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1 Introduction
Throughout this paper, let m, M be scalars and I be the identity operator. Other capital
letters are used to denote the general elements of the C∗ algebra B(H) of all bounded linear
operators acting on a Hilbert space (H, 〈·, ·〉). Also A ≥ 0 means that the operator A is
positive. We say that A ≥ B (A ≤ B) if A–B ≥ 0 (A–B ≤ 0). A linear map Φ : B(H) → B(H)
is called positive (strictly positive) if Φ(A) ≥ 0 (Φ(A) > 0) whenever A ≥ 0 (A > 0), and Φ

is said to be unital if Φ(I) = I .
If A, B ∈ B(H) are two positive operators, then the operator weighted arithmetic and

geometric means are defined as A∇vB = (1 – v)A + vB and A�vB = A 1
2 (A– 1

2 BA– 1
2 )vA 1

2 for
v ∈ [0, 1], respectively, denoted by A∇B and A�B for brevity when v = 1

2 . The Kantorovich
constant is defined by K(t, 2) = (t+1)2

4t for t > 0. What’s more, the relative operator entropy
of A and B is defined as S(A|B) = A 1

2 log(A– 1
2 BA– 1

2 )A 1
2 . For A = (aij) ∈ Mn, the Hilbert–

Schmidt norm is defined by ‖A‖2 =
√∑n

i,j=1 a2
ij. As we all know that ‖ · ‖2 has the unitary

invariance property: ‖UAV‖2 = ‖A‖2 for all A ∈ Mn and unitary matrices U , V ∈ Mn. The
singular values of a matrix A is defined by sj(A), j = 1, 2, . . . , n, and arranged in a non-
increasing order.

It is well known that the AM–GM inequality reads

A + B
2

≥ A�B (1.1)

for any two positive operators A, B.
Lin [10] gave a reversed AM–GM inequality involving unital positive linear maps

Φ

(
A + B

2

)
≤ K(h, 2)Φ(A�B) (1.2)
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for 0 < mI ≤ A, B ≤ MI and K(h, 2) = (h+1)2

4h with h = M
m .

As we all know, for any two positive operators A and B,

A ≥ B � Ap ≥ Bp (1.3)

for p > 1. To our surprise, Lin [10] showed that a reversed version of the operator AM–GM
inequality can be squared: for 0 < mI ≤ A, B ≤ MI ,

Φ2
(

A + B
2

)
≤

(
(M + m)2

4Mm

)2

Φ2(A�B) (1.4)

and

Φ2
(

A + B
2

)
≤

(
(M + m)2

4Mm

)2(
Φ(A)�Φ(B)

)2, (1.5)

where Φ is a unital positive linear map. So we can easily get the following inequalities by
Lemma 2.8 (L–H inequality):

Φp
(

A + B
2

)
≤

(
(M + m)2

4Mm

)p

Φp(A�B) (1.6)

and

Φp
(

A + B
2

)
≤

(
(M + m)2

4Mm

)p(
Φ(A)�Φ(B)

)p (1.7)

for 0 ≤ p ≤ 2. Fu and He [5] generalized (1.6) and (1.7) for p ≥ 2,

Φp
(

A + B
2

)
≤

(
(M + m)2

4
2
p Mm

)p

Φp(A�B) (1.8)

and

Φp
(

A + B
2

)
≤

(
(M + m)2

4
2
p Mm

)p(
Φ(A)�Φ(B)

)p, (1.9)

where 0 < mI ≤ A, B ≤ MI . Bakherad [2] further improved (1.6)–(1.9) as follows:

Φp(A∇vB + 2rMm
(
A–1∇B–1 – A–1�B–1)) ≤ αpΦp(A�vB) (1.10)

and

Φp(A∇vB + 2rMm
(
A–1∇B–1 – A–1�B–1)) ≤ αp(Φ(A)�vΦ(B)

)p (1.11)

for 0 < mI ≤ A, B ≤ MI , p ≥ 0, α = max{ (M+m)2

4Mm , (M+m)2

4
2
p Mm

}, v ∈ [0, 1], r = min{v, 1 – v} and Φ

being a unital positive linear map.
Recently, Yang et al. [12] gave some further refinements to the above:

