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1 Introduction
Let a, b > 0 and λ ∈ [0, 1] be real numbers. The following expressions

a∇λb = (1 – λ)a + λb, a!λb =
(
a–1∇λb–1)–1, a�λb = a1–λbλ (1.1)

are known in the literature as the λ-weighted arithmetic mean, the λ-weighted harmonic
mean, and the λ-weighted geometric mean, respectively. For λ = 1/2, they are simply de-
noted by a∇b, a!b, and a�b, respectively. In the recent few years, these means have received
extensive attention which led to several developments and interesting applications, see
[1–3, 5, 7, 10, 13, 16–19].

The previous weighted means satisfy the following inequalities:

a!λb ≤ a�λb ≤ a∇λb (1.2)

known as the weighted arithmetic–geometric–harmonic mean inequality. Some refine-
ments and reverses of (1.2) have been discussed in the literature. In particular, the follow-
ing result has been proved in [10, 13]:

2rλ(a∇b – a�b) ≤ a∇λb – a�λb ≤ 2(1 – rλ)(a∇b – a�b), (1.3)
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where we set

rλ := min(λ, 1 – λ). (1.4)

Another weighted mean, known as the Heinz mean, is defined by

HZλ(a, b) =
a1–λbλ + aλb1–λ

2
. (1.5)

As it is well known, HZλ(a, b) interpolates the arithmetic mean and the geometric mean
in the sense that the inequality

a�b ≤ HZλ(a, b) ≤ a∇b (1.6)

holds for any a, b > 0.
A refinement and reverse of the right inequality in (1.6) have been recently obtained in

the literature, see [12, 13], for instance,

a∇b –
1
2
λ(1 – λ)(b – a) log(b/a) ≤ HZλ(a, b) ≤ a∇b – 2λ(1 – λ)(

√
a –

√
b)2. (1.7)

Other reversed and refined versions of the same inequality can be found in [11, 12].
The extension of the previous means, from the case where the variables are positive real

numbers to the case where the arguments are positive operators, has been investigated in
the literature. Let H be a complex Hilbert space and letB(H) be the C∗-algebra of bounded
linear operators acting on H . We denote by B+∗(H) the open cone of all (self-adjoint) in-
vertible positive operators in B(H). For A, B ∈ B+∗(H), the following expressions:

A∇λB := (1 – λ)A + λB = B∇1–λA,

A!λB :=
(
(1 – λ)A–1 + λB–1)–1 = B!1–λA,

A�λB := A1/2(A–1/2BA–1/2)λA1/2 = B�1–λA

are known in the literature as the λ-weighted arithmetic operator mean, the λ-weighted
harmonic operator mean, and the λ-weighted geometric operator mean of A and B, re-
spectively. For λ = 1/2, they are simply denoted by A∇B, A!B, and A�B, respectively. These
operator means satisfy the following inequality:

A!λB ≤ A�λB ≤ A∇λB, (1.8)

which is the operator version of (1.2). Here, the notation ≤ stands for the Löwner partial
order defined as follows: T ≤ S if and only if T and S are self-adjoint and S – T is positive.

An operator version of (1.3) has been established in [10] and reads as follows:

2rλ(A∇B – A�B) ≤ A∇λB – A�λB ≤ 2(1 – rλ)(A∇B – A�B), (1.9)

where rλ is defined by (1.4).
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By analogy with the scalar case, the Heinz operator mean is defined by

HZλ(A, B) =
A�λB + A�1–λB

2
. (1.10)

We also have the following operator inequalities extending (1.6):

A�B ≤ HZλ(A, B) ≤ A∇B. (1.11)

In fact, according to the Kubo–Ando theory [14], (1.9) and (1.11) can be immediately
deduced from (1.3) and (1.6), respectively. For more inequalities related to the Heinz mean
involving matrix/operator arguments, we refer the reader to [4, 8, 9, 11, 15, 24] and the
related references cited therein.

2 Functional means
The previous operator means have been extended from the case where the variables are
invertible positive operators to the case that the variables are convex functionals, see [21,
22]. To explain this, we need to recall some basic notions from convex analysis. Let f :
H → R ∪ {+∞} be a given functional. The notation dom f refers to the effective domain
of f defined by

dom f =
{

x ∈ H , f (x) < +∞}
,

while f ∗ stands for the Fenchel conjugate of f defined through

∀x∗ ∈ H , f ∗(x∗) = sup
x∈H

{�e
〈
x∗, x

〉
– f (x)

}
. (2.1)

The subdifferential ∂f (x) of f at x ∈ dom f is the (possibly empty) subset of H defined by

x∗ ∈ ∂f (x) ⇐⇒ ∀y ∈ H , f (y) ≥ f (x) + �e
〈
x∗, y – x

〉
,

and it is well known that

x∗ ∈ ∂f (x) ⇐⇒ �e
〈
x∗, x

〉
= f ∗(x∗) + f (x). (2.2)

Henceforth, and by virtue of the definition of the subdifferential, whenever we write ∂f (x)
it will be assumed that x ∈ dom f .

Let us denote by Γ0(H) the cone of all functionals f : H → R ∪ {+∞} which are convex
lower semicontinuous and not identically equal to +∞. It is well known that f ∈ Γ0(H)
if and only if f ∗∗ := (f ∗)∗ = f and, if f ∈ Γ0(H) then x∗ ∈ ∂f (x) if and only if x ∈ ∂f ∗(x∗).
If we denote by int(dom f ) the topological interior of dom f , we recall that if f ∈ Γ0(H)
and int(dom f ) is nonempty then for all x ∈ int(dom f ), f is continuous at x and ∂f (x) is
nonempty.

The following example, which will be needed in the sequel, explains the previous notions
in more detail.
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Example 2.1 Let A ∈ B(H) be a self-adjoint operator. Usually, we denote by fA the
quadratic form generated by the operator A, i.e.,

∀x ∈ H , fA(x) =
1
2
〈Ax, x〉.

Such functional fA enjoys the following properties:
(i) Let A, B ∈ B(H) be self-adjoint. For any α,β ∈R we have αfA + βfB = fαA+βB. Further,

it is clear that fA ≤ fB if and only if A ≤ B. If, moreover, A is positive then fA ∈ Γ0(H)
and ∂fA(x) = {Ax} for any x ∈ H .

