
)

+
2
3

(–1)nI2

}
fnfn+2�–1

=
{

fn+�+1fn+�–2 +
2
3

(–1)nI2

}{
fn+�+1fn+�–2 – (–1)nf�+1f�–2

}

= (fn+�+1fn+�–2)2 + fn+�+1fn+�–2(–1)n
{

2
3

I2 – f�+1f�–2

}
–

2
3

f�+1f�–2I2.

Note that

hnhn+1 =
{

f 2
n+�–1 –

(–1)n

3
I2

}{
f 2
n+� +

(–1)n

3
I2

}

= (fn+�–1fn+�)2 –
(
f 2
n+� – f 2

n+�–1
) (–1)n

3
I2 –

1
9

I2
2

= (fn+�–1fn+�)2 – fn+�+1fn+�–2
(–1)n

3
I2 –

1
9

I2
2 .

It follows that

(hn+1 – hn)fnfn+2�–1 – hnhn+1 = (fn+�+1fn+�–2)2 – (fn+�–1fn+�)2

+ fn+�+1fn+�–2(–1)n{I2 – f�+1f�–2}

–
2
3

f�+1f�–2I2 +
1
9

I2
2 .
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Table 3 Some values of (
∑∞

k=n
1

fk fk+5
)–1

n (
∑∞

k=n
1

fk fk+5
)–1 hn,3 n (

∑∞
k=n

1
fk fk+5

)–1 hn,3

3 25.3042 . . . 25.3333 . . . 4 63.6554 . . . 63.6666 . . .
5 169.3290 . . . 169.3333 . . . 6 440.6650 . . . 440.6666 . . .
7 1156.3327 . . . 1156.3333 . . . 8 3024.6664 . . . 3024.6666 . . .
9 7921.3332 . . . 7921.3333 . . . 10 20,735.6666 . . . 20,735.6666 . . .

Since fn+�–1fn+� = fn+�+1fn+�–2 + (–1)n+�, we have

(fn+�+1fn+�–2)2 – (fn+�–1fn+�)2

= (fn+�+1fn+�–2 + fn+�–1fn+�)(fn+�+1fn+�–2 – fn+�–1fn+�)

= –1 – 2(–1)n+�fn+�+1fn+�–2.

Since I2 – f�+1f�–2 = f�–1f� – f�+1f�–2 + (–1)� = 2(–1)�,

(hn+1 – hn)fnfn+2�–1 – hnhn+1

= –1 – 2(–1)n+�fn+�+1fn+�–2

+ fn+�+1fn+�–2(–1)n{2(–1)�
}

–
2
3

f�+1f�–2I2 +
1
9

I2
2

= –1 –
2
3
(
I2 – 2(–1)�

)
I2 +

1
9

I2
2

= –1 +
4
3

(–1)�I2 –
5
9

I2
2 . �

See Table 3. If m = 5, then hn,3 = f 2
n+2 – 1

3 (–1)n.

Theorem 4.2 If m = 2� – 1, then for any n ≥ 2� – 2, we have

hn – cn <

( ∞∑
k=n

1
fkfk+m

)–1

< hn,

where cn = 1/fn.

For example, if � = 4, then hn = f 2
n+3 – 7(–1)n

3 . Thus we have

⌊( ∞∑
k=n

1
fkfk+7

)–1⌋
=

⎧⎨
⎩

f 2
n+3 – 3, n is even;

f 2
n+3 + 2, n is odd.

Proof (i) We will show that

1
hn

<
1

fnfn+2�–1
+

1
hn+1

.

Note that

1
hn

–
1

hn+1
–

1
fnfn+2�–1

=
(hn+1 – hn)fnfn+2�–1 – hnhn+1

hnhn+1fnfn+2�–1
.
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By Proposition 4.1, we have

(hn+1 – hn)fnfn+2�–1 – hnhn+1 = – 1 +
4
3

(–1)�I2 –
5
9

I2
2

= –
5
9

(f�–1f�)2 +
2
9

(–1)�(f�–1f�) –
2
9

≤ –
5
9

(f�–1f�)2 +
2
9

(f�–1f�) –
2
9

< –
5
9

< 0.

(ii) We will show that

1
hn – cn

>
1

fnfn+2�–1
+

1
hn+1 – cn+1

.