Φp(A∇vB + Mm
(
G

(
A–1�vB–1)G∗ + 2r

(
A–1∇B–1 – A–1�B–1))) ≤ αpΦp(A�vB) (1.12)
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and

Φp(A∇vB + Mm
(
G

(
A–1�vB–1)G∗ + 2r

(
A–1∇B–1 – A–1�B–1)))

≤ αp(Φ(A)�vΦ(B)
)p, (1.13)

where 0 < mI ≤ A, B ≤ MI , Φ is a positive unital linear map on B(H), v ∈ [0, 1] and p >
0, r = min{v, 1 – v}, α = max{ (M+m)2

4Mm , (M+m)2

4
2
p Mm

}, G =
√

L(2v)
2 A–1S(A|B), L(t) is 1-periodic, and

L(t) = t2

2 ( 1–t
t )2t for t ∈ [0, 1]. In fact, we can get (1.10) from (1.12) and (1.11) from (1.13)

when v = 1
2 , respectively. For more information about AM–GM operator inequalities, we

refer the readers to [9, 11, 13–18] and the references therein.
In this paper, we shall give further improvements of (1.12) and (1.13) for positive linear

maps. We also give some inequalities for Hilbert–Schmidt norms and determinants.

2 Main results
Firstly, we give some further refinements of the corresponding results in [12] for scalars
and Hilbert–Schmidt norms. Before that, we state a lemma.

Lemma 2.1 ([7]) Let a, b > 0. Then

(
1 + L(v)(log a – log b)2)a1–vbv ≤ (1 – v)a + vb, (2.1)

where

L(v) =

⎧
⎨
⎩

v2

2 ( 1–v
v )2v, 0 < v < 1,

0, v = 0, 1.

Theorem 2.2 Let a, b > 0, v ∈ [0, 1], Q(v) = L(8v)
64 (log b

a )2. We have:
(1) If r = min{4v, 1 – 4v} and 0 ≤ v ≤ 1

4 , then

(
1 + Q(v)

)
a1–vbv + v(

√
a –

√
b)2 + 2v

(√
a – 4√ab

)2 + r
(√

a – 8√a3b
)2

≤ (1 – v)a + vb; (2.2)

(2) If r = min{2 – 4v, 4v – 1} and 1
4 ≤ v ≤ 1

2 , then

(
1 + Q(v)

)
a1–vbv + v(

√
a –

√
b)2 + (1 – 2v)

(√
a – 4√ab

)2 + r
( 4√ab – 8√a3b

)2

≤ (1 – v)a + vb; (2.3)

(3) If r = min{3 – 4v, 4v – 2} and 1
2 ≤ v ≤ 3

4 , then

(
1 + Q(v)

)
a1–vbv + (1 – v)(

√
a –

√
b)2 + (2v – 1)

(√
b – 4√ab

)2 + r
( 4√ab – 8√ab3

)2

≤ (1 – v)a + vb; (2.4)

(4) If r = min{4 – 4v, 4v – 3} and 3
4 ≤ v ≤ 1, then

(
1 + Q(v)

)
a1–vbv + (1 – v)(

√
a –

√
b)2 + (2 – 2v)

(√
b – 4√ab

)2 + r
(√

b – 8√ab3
)2

≤ (1 – v)a + vb. (2.5)
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Proof (1) When 0 ≤ v ≤ 1
8 , then r = 4v, and

(1 – v)a + vb – v(
√

a –
√

b)2 – 2v
(√

a – 4√ab
)2 – r

(√
a – 8√a3b

)2

= (1 – 8v)a + 8va
7
8 b

1
8

≥
(

1 +
L(8v)

64

(
log

b
a

)2)
a1–vbv (by (2.1)).