(ii) If A ∈ B+∗(H) then we have

∀x ∈ H , f ∗
A (x) =

1
2
〈
A–1x, x

〉
,

which can be written as f ∗
A = fA–1 .

Throughout this paper, we use the following notation

D(H) =
{

(f , g) ∈ Γ0(H) × Γ0(H) : dom f ∩ dom g �= ∅ and dom f ∗ ∩ dom g∗ �= ∅}
.

Now, let (f , g) ∈D(H) and λ ∈ (0, 1). The following expressions:

Aλ(f , g) := (1 – λ)f + λg, (2.3)

Hλ(f , g) :=
(
(1 – λ)f ∗ + λg∗)∗, (2.4)

Gλ(f , g) :=
sin(λπ )

π

∫ 1

0

tλ–1

(1 – t)λ
Ht(f , g) dt (2.5)

are called (by analogy) the λ-weighted functional arithmetic mean, the λ-weighted func-
tional harmonic mean, and the λ-weighted functional geometric mean of f and g , respec-
tively. For λ = 1/2, they are simply denoted by A(f , g), H(f , g), and G(f , g), respectively. We
also have the following double inequality:

Hλ(f , g) ≤ Gλ(f , g) ≤Aλ(f , g), (2.6)

known, by analogy, as the weighted arithmetic–geometric–harmonic functional mean in-
equality. Here, the symbol ≤ refers to the pointwise order defined as follows: f ≤ g if and
only if f (x) ≤ g(x) for all x ∈ H .

We can extend the previous functional means on the whole interval [0, 1] by setting

A0(f , g) = G0(f , g) = H0(f , g) = f , A1(f , g) = G1(f , g) = H1(f , g) = g. (2.7)

For all (f , g) ∈D(H) and λ ∈ [0, 1] we introduce the following expression [23]:

HZλ(f , g) =
1
2
(
Gλ(f , g) + G1–λ(f , g)

)
(2.8)

which is the Heinz functional mean of f and g . It is clear that HZλ(f , g) is symmet-
ric in f and g and HZλ(f , g) = HZ1–λ(f , g). Further, HZ0(f , g) = HZ1(f , g) = A(f , g) and
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HZ1/2(f , g) = G(f , g). Otherwise, from (2.6) and (2.8) we can check that the inequality

HZλ(f , g)(x) ≤A(f , g)(x) (2.9)

holds for any λ ∈ [0, 1] and x ∈ H .
The following remark may be of interest for the reader.

Remark 2.1 We notice that the mentioned functionals can take the value +∞. For this, we
observe the following:

(i) The equalities (2.7) cannot be deduced from (2.3), (2.4) and (2.5), respectively. This
is because the involved functionals can take the value +∞, with the convention
0 · (+∞) = (+∞) – (+∞) = (+∞) + (–∞) := +∞, as is usual in convex analysis.

(ii) The functional inequality (2.9) can be easily proved, but with some precautions.
These precautions should be taken in consideration in the proof of any functional
equality or inequality. This latter point is explained in the following items.

(iii) For instance, the equality f – f = 0 is not always true for any f : H →R∪ {+∞} by
virtue of the same reason as in (i). Precisely, we have f – f = Ψdom f for any
f : H →R∪ {+∞}, where the notation ΨC refers to the indicator function of the
subset C of H defined as ΨC(z) = 0 if z ∈ C and ΨC(z) = +∞ if z /∈ C.

(iv) Similarly, the equality f – g = –(g – f ) is not always true, unless f or g is everywhere
finite. For the same reason, the functional inequality f ≤ g is equivalent to g – f ≥ 0
but it is not equivalent to f – g ≤ 0.

Clearly, Aλ(f , f ) = f for any f : H →R∪ {+∞}. Indeed, when f ∈ Γ0(H) then f ∗∗ = f and
so the previous functional means satisfy the following relations:

Hλ(f , f ) = Gλ(f , f ) = HZλ(f , f ) = f .

Further, all the previous functional means are respectively extensions of their related op-
erator means in the following sense:

Aλ(fA, fB) = fA∇λB, Hλ(fA, fB) = fA!λB,

Gλ(fA, fB) = fA�λB, HZλ(fA, fB) = fHZλ(A,B),
(2.10)

where the notation fA (resp. fB) was defined in Example 2.1. With this, (1.8) is an immediate
consequence of (2.6); see [21, 22], for instance.

The main goal of this paper is to give some refined and reversed inequalities between the
weighted arithmetic mean and the weighted geometric mean involving convex function-
als. We also obtain some refinements and reverses of (1.11) when the operator variables
A and B are replaced by convex functionals. As applications, we obtain some refinements
and reverses for some inequalities involving the relative entropy and the Tsallis entropy
with operator or functional arguments.

3 Some needed results
Before stating our main results, we need to recall the following lemmas.
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Lemma 3.1 ([21]) Let (f , g) ∈D(H). For each t, s ∈ (0, 1), the following inequalities:

rt,s
(
As(f , g)(x) – Hs(f , g)(x)

) ≤At(f , g)(x) – Ht(f , g)(x)

≤ Rt,s
(
As(f , g)(x) – Hs(f , g)(x)

)
(3.1)

hold for any x ∈ H , where we set

rt,s := min

(
t
s

,
1 – t
1 – s

)
and Rt,s := max

(
t
s

,
1 – t
1 – s

)
.

Lemma 3.2 ([23]) Let (f , g) ∈D(H) and λ ∈ (0, 1). For all x ∈ H , one has

Aλ(f , g)(x) – Gλ(f , g)(x) =
sin(λπ )

π

∫ 1

0

tλ–1

(1 – t)λ
(
At(f , g)(x) – Ht(f , g)(x)

)
dt. (3.2)

In particular, for all x ∈ H we have

A(f , g)(x) – G(f , g)(x) =
1
π

∫ 1

0

1√
t(1 – t)

(
At(f , g)(x) – Ht(f , g)(x)

)
dt. (3.3)

Lemma 3.3 ([23]) Let (f , g) ∈D(H). Then the map

t �→ At(f , g) – Ht(f , g)
t(1 – t)

is pointwise integrable on (0, 1). That is, for any x ∈ H , the integral

J (f , g)(x) :=
∫ 1

0

At(f , g)(x) – Ht(f , g)(x)
t(1 – t)

dt (3.4)

exists in R∪ {+∞}.