Note that

1
hn – cn

–
1

hn+1 – cn+1
–

1
fnfn+2�–1

=
hn+1 – hn + (cn – cn+1)
(hn – cn)(hn+1 – cn+1)

–
1

fnfn+2�–1

>
hn+1 – hn

(hn – cn)(hn+1 – cn+1)
–

1
fnfn+2�–1

=
(hn+1 – hn)fnfn+2�–1 – (hn – cn)(hn+1 – cn+1)

(hn – cn)(hn+1 – cn+1)fnfn+2�–1
.

It is enough to show that

(hn+1 – hn)fnfn+2�–1 – (hn – cn)(hn+1 – cn+1) > 0.

Note that

(hn+1 – hn)fnfn+2�–1 – (hn – cn)(hn+1 – cn+1)

=
{

(hn+1 – hn)fnfn+2�–1 – hnhn+1
}

+ {cnhn+1 + cn+1hn – cncn+1}.

By Proposition 4.1, we have

(hn+1 – hn)fnfn+2�–1 – hnhn+1 = –1 +
4
3

(–1)�I2 –
5
9

I2
2

= –
5
9

(f�–1f�)2 +
2
9

(–1)�(f�–1f�) –
2
9

≥ –
5
9

(f�–1f�)2 –
2
9

(f�–1f�) –
2
9

.

Note that

cnhn+1 + cn+1hn – cncn+1

=
f 2
n+�

fn
+

f 2
n+�–1
fn+1

+
(–1)n

3
I2

(
1
fn

–
1

fn+1

)
–

1
fnfn+1
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> f�+1fn+� + f�–1fn+�–1 –
1
3

I2 – 1

> f�–1(fn+� + fn+�–1) –
1
3

I2 – 1

> (f�–1f�)2(fn–2�+5 + fn–2�+4) –
1
3

I2 – 1.

If n ≥ 2� – 2, then fn–2�+5 + fn–2�+4 ≥ f3 + f2 = 3. It follows that

cnhn+1 + cn+1hn – cncn+1 > 3(f�–1f�)2 –
1
3

(f�–1f�) –
4
3

.

Thus we have

(hn+1 – hn)fnfn+2�–1 – (hn – cn)(hn+1 – cn+1)

>
22
9

(f�–1f�)2 –
5
9

(f�–1f�) –
14
9

≥ 1
3

> 0. �

5 Reciprocal sum of f 2
3k

In this final section, we discuss the reciprocal sum of f 2
mk for any m ≥ 2. Similar to (2.1),

when m = 1, we expected to find a suitable constant Cm > 0 such that
( ∞∑

k=n

1
f 2
mk

)–1

∼ f 2
mn – f 2

m(n–1) + (–1)mnCm. (5.1)

In Sect. 2, we proved that C1 = 2
3 . The integer part when m = 3 has been obtained as fol-

lows.

Theorem 5.1 ([5])

⌊( ∞∑
k=n

1
f 2
3k

)–1⌋
=

⎧⎨
⎩

f 2
3n – f 2

3n–3, n is even;

f 2
3n – f 2

3n–3 – 1, n is odd.
(5.2)

Now we prove that C3 = 4
9 . See Table 4. Here

g̃n := f 2
3n – f 2

3n–3 +
4
9

(–1)n.

Our theorem contains more optimal inequality than (5.2).

Theorem 5.2 For all n ∈ N, we have

g̃n <

( ∞∑
k=n

1
f 2
3k

)–1

< g̃n + cn,

Table 4 Some values of (
∑∞

k=n
1
f23k
)–1

n (
∑∞

k=n
1
f23k

)–1 g̃n n (
∑∞

k=n
1
f23k

)–1 g̃n

3 1091.5561 . . . 1091.5555 . . . 4 19,580.44447 . . . 19,580.44444 . . .
5 351,363.555557 . . . 351,363.555555 . . . 6 6,304,956.4444445 . . . 6,304,956.4444444 . . .
7 113,137,859.555555 . . . 113,137,859.555555 . . .
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where g̃n := f 2
3n – f 2

3n–3 + 4
9 (–1)n. Thus we have

( ∞∑
k=n

1
f 2
3k

)–1

∼ f 2
3n – f 2

3n–3 +
4
9

(–1)n.

Lemma 5.3 For any n ≥ 1, we have

f 2
3n+3 – 18f 2

3n + f 2
3n–3 = 8(–1)n.

Proof Since f3n+2 + f3n–2 = 3f3n, we have

f3n+3 = f3n+2 + f3n + f3n–1

= f3n+2 + f3n + f3n–2 + f3n–3

= 4f3n + f3n–3.