When 1
8 ≤ v ≤ 1

4 , then r = 1 – 4v, and

(1 – v)a + vb – v(
√

a –
√

b)2 – 2v
(√

a – 4√ab
)2 – r

(√
a – 8√a3b

)2

= (2 – 8v)a
7
8 b

1
8 + (8v – 1)a

3
4 b

1
4

≥
(

1 +
L(8v – 1)

64

(
log

b
a

)2)
a1–vbv

=
(

1 +
L(8v)

64

(
log

b
a

)2)
a1–vbv,

where the last equality from L(v) is a 1-periodic function and L(v) = L(1 – v) for v ∈ [0, 1].
(2) When 1

4 ≤ v ≤ 3
8 , then r = 4v – 1, and

(1 – v)a + vb – v(
√

a –
√

b)2 – (1 – 2v)
(√

a – 4√ab
)2 – r

( 4√ab – 8√a3b
)2

= (3 – 8v)a
3
4 b

1
4 + (8v – 2)a

5
8 b

3
8

≥
(

1 +
L(8v – 2)

64

(
log

b
a

)2)
a1–vbv

=
(

1 +
L(8v)

64

(
log

b
a

)2)
a1–vbv.

When 3
8 ≤ v ≤ 1

2 , then r = 2 – 4v, and

(1 – v)a + vb – v(
√

a –
√

b)2 – (1 – 2v)
(√

a – 4√ab
)2 – r

( 4√ab – 8√a3b
)2

= (4 – 8v)a
5
8 b

3
8 a

1
2 b

1
2 + (8v – 3)a

1
2 b

1
2

≥
(

1 +
L(8v – 3)

64

(
log

b
a

)2)
a1–vbv

=
(

1 +
L(8v)

64

(
log

b
a

)2)
a1–vbv.

Here, we completed the proof of Theorem 2.2 when 0 ≤ v ≤ 1
2 . Substituting a by b and v

by 1 – v in (2.2) and (2.3), we can get (2.4) and (2.5) easily, so we omit the details. �

The following corollary is a direct consequence of Theorem 2.2 by substituting a by a2

and b by b2.

Corollary 2.3 Let a, b > 0, v ∈ [0, 1], F(v) = L(8v)
16 (log b

a )2. We have:
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(1) If r = min{4v, 1 – 4v} and 0 ≤ v ≤ 1
4 , then

(
1 + F(v)

)(
a1–vbv)2 + v2(a – b)2 + 2v(a –

√
ab)2 + r

(
a – 4√a3b

)2

≤ (
(1 – v)a + vb

)2; (2.6)

(2) If r = min{2 – 4v, 4v – 1} and 1
4 ≤ v ≤ 1

2 , then

(
1 + F(v)

)(
a1–vbv)2 + v2(a – b)2 + (1 – 2v)(a –

√
ab)2 + r

(√
ab – 4√a3b

)2

≤ (
(1 – v)a + vb

)2; (2.7)

(3) If r = min{3 – 4v, 4v – 2} and 1
2 ≤ v ≤ 3

4 , then

(
1 + F(v)

)(
a1–vbv)2 + (1 – v)2(a – b)2 + (2v – 1)(b –

√
ab)2 + r

(√
ab – 4√ab3

)2

≤ (
(1 – v)a + vb

)2; (2.8)

(4) If r = min{4 – 4v, 4v – 3} and 3
4 ≤ v ≤ 1, then

(
1 + F(v)

)(
a1–vbv)2 + (1 – v)2(a – b)2 + (2 – 2v)(b –

√
ab)2 + r

(
b – 4√ab3

)2

≤ (
(1 – v)a + vb

)2. (2.9)

Theorem 2.4 Let A, B, X ∈ Mn be such that 0 < mI ≤ A ≤ m′I < M′I ≤ B ≤ MI , h = M′
m′ ,

W (v) = L(8v)
16 (log h)2. We have:

(1) If r = min{4v, 1 – 4v} and 0 ≤ v ≤ 1
4 , then

∥∥(1 – v)AX + vXB
∥∥2

2

≥ v2‖AX – XB‖2
2 + 2v

∥∥AX – A
1
2 XB

1
2
∥∥2

2

+ r
∥∥AX – A

3
4 XB

1
4
∥∥2

2 +
(
1 + W (v)

)∥∥A1–vXBv∥∥2
2; (2.10)

(2) If r = min{2 – 4v, 4v – 1} and 1
4 ≤ v ≤ 1

2 , then

∥∥(1 – v)AX + vXB
∥∥2

2

≥ v2‖AX – XB‖2
2 + (1 – 2v)