Let f : H →R∪ {+∞} and x, x∗ ∈ H . We set

Ff
(
x, x∗) := f (x) + f ∗(x∗) – �e

〈
x∗, x

〉
. (3.5)

Following the so-called Fenchel inequality, we have

∀x, x∗ ∈ H , Ff
(
x, x∗) ≥ 0. (3.6)

We also define

(f � g)(x) := sup
x∗∈∂f (x)

{�e
〈
x∗, x

〉
– g∗(x∗)}, (3.7)

with the usual convention sup∅(·) = –∞. With this, it is not hard to check that the following
formula:

(f � g)(x) =
(
g∗ + Ψ∂f (x)

)∗(x) (3.8)
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holds for any x ∈ H . Using (3.7) or (3.8), we can see that (f � g)(x) ≤ g(x) holds for any
x ∈ H .

Below, we present an example which explains the previous notions in more detail. Such
an example will be needed throughout this paper.

Example 3.1 Take f (x) = (1/2)〈Ax, x〉 and g(x) = (1/2)〈Bx, x〉, where A, B ∈ B+∗(H). We
write f = fA and g = fB, for the sake of simplicity. Since ∂f (x) = {Ax} and g∗ = fB–1 , (3.7)
yields

(f � g)(x) = �e〈Ax, x〉 – fB–1 (Ax) = 〈Ax, x〉 –
1
2
〈
B–1Ax, Ax

〉
=

1
2
〈
(A � B)x, x

〉
,

where A � B is given by

A � B = 2A – AB–1A.

We notice that f � g is not always a convex functional, and so A � B is not always a
positive operator. However, from (3.7) we can immediately deduce that f � g ≤ g , which
implies that B – A � B is always positive.

Finally, let a > 0, b ≥ 0 and λ, s ∈ (0, 1). For the sake of simplicity, we set

Bs(a, b) :=
∫ s

0
ta–1(1 – t)b–1 dt and Λλ

s :=
1
s

Bs(1 + λ, 1 – λ). (3.9)

By simple computation of integrals, it is easy to see that

Bs(1, 1) = s and Bs(2, 0) = –s – ln(1 – s).

We can then check that

Λ0
s := lim

λ↓0
Λλ

s = 1 and Λ1
s := lim

λ↑1
Λλ

s = –1 –
ln(1 – s)

s
. (3.10)

We have the following result.

Proposition 3.4 For all s ∈ (0, 1), we have

Λ1/2
s =

1
s

(
–
√

s(1 – s) + arctan

(√
s

1 – s

))
. (3.11)

Proof It is a simple exercise of real analysis. We first use the change of variables by setting
u =

√
t/(1 – t) and then we proceed by an appropriate integration by parts. The details are

straightforward and therefore omitted. �

4 The main results
We preserve the same notations as in the previous sections. We start this section by stating
the following result.
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Theorem 4.1 Let (f , g) ∈ D(H) and t ∈ (0, 1). Let x ∈ H be such that ∂f (x) �= ∅ and
∂g(x) �= ∅. Then the following inequality:

At(f , g)(x) – Ht(f , g)(x)
t(1 – t)

≤Fg
(
x, x∗) + Ff

(
x, z∗) (4.1)

holds for any x∗ ∈ ∂f (x) and z∗ ∈ ∂g(x).

Proof By definition, we have

Ht(f , g)(x) :=
(
(1 – t)f ∗ + tg∗)∗(x) := sup

x∗∈H

{�e
〈
x∗, x

〉
– (1 – t)f ∗(x∗) – tg∗(x∗)},

from which we deduce that the inequality

Ht(f , g)(x) ≥ �e
〈
x∗, x

〉
– (1 – t)f ∗(x∗) – tg∗(x∗)

holds for any x, x∗ ∈ H . It follows that

At(f , g)(x) – Ht(f , g)(x) ≤ (1 – t)f (x) + tg(x) – �e
〈
x∗, x

〉
+ (1 – t)f ∗(x∗) + tg∗(x∗),

or equivalently,

At(f , g)(x) – Ht(f , g)(x) ≤ (1 – t)
(
f (x) + f ∗(x∗) – �e

〈
x∗, x

〉)

+ t
(
g(x) + g∗(x∗) – �e

〈
x∗, x

〉)
.

If x∗ ∈ ∂f (x) then f (x) + f ∗(x∗) = �e〈x∗, x〉 and so

At(f , g)(x) – Ht(f , g)(x) ≤ tFg
(
x, x∗).

Similarly, if z∗ ∈ ∂g(x), we have

At(f , g)(x) – Ht(f , g)(x) ≤ (1 – t)Ff
(
x, z∗).

It follows that if x∗ ∈ ∂f (x) and z∗ ∈ ∂g(x) then

At(f , g)(x) – Ht(f , g)(x)
t

≤Fg
(
x, x∗) (4.2)

and

At(f , g)(x) – Ht(f , g)(x)
1 – t

≤Ff
(
x, z∗). (4.3)

By adding (4.2) and (4.3), with a simple manipulation, we obtain (4.1). �

Corollary 4.2 For any x ∈ H such that ∂f (x) ∩ dom g∗ �= ∅ and ∂g(x) ∩ dom f ∗ �= ∅, the
integral (3.4) is finite, i.e., J (f , g)(x) < +∞. Further, the inequality

J (f , g)(x) ≤Fg
(
x, x∗) + Ff

(
x, z∗)

holds for any x∗ ∈ ∂f (x) ∩ dom g∗ and z∗ ∈ ∂g(x) ∩ dom f ∗.
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Proof First, by Lemma 3.3, the integral in (3.4) exists in R ∪ {+∞}. This, with (4.1) and
(3.5), yields the desired result. The details are simple and therefore omitted here. �

The following result will be needed in the sequel.