It follows that

16f 2
3n = (f3n+3 – f3n–3)2

= f 2
3n+3 + f 2

3n–3 – 2f3n+3f3n–3

= f 2
3n+3 + f 2

3n–3 – 2
{

f 2
3n + (–1)nf 2

3
}

,

which completes the proof. �

Proof (i) We will show that

1
g̃n

>
1

f 2
3n

+
1

g̃n+1
.

Note that

1
g̃n

–
1

g̃n+1
–

1
f 2
3n

=
A

g̃ñgn+1f 2
3n

,

where A := (̃gn+1 – g̃n)f 2
3n – g̃ñgn+1. It is enough to show that A > 0.

Note that

(̃gn+1 – g̃n)f 2
3n = f 2

3n+3f 2
3n – 2f 4

3n + f 2
3n–3f 2

3n –
8
9

(–1)nf 2
3n.

Note also that

g̃ñgn+1 =
(

f 2
3n – f 2

3n–3 +
4
9

(–1)n
)(

f 2
3n+3 – f 2

3n –
4
9

(–1)n
)

= f 2
3nf 2

3n+3 – f 4
3n – f 2

3n–3f 2
3n+3 + f 2

3n–3f 2
3n –

16
81

+
4
9

(–1)n(f 2
3n+3 – 2f 2

3n + f 2
3n–3

)
.
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It follows that

A = f 2
3n–3f 2

3n+3 – f 4
3n –

4
9

(–1)n{f 2
3n+3 + f 2

3n–3
}

+
16
81

=
(
f 2
3n + (–1)nf 2

3
)2 – f 4

3n –
4
9

(–1)n{f 2
3n+3 + f 2

3n–3
}

+
16
81

= –
4
9

(–1)n{f 2
3n+3 – 18f 2

3n + f 2
3n–3

}
+

1312
81

.

By Lemma 5.3, we have

A =
1024

81
. (5.3)

(ii) We will prove that

1
g̃n + cn

<
1

f 2
3n

+
1

g̃n+1 + cn+1
.

Note that

1
g̃n + cn

–
1

g̃n+1 + cn+1
–

1
f 2
3n

=
(̃gn+1 – g̃n) – (cn – cn+1)

(̃gn + cn)(̃gn+1 + cn+1)
–

1
f 2
3n

<
g̃n+1 – g̃n

(̃gn + cn)(̃gn+1 + cn+1)
–

1
f 2
3n

=
B

(̃gn + cn)(̃gn+1 + cn+1)f 2
3n

,

where B = (̃gn+1 – g̃n)f 2
3n – (̃gn + cn)(̃gn+1 + cn+1). Now it is enough to show that B < 0.

By using (5.3), we have

B = A – cñgn+1 – cn+1̃gn – cncn+1 <
1024

81
– cñgn+1.

Note that

cñgn+1 =
f 2
3n+3 – f 2

3n – 4
9 (–1)n

fn

>
(f3n+3 + f3n)(f3n+3 – f3n)

fn
–

4
9

=
(f3n+3 + f3n)(f3n+2 + f3n–1)

fn
–

4
9

> 2(f3n+3 + f3n) – 1 ≥ 19.

It follows that B < 0. �

Remark 5.4 It looks not easy to find the explicit values of Cm satisfying (5.1) except for
m = 1, 3. By using a computer software program (Maple17 and wolframalpha.com), we
found the following. If m is even, then

C2 ∼ 0.298130320 . . . ,

http://wolframalpha.com
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C4 ∼ 0.383325938 . . . ,

C6 ∼ 0.397523195 . . . ,

C8 ∼ 0.399637681 . . . .

If m is odd, then

C5 ∼ 0.406504065 . . . ,

C7 ∼ 0.400948991 . . . ,

C9 ∼ 0.400138456 . . . .

We might expect that Cm tends to 2
5 as n → ∞.

6 Conclusion
We summarize all the results that have been proved in this paper.

(i) (
∑∞

k=n
1
f 2
k

)–1 ∼ f 2
n – f 2

n–1 + 2
3 (–1)n as n → ∞,

(ii) (
∑∞

k=n
1

fk fk+2�
)–1 ∼ fn+�–1fn+� – (f 2

� + (–1)�) (–1)n

3 as n → ∞,
(iii) (

∑∞
k=n

1
fk fk+2�–1

)–1 ∼ f 2
n+�–1 – (f�–1f� + (–1)�) (–1)n

3 as n → ∞,
(iv) (

∑∞
k=n

1
f 2
3k

)–1 ∼ f 2
3n – f 2

3n–3 + 4
9 (–1)n as n → ∞.
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