∥∥AX – A
1
2 XB

1
2
∥∥2

2

+ r
∥∥A

1
2 XB

1
2 – A

3
4 XB

1
4
∥∥2

2 +
(
1 + W (v)

)∥∥A1–vXBv∥∥2
2; (2.11)

(3) If r = min{3 – 4v, 4v – 2} and 1
2 ≤ v ≤ 3

4 , then

∥∥(1 – v)AX + vXB
∥∥2

2

≥ (1 – v)2‖AX – XB‖2
2 + (2v – 1)

∥∥XB – A
1
2 XB

1
2
∥∥2

2

+ r
∥∥A

1
2 XB

1
2 – A

1
4 XB

3
4
∥∥2

2 +
(
1 + W (v)

)∥∥A1–vXBv∥∥2
2; (2.12)
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(4) If r = min{4 – 4v, 4v – 3} and 3
4 ≤ v ≤ 1, then

∥∥(1 – v)AX + vXB
∥∥2

2

≥ (1 – v)2‖AX – XB‖2
2 + (2 – 2v)

∥∥XB – A
1
2 XB

1
2
∥∥2

2

+ r
∥∥XB – A

1
4 XB

3
4
∥∥2

2 +
(
1 + W (v)

)∥∥A1–vXBv∥∥2
2. (2.13)

Proof Since A and B are strictly positive-definite matrices, it follows by the spectral de-
composition theorem that there exist unitary matrices U , V ∈ Mn, such that A = UΛ1U∗,
B = VΛ2V ∗, where Λ1 = diag(λ1,λ2, . . . ,λn), Λ2 = diag(η1,η2, . . . ,ηn) with λi > 0, ηi > 0,
i = 1, 2, . . . , n. We have

∥∥(1 – v)AX + vXB
∥∥2

2

=
n∑

i,j=1

(
(1 – v)λi + vηj

)2|yij|2

≥
n∑

i,j=1

{(
1 +

L(8v)
16

min(log tij)2
)(

λi
1–vηj

v)2 + v2(λi – ηj)2 + 2v(λi –
√

λiηj)2

+ r
(
λi – 4

√
λ3

i ηj
)2

}
|yij|2 (by (2.6))

=
(

1 +
L(8v)

16
min(log tij)2

) n∑
i,j=1

(
λi

1–vηj
v)2|yij|2 + v2

n∑
i,j=1

(λi – ηj)2|yij|2

+ 2v
n∑

i,j=1

(λi –
√

λiηj)2|yij|2 + r
n∑

i,j=1

(
λi – 4

√
λ3

i ηj
)2|yij|2,

where tij = λi
ηj

.

Due to the conditions 0 < m ≤ A ≤ m′ < M′ ≤ B ≤ M, m
M ≤ tij = λi

ηj
≤ m′

M′ = 1
h and the

monotonicity of the function f (x) = log x (0 < x ≤ 1), we get

∥∥(1 – v)AX + vXB
∥∥2

2

≥
(

1 +
L(8v)

16
(log h)2

) n∑
i,j=1

(
λi

1–vηj
v)2|yij|2 + v2

n∑
i,j=1

(λi – ηj)2|yij|2

+ 2v
n∑

i,j=1

(λi –
√

λiηj)2|yij|2 + r
n∑

i,j=1

(
λi – 4

√
λ3

i ηj
)2|yij|2

=
(

1 +
L(8v)

16
(log h)2

)∥∥A1–vXBv∥∥2
2 + v2‖AX – XB‖2

2 + 2v
∥∥AX – A

1
2 XB

1
2
∥∥2

2

+ r
∥∥AX – A

3
4 XB

1
4
∥∥2

2,

where we completed the proof of (2.10). Using the same method, we can get (2.11)–(2.13)
by (2.7)–(2.9), respectively, so we omit the details. �

Next, we give further improvements of (1.12) and (1.13) for positive linear maps. But
first, let us present the following lemmas that will be useful later.
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Lemma 2.5 ([1]) Let Φ be a unital positive linear map, A, B be positive operators, and
v ∈ [0, 1]. Then