Proposition 4.3 For all x ∈ H , we have

A(f , g)(x) – HZλ(f , g)(x)

=
sin(λπ )

π

∫ 1

0
HZλ(1 – t, t)

At(f , g)(x) – Ht(f , g)(x)
t(1 – t)

dt. (4.4)

Proof By (3.2), we can write

Aλ(f , g)(x) – Gλ(f , g)(x) =
sin(λπ )

π

∫ 1

0
tλ(1 – t)1–λAt(f , g)(x) – Ht(f , g)(x)

t(1 – t)
dt. (4.5)

If we replace λ by 1 – λ in this latter formula, we obtain

A1–λ(f , g)(x) – G1–λ(f , g)(x)

=
sin(λπ )

π

∫ 1

0
t1–λ(1 – t)λ

At(f , g)(x) – Ht(f , g)(x)
t(1 – t)

dt. (4.6)

Adding (4.5) and (4.6), we obtain (4.4). �

We now state our second main result which reads as follows.

Theorem 4.4 With the same hypotheses as in Theorem 4.1, the following inequalities:

Aλ(f , g)(x) – Gλ(f , g)(x) ≤ λ(1 – λ)
2

(
Fg

(
x, x∗) + Ff

(
x, z∗)), (4.7)

A(f , g)(x) – HZλ(f , g)(x) ≤ λ(1 – λ)
2

(
Fg

(
x, x∗) + Ff

(
x, z∗)) (4.8)

hold for any x∗ ∈ ∂f (x) and z∗ ∈ ∂g(x).

Proof By (4.5) and (4.1), we can write

π

sin(λπ )
(
Aλ(f , g)(x) – Gλ(f , g)(x)

) ≤
(∫ 1

0
tλ(1 – t)1–λ dt

)
(
Fg

(
x, x∗) + Ff

(
x, z∗)).

If B and Γ denote the standard beta and gamma special functions, respectively, then we
have

∫ 1

0
tλ(1 – t)1–λ dt = B(1 + λ, 2 – λ) =

Γ (1 + λ)Γ (2 – λ)
Γ (3)

=
λΓ (λ)(1 – λ)Γ (1 – λ)

2!

=
λ(1 – λ)

2
Γ (λ)Γ (1 – λ) =

λ(1 – λ)
2

π

sin(λπ )
.

Thus inequality (4.7) follows.
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If we replace λ by 1 – λ in (4.7), we obtain

A1–λ(f , g)(x) – G1–λ(f , g)(x) ≤ λ(1 – λ)
2

(
Fg

(
x, x∗) + Ff

(
x, z∗)). (4.9)

Adding (4.7) and (4.9) and remarking that for x ∈ H such that f (x) < +∞ we have

Aλ(f , g)(x) + A1–λ(f , g)(x) = (f + g)(x),

we obtain (4.8). The proof is completed. �

We can write the previous theorem in another form, which is symmetric in f and g .
Precisely, the following result may be stated.

Theorem 4.5 With the same hypotheses as in Theorem 4.1, the following inequalities:

Aλ(f , g)(x) – Gλ(f , g)(x) ≤ λ(1 – λ)
(
A(f , g)(x) – A(f � g, g � f )(x)

)
, (4.10)

A(f , g)(x) – HZλ(f , g)(x) ≤ λ(1 – λ)
(
A(f , g)(x) – A(f � g, g � f )(x)

)
(4.11)

hold, where f � g is defined by (3.7).

Proof According to (4.7), the functional

∂f (x) × ∂g(x) � (
x∗, z∗) �→Fg

(
x, x∗) + Ff

(
x, z∗)

is lower-bounded, with

inf
(x∗ ,z∗)∈∂f (x)×∂g(x)

(
Fg

(
x, x∗) + Ff

(
x, z∗)) = inf

x∗∈∂f (x)
Fg

(
x, x∗) + inf

z∗∈∂g(x)
Ff

(
x, z∗).

Following (3.5) and (3.7), we have

inf
x∗∈∂f (x)

Fg
(
x, x∗) = g(x) + inf

x∗∈∂f (x)

(
g∗(x∗) – �e

〈
x∗, x

〉)
= g(x) – (f � g)(x).

Similarly, one has

inf
z∗∈∂g(x)

Ff
(
x, z∗) = f (x) – (g � f )(x).

Summarizing, we have proved that

inf
(x∗ ,z∗)∈∂f (x)×∂g(x)

(
Fg

(
x, x∗) + Ff

(
x, z∗)) = f (x) + g(x) – (f � g)(x) – (g � f )(x)

= 2
(
A(f , g)(x) – A(f � g, g � f )(x)

)
. (4.12)

Substituting this into (4.7), we obtain (4.10).
Similarly, (4.11) can be deduced from (4.8). The proof is complete. �

The operator versions of Theorems 4.1 and 4.4 (or Theorem 4.5) are given in the follow-
ing.
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Corollary 4.6 Let A, B ∈ B+∗(H) and λ ∈ [0, 1]. Then we have the following operator in-
equalities:

A∇λB – A!λB ≤ λ(1 – λ)
(
AB–1A + BA–1B – A – B

)
,

A∇λB – A�λB ≤ λ(1 – λ)
2

(
AB–1A + BA–1B – A – B

)
,

A∇B – HZλ(A, B) ≤ λ(1 – λ)
2

(
AB–1A + BA–1B – A – B

)
.

(4.13)

Now, let us observe the following remark which explains the interest of our functional
approach and its application for scalar/operator means.

Remark 4.1 The inequalities of the preceding corollary are important due to the fact that
they refine some existing operator inequalities. By virtue of the Kubo–Ando theory for
monotone operator means, it is enough to discuss the scalar case when justifying our
claim. We restrict ourselves to inequality (4.13), since the others can be investigated in
a similar manner.

Indeed, the scalar version of (4.13) is reduced to

a∇λb – a�λb ≤ λ(1 – λ)
2

(a – b)2(a + b)
ab

. (4.14)

We would like to compare (4.14) with the right inequality in (1.3). In fact, by the techniques
of real analysis, it is not hard to show that there exist λ0 and λ1 ∈ (0, 1) such that if 0 ≤
λ0 ≤ λ or λ1 ≤ λ ≤ 1 then (4.14) is better than the right inequality of (1.3).

Now we will present some results giving simultaneously refinements and reverses of the
inequalities Gλ(f , g) ≤Aλ(f , g) and HZλ(f , g) ≤A(f , g).