Φ(A�vB) ≤ Φ(A)�vΦ(B). (2.14)

Lemma 2.6 ([2]) Let A, B ≥ 0 and α > 0. Then

∥∥A
1
2 B– 1

2
∥∥ ≤ α

1
2 iff A ≤ αB. (2.15)

Lemma 2.7 ([4]) Let A, B ≥ 0. Then the following norm inequality holds:

‖AB‖ ≤ 1
4
‖A + B‖2. (2.16)

Lemma 2.8 (L–H inequality, [8]) If 0 ≤ p ≤ 1 and A ≥ B ≥ 0, then

Ap ≥ Bp. (2.17)

Lemma 2.9 ([1]) Let A, B ≥ 0. Then for 1 ≤ p < +∞,

∥∥Ap + Bp∥∥ ≤ ∥∥(A + B)p∥∥. (2.18)

Lemma 2.10 (Choi inequality, [3]) Let Φ be a unital positive linear map and A > 0. Then

Φ(A)–1 ≤ Φ
(
A–1). (2.19)

Theorem 2.11 Let 0 < mI ≤ A, B ≤ MI , α = max{ (M+m)2

4Mm , (M+m)2

4
2
p Mm

}, p ≥ 0, and 0 ≤ v ≤ 1
4 .

For every positive unital linear map Φ , we have

Φp(A∇vB + MmJ
(
A–1; B–1)) ≤ αpΦp(A�vB) (2.20)

and

Φp(A∇vB + MmJ
(
A–1; B–1)) ≤ αp(Φ(A)�vΦ(B)

)p, (2.21)

where J(A–1; B–1) = 2v(A–1∇B–1 – A–1�B–1) + 2v(A–1�B–1 + A–1 – 2(A–1� 1
4

B–1)) +

r(A–1� 1
4

B–1 + A–1 – 2(A–1� 1
8

B–1)) + G∗A–1�vB–1G for G =
√

L(8v)
8 AS(A–1|B–1).

Proof For 0 < mI ≤ A, B ≤ MI , we have

(M – A)(A – m)A–1 ≥ 0 and (M – B)(B – m)B–1 ≥ 0,

that is,

A + MmA–1 ≤ M + m and B + MmB–1 ≤ M + m.
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For every positive unital linear map Φ , we have

Φ(A) + MmΦ
(
A–1) ≤ M + m and Φ(B) + MmΦ

(
B–1) ≤ M + m.

So we have

Φ
(
(1 – v)A

)
+ MmΦ

(
(1 – v)A–1) ≤ (1 – v)(M + m) and

Φ(vB) + MmΦ
(
vB–1) ≤ v(M + m).

Summing up the inequalities above, we can get

Φ(A∇vB) + MmΦ
(
A–1∇vB–1) ≤ M + m. (2.22)

When 0 ≤ v ≤ 1
4 , taking a = 1 in (2.2), we have

bv + v
(
1 + b – 2b

1
2
)

+ 2v
(
1 + b

1
2 – 2b

1
4
)

+ r
(
1 + b

1
4 – 2b

1
8
)

+
(√

L(8v)
8

log b
)

× bv ×
(√

L(8v)
8

log b
)

≤ (1 – v) + vb.

Now by the functional calculus for the positive operator A 1
2 B–1A 1

2 , we have

(
A

1
2 B–1A

1
2
)v + v

(
I +

(
A

1
2 B–1A

1
2
)

– 2
(
A

1
2 B–1A

1
2
) 1

2
)

+ 2v
(
I +

(
A

1
2 B–1A

1
2
) 1

2 – 2
(
A

1
2 B–1A

1
2
) 1

4
)

+ r
(
I +

(
A

1
2 B–1A

1
2
) 1

4 – 2
(
A

1
2 B–1A

1
2
) 1

8
)

+
(√

L(8v)
8

log
(
A

1
2 B–1A

1
2
)) × (

A
1
2 B–1A

1
2
)v ×

(√
L(8v)
8

log
(
A

1
2 B–1A

1
2
))

≤ (1 – v)I + v
(
A

1
2 B–1A

1
2
)
. (2.23)

Multiplying by A– 1
2 both sides of inequality (2.23), we have

A–1�vB–1 + 2v
(
A–1∇B–1 – A–1�B–1) + 2v

(
A–1�B–1 + A–1 – 2

(
A–1� 1

4
B–1))

+ r
(
A–1� 1

4
B–1 + A–1 – 2

(
A–1� 1

8
B–1)) + G∗A–1�V B–1G

≤ A–1∇vB–1.

Moreover,

A–1�vB–1 + J
(
A–1; B–1)

= A–1�vB–1 + 2v
(
A–1∇B–1 – A–1�B–1) + 2v

(
A–1�B–1 + A–1 – 2

(
A–1� 1

4
B–1))

+ r
(
A–1� 1

4
B–1 + A–1 – 2

(
A–1� 1

8
B–1)) + G∗A–1�V B–1G

≤ A–1∇vB–1. (2.24)
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So we have

∥∥Φ
(
A∇vB + MmJ

(
A–1; B–1)) + MmΦ–1(A�vB)

∥∥

≤ ∥∥Φ
(
A∇vB + MmJ

(
A–1; B–1)) + MmΦ

(
A–1�vB–1)∥∥

=
∥∥Φ(A∇vB) + MmΦ

(
J
(
A–1; B–1) + A–1�vB–1)∥∥

≤ ∥∥Φ(A∇vB) + MmΦ
(
A–1∇vB–1)∥∥

≤ M + m, (2.25)

where the first inequality is by (2.19), the second is by (2.24), and the third is by (2.22).
Therefore,

∥∥Φ
(
A∇vB + MmJ

(
A–1; B–1))MmΦ–1(A�vB)

∥∥

≤ 1
4
∥∥Φ

(
A∇vB + MmJ

(
A–1; B–1)) + MmΦ–1(A�vB)

∥∥2

≤ (M + m)2

4
,

where the first inequality is by (2.16) and the second is by (2.25). That is,

∥∥Φ
(
A∇vB + MmJ

(
A–1; B–1))Φ–1(A�vB)

∥∥ ≤ (M + m)2

4Mm
.

By Lemma 2.6, we have

Φ2(A∇vB + MmJ
(
A–1; B–1)) ≤

(
(M + m)2

4Mm

)2

Φ2(A�vB).

When 0 ≤ p ≤ 2, then 0 ≤ p
2 ≤ 1, hence by (2.17), we have

Φp(A∇vB + MmJ
(
A–1; B–1)) ≤

(
(M + m)2

4Mm

)p

Φp(A�vB) = αpΦp(A�vB).

When p > 2,

M
P
2 m

P
2
∥∥Φ

p
2
(
A∇vB + MmJ

(
A–1; B–1))Φ– p

2 (A�vB)
∥∥

=
∥∥Φ

p
2
(
A∇vB + MmJ

(
A–1; B–1))M

P
2 m

P
2 Φ– p

2 (A�vB)
∥∥

≤ 1
4
∥∥Φ

p
2
(
A∇vB + MmJ

(
A–1; B–1)) + M

P
2 m

P
2 Φ– p

2 (A�vB)
∥∥2

≤ 1
4
∥∥(

Φ
(
A∇vB + MmJ

(
A–1; B–1)) + MmΦ–1(A�vB)

) p
2
∥∥2

=
1
4
∥∥Φ

(
A∇vB + MmJ

(
A–1; B–1)) + MmΦ–1(A�vB)

∥∥p

≤ 1
4

(M + m)p,
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where the first inequality is by (2.16), the second is by (2.18), and the third is by (2.25).
That is,

∥∥Φ
p
2
(
A∇vB + MmJ

(
A–1; B–1))Φ– p

2 (A�vB)
∥∥ ≤ (M + m)p

4M P
2 m P

2
= α

p
2 ,

which is equivalent to (2.20) by (2.15). Here we completed the proof of (2.20). We now
prove (2.21) for 0 ≤ p ≤ 2. Indeed,

∥∥Φ
(
A∇vB + MmJ

(
A–1; B–1))Mm

(
Φ(A)�vΦ(B)