Theorem 4.7 Let (f , g) ∈D(H). For each λ, s ∈ (0, 1), the following inequalities:

sin(λπ )
π

(
Λλ

s + Λ1–λ
1–s

)(
As(f , g)(x) – Hs(f , g)(x)

)

≤Aλ(f , g)(x) – Gλ(f , g)(x) ≤ sin(λπ )
π

(
(1 – λ)�λλ

)
J (f , g)(x) (4.15)

hold for any x ∈ H .

Proof First, we show the right inequality of (4.15). By virtue of (2.6), we can write, for all
x ∈ H ,

tλ–1

(1 – t)λ
(
At(f , g)(x) – Ht(f , g)(x)

)
=

(
(1 – t)1–λtλ

)At(f , g)(x) – Ht(f , g)(x)
t(1 – t)

≤
(

max
0≤t≤1

(1 – t)1–λtλ
)At(f , g)(x) – Ht(f , g)(x)

t(1 – t)
.

It is not hard to check that

max
0≤t≤1

(1 – t)1–λtλ = (1 – λ)1–λλλ := (1 – λ)�λλ.

The right inequality of (4.15) follows by Lemma 3.3 and (3.2).
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We now show the left inequality of (4.15). For the right hand-side of (3.2), we use the
left inequality in (3.1). For any fixed s ∈ (0, 1), it is easy to see that

∫ 1

0

tλ–1

(1 – t)λ
rt,s dt =

∫ s

0

tλ–1

(1 – t)λ
t
s

dt +
∫ 1

s

tλ–1

(1 – t)λ
1 – t
1 – s

dt.

If in this latter integral, we use a simple change of variables, we deduce the desired in-
equality with the help of (4.7) and a simple manipulation. �

The operator version of Theorem 4.7 reads as follows.

Corollary 4.8 Let A, B ∈ B+∗(H) and λ, s ∈ (0, 1). Then we have

sin(λπ )
π

(
Λλ

s + Λ1–λ
1–s

)
(A∇sB – A!sB) ≤ A∇λB – A�λB

≤ sin(λπ )
π

(
(1 – λ)�λλ

)
J(A, B), (4.16)

where we set

J(A, B) :=
∫ 1

0

A∇tB – A!tB
t(1 – t)

dt = (B – A)A–1S(A|B), (4.17)

with

S(A|B) := A1/2 log
(
A–1/2BA–1/2)A1/2.

Proof If in (4.15) we take f = fA and g = fB, we obtain the left inequality of (4.16) by (2.10).
To obtain the right inequality of (4.16), we can check that, see [23],

J (fA, fB) = fJ(A,B),

where J(A, B) is given by (4.17). The details are simple and therefore omitted here. �

We need to introduce the following notation:

Θs(f , g) :=
Hs(f , g) + H1–s(f , g)

2
. (4.18)

The following inequalities:

H(f , g)(x) ≤ Θs(f , g)(x) ≤HZ s(f , g)(x) ≤A(f , g)(x)

hold for any x ∈ H . For the left inequality, see [23]. For the other inequalities, they are
immediate from (2.6), (2.8), and (2.9).

As an application of the previous theorem, we may state the following corollary which
concerns a reverse and refinement of (2.9).
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Corollary 4.9 Let (f , g) ∈D(H) and λ, s ∈ (0, 1). Then the following inequalities:

sin(λπ )
π

(
Λλ

s + Λ1–λ
1–s

)(
A(f , g)(x) – Θs(f , g)(x)

)

≤A(f , g)(x) – HZλ(f , g)(x) ≤ sin(λπ )
π

(
(1 – λ)�λλ

)
J (f , g)(x) (4.19)

hold for any x ∈ H .

Proof First, if x ∈ H is such that f (x) = +∞ then the inequalities in (4.19) are reduced to
an equality, since all sides of (4.19) are equal to +∞ by virtue of the usual convention
+∞ + c = +∞ for any c ∈ [–∞, +∞]. Assume that below f (x) < +∞. If in (4.15) we replace
λ by 1 – λ and s by 1 – s and add the results, we obtain the desired inequalities with the
help of (2.8), (4.18), and the fact that

As(f , g)(x) + A1–s(f , g)(x) = (f + g)(x)

is valid for any s ∈ (0, 1) and x ∈ dom f . The proof is completed. �

The following result is of interest.

Corollary 4.10 Let (f , g) ∈D(H). Then the following inequalities:

π – 2
π

(
A(f , g)(x) – H(f , g)(x)

) ≤A(f , g)(x) – G(f , g)(x) ≤ 1
2π

J (f , g)(x) (4.20)

hold for any x ∈ H .

Proof Taking λ = s = 1/2 in (4.19) and using Proposition 3.4, we immediately obtain the
desired inequalities after a simple computation and reduction. The details are straightfor-
ward and therefore omitted here. �

The right inequality of (4.20) gives a lower bound of J (f , g), and the left one yields a
reverse of A(f , g) – G(f , g) ≤ A(f , g) – H(f , g). Note that Corollary 4.2 contains an upper
bound of J (f , g).

Also, we have the following result.

Theorem 4.11 Let (f , g) ∈ D(H) and λ ∈ (0, 1). Then, for all x ∈ H , we have the following
inequalities:

4(1 – rλ)π
(
A(f , g)(x) – G(f , g)(x)

)
– |2λ – 1|J (f , g)(x)

≤ 2π

sin(λπ )
(
A(f , g)(x) – HZλ(f , g)(x)

)

≤ 4rλπ
(
A(f , g)(x) – G(f , g)(x)

)
+ |2λ – 1|J (f , g)(x). (4.21)

Proof From (1.3) we immediately deduce that, for all a, b > 0,

rλ(a + b – 2
√

ab) ≤ a + b
2

– HZλ(a, b) ≤ (1 – rλ)(a + b – 2
√

ab),
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or equivalently,

a + b
2

– (1 – rλ)(a + b – 2
√

ab) ≤ HZλ(a, b) ≤ a + b
2

– rλ(a + b – 2
√

ab).

First, observe that 1 – 2rλ = |2λ – 1|. If we take a = 1 – t and b = t in the latter inequalities,
we get, after simple manipulations,

–
|2λ – 1|

2
+ 2(1 – rλ)

√
t(1 – t) ≤ HZλ(1 – t, t) ≤ |2λ – 1|

2
+ 2rλ

√
t(1 – t).