)–1∥∥

≤ 1
4
∥∥Φ

(
A∇vB + MmJ

(
A–1; B–1)) + Mm

(
Φ(A)�vΦ(B)

)–1∥∥2

≤ 1
4
∥∥Φ

(
A∇vB + MmJ

(
A–1; B–1)) + MmΦ–1(A�vB)

∥∥2

≤ (M + m)2

4
,

where the first inequality is by (2.16), the second is by (2.14), and the third is by (2.25).
That is,

∥∥Φ
(
A∇vB + MmJ

(
A–1; B–1))(Φ(A)�Φ(B)

)–1∥∥ ≤ (M + m)2

4Mm
= α,

so we can get (2.21) by (2.15) and (2.17) easily when 0 ≤ p ≤ 2. When p > 2,

M
P
2 m

P
2
∥∥Φ

p
2
(
A∇vB + MmJ

(
A–1; B–1))(Φ(A)�vΦ(B)

)– p
2
∥∥

=
∥∥Φ

p
2
(
A∇vB + MmJ

(
A–1; B–1))M

P
2 m

P
2
(
Φ(A)�vΦ(B)

)– p
2
∥∥

≤ 1
4
∥∥Φ

p
2
(
A∇vB + MmJ

(
A–1; B–1)) + M

P
2 m

P
2
(
Φ(A)�vΦ(B)

)– p
2
∥∥2

≤ 1
4
∥∥(

Φ
(
A∇vB + MmJ

(
A–1; B–1)) + Mm

(
Φ(A)�vΦ(B)

)–1) p
2
∥∥2

=
1
4
∥∥Φ

(
A∇vB + MmJ

(
A–1; B–1)) + Mm

(
Φ(A)�vΦ(B)

)–1∥∥p

≤ 1
4
∥∥Φ

(
A∇vB + MmJ

(
A–1; B–1)) + MmΦ–1(A�vB)

∥∥p

≤ 1
4

(M + m)p,

where the first inequality is by (2.16), the second is by (2.18), the third is by (2.14), and the
last inequality is by (2.25). That is,

∥∥Φ
p
2
(
A∇vB + MmJ

(
A–1; B–1))(Φ(A)�vΦ(B)

)– p
2
∥∥ ≤ (M + m)p

4M P
2 m P

2
= α

p
2 ,

and we can get (2.21) by (2.15) easily. Hence we completed the proof of Theorem 2.11. �

Remark 2.12 Let 0 < mI ≤ A, B ≤ MI , v ∈ [0, 1] and r = min{v, 1 – v}. It is clear that
2v(A–1�B–1 + A–1 – 2(A–1� 1

4
B–1)) ≥ 0 and r(A–1� 1

4
B–1 + A–1 – 2(A–1� 1

8
B–1)) ≥ 0. In other
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words, our results can be regarded as further refinements of reversed AM–GM operator
inequalities of [12].

By the same methods of Theorem 2.11, we can get further improvements of (1.12) and
(1.13) for 1

4 ≤ v ≤ 1.

Corollary 2.13 Under the same conditions as in Theorem 2.11, we have:
(1) When 1

4 ≤ v ≤ 1
2 ,

Φp(A∇vB + MmF1
(
A–1; B–1)) ≤ αpΦp(A�vB) (2.26)

and

Φp(A∇vB + MmF1
(
A–1; B–1)) ≤ αp(Φ(A)�vΦ(B)

)p, (2.27)

where F1(A–1; B–1) = 2v(A–1∇B–1 – A–1�B–1) + (1 – 2v)(A–1�B–1 + A–1 –
2(A–1� 1

4
B–1)) + r(A–1� 1

4
B–1 + A–1�B–1 – 2(A–1� 3

8
B–1)) + G∗A–1�vB–1G;

(2) When 1
2 ≤ v ≤ 3

4 ,

Φp(A∇vB + MmF2
(
A–1; B–1)) ≤ αpΦp(A�vB) (2.28)

and

Φp(A∇vB + MmF2
(
A–1; B–1)) ≤ αp(Φ(A)�vΦ(B)

)p, (2.29)

where F2(A–1; B–1) = 2(1 – v)(A–1∇B–1 – A–1�B–1) + (2v – 1)(A–1�B–1 + B–1 –
2(A–1� 3