Substituting the result into (4.4), we obtain

L.H .S ≤ π

sin(λπ )
(
A(f , g)(x) – HZλ(f , g)(x)

) ≤ R.H .S,

with

L.H .S =
∫ 1

0

(
–|2λ – 1|

2
+ 2(1 – rλ)

√
t(1 – t)

)At(f , g)(x) – Ht(f , g)(x)
t(1 – t)

dt

and

R.H .S =
∫ 1

0

( |2λ – 1|
2

+ 2rλ

√
t(1 – t)

)At(f , g)(x) – Ht(f , g)(x)
t(1 – t)

dt.

It is not hard to see that

L.H .S = –
|2λ – 1|

2
J (f , g)(x) + 2(1 – rλ)

∫ 1

0

At(f , g)(x) – Ht(f , g)(x)√
t(1 – t)

dt,

which, with (3.3), immediately yields the left inequality of (4.21).
Similarly, we show the right inequality of (4.21). �

Theorem 4.12 Let (f , g) ∈ D(H) and λ ∈ (0, 1). Let x ∈ H be such that ∂f (x) �= ∅ and
∂g(x) �= ∅. Then the following inequalities:

sin(λπ )
2π

{
J (f , g)(x) – λ(1 – λ)

(
Fg

(
x, x∗) + Ff

(
x, z∗))}

≤A(f , g)(x) – HZλ(f , g)(x)

≤ sin(λπ )
2π

{
8λ(1 – λ)π

(
A(f , g)(x) – G(f , g)(x)

)
+ (2λ – 1)2J (f , g)(x)

}
(4.22)

hold for any x∗ ∈ ∂f (x) and z∗ ∈ ∂g(x).

Proof If in (1.7) we take a = 1 – t and b = t then we obtain

1
2

–
1
2
λ(1 – λ)(1 – 2t) log

1 – t
t

≤ HZλ(1 – t, t) ≤ 1
2

– 2λ(1 – λ)
(
1 – 2

√
t(1 – t)

)
.

Substituting the result into (4.4), we get

L.H .S ≤A(f , g)(x) – HZλ(f , g)(x) ≤ R.H .S,
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where

L.H .S =
sin(λπ )

π

∫ 1

0

{
1
2

–
1
2
λ(1 – λ)(1 – 2t) log

1 – t
t

}At(f , g)(x) – Ht(f , g)(x)
t(1 – t)

dt

and

R.H .S =
sin(λπ )

π

∫ 1

0

{
1
2

– 2λ(1 – λ)
(
1 – 2

√
t(1 – t)

)}At(f , g)(x) – Ht(f , g)(x)
t(1 – t)

dt.

According to (4.1), with the fact that (1 – 2t) log((1 – t)/t) ≥ 0 for any t ∈ (0, 1), it is easy to
see that

L.H .S ≥ sin(λπ )
2π

{
J (f , g)(x) – λ(1 – λ)α

(
Fg

(
x, x∗) + Ff

(
x, z∗))},

for any x∗ ∈ ∂f (x) and z∗ ∈ ∂g(x), where we set

α :=
∫ 1

0
(1 – 2t) log

1 – t
t

dt.

A simple integration by parts leads to α = 1, and so the left inequality of (4.22) is obtained.
Otherwise, it is not hard to see that

R.H .S =
sin(λπ )

2π

{
(
1 – 4λ(1 – λ)

)
J (f , g)(x)

+ 8λ(1 – λ)
∫ 1

0

1√
t(1 – t)

(
At(f , g)(x) – Ht(f , g)(x)

)
dt

}
.

This, with (3.3) and the fact that 1 – 4λ(1 – λ) = (2λ – 1)2, immediately yields the right
inequality of (4.22). The proof of the theorem is finished. �

Theorem 4.12 implies an interesting result which may be recited in the following.

Corollary 4.13 Let (f , g) ∈D(H) and let x ∈ H be as in Theorem 4.12. Then we have

lim
λ↓0

A(f , g)(x) – HZλ(f , g)(x)
λ

=
1
2
J (f , g)(x).

Proof It is immediate from (4.22). The details are simple and therefore omitted. �

Another interesting result that gives a reverse of (4.20) is given in what follows.

Corollary 4.14 Let (f , g) ∈ D(H) and let x ∈ H be as in Theorem 4.12. Then the following
inequalities hold:

sin(λπ )
2π

{
J (f , g)(x) – 2λ(1 – λ)

(
A(f , g)(x) – A(f � g, g � f )(x)

)}

≤A(f , g)(x) – HZλ(f , g)(x), (4.23)

J (f , g)(x) ≤ 2π
(
A(f , g)(x) – G(f , g)(x)

)
+

1
2
(
A(f , g)(x) – A(f � g, g � f )(x)

)
. (4.24)
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Proof According to (4.12), the left inequality of (4.22) yields (4.23) after a simple manip-
ulation. If we take λ = 1/2 in (4.23), we immediately obtain (4.24). �

We end this section by stating the following remark which may be of interest.

Remark 4.2
(i) We mention that if λ = 1/2 then the inequalities in (4.21) are reduced to a trivial

equality. Otherwise, if we take λ = 0 or λ = 1 in (4.21) and use Corollary 4.13, we
obtain (4.20).

However, (4.15), (4.19), and (4.22) are reduced to a trivial equality when λ = 0 and
λ = 1.

(ii) We leave to the reader the routine task of formulating the operator versions of
Theorems 4.11 and 4.12, as well as Corollary 4.14, in a similar manner as previously.

5 Applications for functional entropies
In this section we will apply the previous results for obtaining some refined upper bounds
for the relative entropy and Tsallis entropy of two (convex) functionals. The operator ver-
sions will be immediately obtained. We first need to recall some basic notions.

For A, B ∈ B+∗(H) and λ ∈ (0, 1), the relative operator entropy S(A|B) and the Tsallis
relative operator entropy Tλ(A|B) are defined by (see [6, 7], for instance)

S(A|B) := A1/2 log
(
A–1/2BA–1/2)A1/2,

Tλ(A|B) :=
A�λB – A

λ
.

It is well known that Tλ(A|B) extends S(A|B) in the sense that the following equality:

lim
λ↓0

Tλ(A|B) = S(A|B)

holds for all A, B ∈ B+∗(H), where the limit is taken in the strong operator topology.
The operators S(A|B) and Tλ(A|B) have been extended from the case where the variables

are invertible positive operators to the case where the variables are (convex) functionals
(see [20], for instance) as

E(f |g) :=
∫ 1

0

Ht(f , g) – f
t

dt,

Rλ(f |g) :=
Gλ(f , g) – f

λ
.

(5.1)

The following relationship:

lim
λ↓0

Rλ(f |g) = E(f |g), (5.2)

has been proved in [20]. Here, the limit is taken for the pointwise topology.
Some inequalities giving lower and upper bounds of E(f |g) and Rλ(f |g) can be found in

[20]. In particular, the following inequalities:

Rλ(f |g)(x) ≤ (g – f )(x) and E(f |g)(x) ≤ (g – f )(x) (5.3)

hold for any x ∈ dom f .
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In what follows, applying some results of the previous section, we will give some reverses
and refinements of (5.3). The related operator versions will be immediately deduced with-
out any additional tools.

Let us first state the following result which is useful and will be needed in the sequel.

Proposition 5.1 Let (f , g) ∈D(H) and λ ∈ (0, 1). Let x ∈ dom f ∩ dom g . Then we have

HZλ(f , g)(x) – A(f , g)(x) =
λ

2
(
Rλ(f |g)(x) + Rλ(g|f )(x)

)
. (5.4)

In particular, the following equality:

lim
λ↓0

HZλ(f , g)(x) – A(f , g)(x)
λ

=
1
2
(
E(f |g)(x) + E(g|f )(x)

)
(5.5)

holds for any x ∈ dom f ∩ dom g .

Proof If x ∈ dom f then (5.1) implies that

Gλ(f , g)(x) = f (x) + λRλ(f |g)(x). (5.6)

We infer that if x ∈ dom g then

G1–λ(f , g)(x) = Gλ(g, f )(x) = g(x) + λRλ(g|f )(x). (5.7)

If x ∈ dom f ∩dom g , we can add (5.6) and (5.7). We then obtain (5.4). Equality (5.5) follows
from (5.4) when combined with (5.2). The proof is finished. �

Combining Corollary 4.13 and Proposition 5.1, we immediately deduce the following
result which contains a relationship between the relative functional entropy and the func-
tional J (f , g) previously defined.

Corollary 5.2 The following equality:

E(f |g)(x) + E(g|f )(x) = –J (f , g)(x) (5.8)

holds for any x ∈ dom f ∩ dom g .

By using (4.17), it is easy to see that the operator version of (5.8) is given by

S(B|A) = –BA–1S(A|B).

Now, we are in the position to state the following result which gives some reverses of
(5.3).

Theorem 5.3 Let (f , g) ∈ D(H) and λ ∈ (0, 1). Let x ∈ H be as in Theorem 4.1. Then the
following inequalities:

0 ≤ (g – f )(x) – Rλ(f |g)(x) ≤ 1 – λ

2
(
Fg

(
x, x∗) + Ff

(
x, z∗)), (5.9)
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0 ≤ (g – f )(x) – E(f |g)(x) ≤ 1
2
(
Fg

(
x, x∗) + Ff

(
x, z∗)) (5.10)

hold for any x∗ ∈ ∂f (x) and z∗ ∈ ∂g(x).

Proof First, for any x ∈ dom f , it is not hard to see that

Aλ(f , g)(x) – Gλ(f , g)(x) = λ(g – f )(x) + f (x) – Gλ(f , g)(x)

= λ
(
(g – f )(x) – Rλ(f |g)(x)

)
. (5.11)

Substituting this into (4.7) and then dividing by λ > 0, we obtain (5.9).
Letting λ → 0 in (5.9) and using (5.2), we immediately get (5.10). �

The operator version of Theorem 5.3 is recited in the following.

Corollary 5.4 Let A, B ∈ B+∗(H) and λ ∈ (0, 1). Then we have

0 ≤ B – A – Tλ(A|B) ≤ 1 – λ

2
(
AB–1A + BA–1B – A – B

)
,

0 ≤ B – A – S(A|B) ≤ 1
2
(
AB–1A + BA–1B – A – B

)
.

We now state another result which gives a refinement and reverse of (5.3).

Theorem 5.5 Let (f , g) ∈D(H) and λ, s ∈ (0, 1). The following inequalities:

sin(λπ )
λπ

(
Λλ

s + Λ1–λ
1–s

)(
As(f , g)(x) – Hs(f , g)(x)

)

≤ (g – f )(x) – Rλ(f |g)(x) ≤ sin(λπ )
λπ

(
(1 – λ)�λλ

)
J (f , g)(x) (5.12)

and

ln(s)
s – 1

(
As(f , g)(x) – Hs(f , g)(x)

) ≤ (g – f )(x) – E(f |g)(x) ≤ J (f , g)(x) (5.13)

hold for any x ∈ dom f .

Proof Substituting (5.11) into the middle part of (4.15) and then dividing by λ > 0, we
obtain the desired inequalities (5.12).

We now prove (5.13). If in all sides of (5.12) we let λ ↓ 0 and use (3.10) and (5.2), with
the fact that

lim
λ↓0

sin(λπ )
λπ

= 1 and lim
λ↓0

(
(1 – λ)�λλ

)
= 1,

we then get the desired inequalities (5.13). �

The operator version of Theorem 5.5 is recited in the following result.
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Corollary 5.6 Let A, B ∈ B+∗(H) and λ, s ∈ (0, 1). Then we have

sin(λπ )
λπ

(
Λλ

s + Λ1–λ
1–s

)
(A∇sB – A!sB) ≤ B – A – Tλ(A|B)

≤ sin(λπ )
λπ

(
(1 – λ)�λλ

)
J(A, B)

and

ln(s)
s – 1

(A∇sB – A!sB) ≤ B – A – S(A|B) ≤ J(A, B),

where J(A, B) is given by (4.17).

Now we will see other applications for the relative functional entropies. The first result
reads as follows.

Theorem 5.7 Let (f , g) ∈D(H) and λ, s ∈ (0, 1). The following inequalities:

–
2 sin(λπ )

λπ

(
(1 – λ)�λλ

)
J (f , g)(x)

≤Rλ(f |g)(x) + Rλ(g|f )(x)

≤ –
2 sin(λπ )

λπ

(
Λλ

s + Λ1–λ
1–s

)(
A(f , g)(x) – Θs(f , g)(x)

)
(5.14)

hold for any x ∈ dom f ∩ dom g .

Proof From (4.19) we can write, for any x ∈ dom f ∩ dom g ,

–
sin(λπ )

π

(
(1 – λ)�λλ

)
J (f , g)(x)

≤HZλ(f , g)(x) – A(f , g)(x)

≤ –
sin(λπ )

π

(
Λλ

s + Λ1–λ
1–s

)(
A(f , g)(x) – Θs(f , g)(x)

)
. (5.15)

Substituting (5.4) in the middle part of these inequalities and then dividing by λ/2, we get
(5.14). �

Corollary 5.8 Let (f , g) ∈D(H) and s ∈ (0, 1). The following inequality:

E(f |g)(x) + E(g|f )(x) ≤ 2 ln(s)
1 – s

(
A(f , g)(x) – Θs(f , g)(x)

)
(5.16)

holds for any x ∈ dom f ∩ dom g .

Proof Letting λ → 0 in (5.14) with the help of (5.2) and (3.10), we obtain (5.16). �

The operator versions of Theorem 5.7 and Corollary 5.8 are given in the following result.
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Corollary 5.9 Let A, B ∈ B+∗(H) and λ, s ∈ (0, 1). Then we have

–
2 sin(λπ )

λπ

(
(1 – λ)�λλ

)
J(A, B) ≤ Tλ(A|B) + Tλ(B|A)

≤ –
2 sin(λπ )

λπ

(
Λλ

s + Λ1–λ
1–s

)
(A∇B – A�sB)

and

S(A|B) + S(B|A) ≤ 2 ln(s)
1 – s

(A∇B – A�sB),

where we set

A�sB :=
A!sB + A!1–sB

2
.

Another main result is given in the following.

Theorem 5.10 Let (f , g) ∈D(H) and λ ∈ (0, 1). The following inequalities:

–4rλπ
(
A(f , g)(x) – G(f , g)(x)

)
– |2λ – 1|J (f , g)(x)

≤ λπ

sin(λπ )
(
Rλ(f |g)(x) + Rλ(g|f )(x)

)

≤ –4(1 – rλ)π
(
A(f , g)(x) – G(f , g)(x)

)
+ |2λ – 1|J (f , g)(x) (5.17)

hold for any x ∈ dom f ∩ dom g .

Proof Here, we use (4.21). The details are similar to those of the proof of the preceding
results. �

The operator version of Theorem 5.10 is given below.

Corollary 5.11 Let A, B ∈ B+∗(H) and λ ∈ (0, 1). Then we have

–4rλπ (A∇B – A�B) – |2λ – 1|J(A, B) ≤ λπ

sin(λπ )
(
Tλ(A|B) + Tλ(B|A)

)

≤ –4(1 – rλ)π (A∇B – A�B) + |2λ – 1|J(A, B).

Finally, our last result of applications is stated in the following.

Theorem 5.12 Let (f , g) ∈ D(H) and λ ∈ (0, 1). Let x ∈ H be as in Theorem 4.1. Then the
following inequalities:

–
sin(λπ )

λπ

{
8λ(1 – λ)π

(
A(f , g)(x) – G(f , g)(x)

)
+ (2λ – 1)2J (f , g)(x)

}

≤Rλ(f |g)(x) + Rλ(g|f )(x)

≤ –
sin(λπ )

λπ

{
J (f , g)(x) – λ(1 – λ)

(
Fg

(
x, x∗) + Ff

(
x, z∗))} (5.18)

hold for any x∗ ∈ ∂f (x) and z∗ ∈ ∂g(x).
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Proof It is also similar to the previous proofs, by using (4.22). We leave to the reader the
routine task of providing the details of this proof. �

The operator version of Theorem 5.12 can be immediately deduced and reads as follows.

Corollary 5.13 Let A, B ∈ B+∗(H) and λ ∈ (0, 1). Then we have

–
sin(λπ )

λπ

{
8λ(1 – λ)π (A∇B – A�B) + (2λ – 1)2J(A, B)

}

≤ Tλ(A|B) + Tλ(B|A)

≤ –
sin(λπ )

λπ

{
J(A, B) – λ(1 – λ)

(
AB–1A + BA–1B – A – B

)}
.

Acknowledgements
We would like to express our sincere thanks to the three anonymous referees for their useful comments and suggestions
which substantially helped improve the quality of the present manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have contributed to, checked, read, and approved the manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 10 August 2019 Accepted: 24 March 2020

References
1. Aldaz, J.M.: A refinement of the inequality between arithmetic and geometric means. J. Math. Inequal. 2(4), 473–477

(2008). https://doi.org/10.7153/jmi-02-42
2. Aldaz, J.M.: Self-improvement of the inequality between arithmetic and geometric means. J. Math. Inequal. 3(2),

213–216 (2009). https://doi.org/10.7153/jmi-03-21
3. Aldaz, J.M.: Comparison of difference between arithmetic and geometric means. Tamkang J. Math. 42(4), 453–462

(2011). https://doi.org/10.5556/j.tkjm.42.2011.453-462
4. Dinh, T.H., Dumitru, R., Franco, J.A.: The matrix power means and interpolations. Adv. Oper. Theory 3(3), 647–654

(2018). https://doi.org/10.15352/aot.1801-1288
5. Dragomir, S.S.: Bounds for the normalized Jensen functional. Bull. Aust. Math. Soc. 74(3), 471–478 (2006).

https://doi.org/10.1017/s000497270004051x
6. Fujii, J.I., Kamei, E.: Relative operator entropy in noncommutative information theory. Math. Jpn. 34, 341–348 (1989)
7. Furuichi, S.: Inequalities for Tsallis relative entropy and generalized skew information. Linear Multilinear Algebra

59(10), 1143–1158 (2011). https://doi.org/10.1080/03081087.2011.574624
8. Kapil, Y., Conde, C., Moslehian, M.S., Singh, M., Sababheh, M.: Norm inequalities related to the Heron and Heinz means.

Mediterr. J. Math. 14(5), Article ID 213 (2017). https://doi.org/10.1007/s00009-017-1015-6
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