4
B–1)) + r(A–1� 3

4
B–1 + A–1�B–1 – 2(A–1� 5

8
B–1)) + G∗A–1�vB–1G;

(3) When 3
4 ≤ v ≤ 1,

Φp(A∇vB + MmF3
(
A–1; B–1)) ≤ αpΦp(A�vB) (2.30)

and

Φp(A∇vB + MmF3
(
A–1; B–1)) ≤ αp(Φ(A)�vΦ(B)

)p, (2.31)

where F3(A–1; B–1) = 2(1 – v)(A–1∇B–1 – A–1�B–1) + 2(1 – v)(A–1�B–1 + B–1 –
2(A–1� 3

4
B–1)) + r(A–1� 3

4
B–1 + B–1 – 2(A–1� 7

8
B–1)) + G∗A–1�vB–1G.

In the end of this paper, we give some inequalities for determinants which were not
mentioned in Yang’s paper and its references. But first, we state a lemma.

Lemma 2.14 (Minkowski inequality, [6]) Let a = [ai], b = [bi], i = 1, 2, . . . , n be such that
ai, bi are positive real numbers. Then

( n∏
i=1

ai

) 1
n

+

( n∏
i=1

bi

) 1
n

≤
( n∏

i=1

(ai + bi)

) 1
n

.

The equality holds if and only if a = b.
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Theorem 2.15 Let A, B ∈ Mn be two positive semidefinite matrices and T = A– 1
2 BA– 1

2 ,
v ∈ [0, 1], F̃(v) = min(1 + L(8v)

16 (log sj(T))2). Then the following statements are true:
(1) When 0 ≤ v ≤ 1

4 and r = min{4v, 1 – 4v}, we have

det(A∇vB)
2
n ≥ F̃(v) det(A�vB)

2
n + v2 det(A – B)

2
n

+ 2v det(A – A�B)
2
n + r det(A – A� 1

4
B)

2
n . (2.32)

(2) When 1
4 ≤ v ≤ 1

2 and r = min{2 – 4v, 4v – 1}, we have

det(A∇vB)
2
n ≥ F̃(v) det(A�vB)

2
n + v2 det(A – B)

2
n

+ (1 – 2v) det(A – A�B)
2
n + r det(A�B – A� 1

4
B)

2
n . (2.33)

(3) When 1
2 ≤ v ≤ 3

4 and r = min{3 – 4v, 4v – 2}, we have

det(A∇vB)
2
n ≥ F̃(v) det(A�vB)

2
n + (1 – v)2 det(A – B)

2
n

+ (2v – 1) det(B – A�B)
2
n + r det(A�B – A� 3

4
B)

2
n . (2.34)

(4) When 3
4 ≤ v ≤ 1 and r = min{4 – 4v, 4v – 3}, we have

det(A∇vB)
2
n ≥ F̃(v) det(A�vB)

2
n + (1 – v)2 det(A – B)

2
n

+ (2 – 2v) det(B – A�B)
2
n + r det(B – A� 3

4
B)

2
n . (2.35)

Proof Using inequality (2.6) and denoting the positive definite matrix as T = A– 1
2 BA– 1

2 ,
we have

F̃(v)
(
sv

j (T)
)2 + v2(1 – sj(T)

)2 + 2v
(
1 – s

1
2
j (T)

)2 + r
(
1 – s

1
4
j (T)

)2

≤ (
(1 – v) + vsj(T)

)2 (2.36)

for j = 1, 2, . . . , n. It is a fact that the determinant of a positive definite matrix is a product
of its singular values. So we have

det(I∇vT)
2
n

= det
[(

(1 – v)I + vT
)2] 1

n

=

[ n∏
j=1

(
(1 – v)I + vsj(T)

)2
] 1

n

≥
[ n∏

j=1

{
F̃(v)

(
sv

j (T)
)2 + v2(1 – sj(T)

)2 + 2v
(
1 – s

1
2
j (T)

)2 + r
(
1 – s

1
4
j (T)

)2}
] 1

n

≥
[ n∏

j=1

{
F̃(v)

(
sv

j (T)
)2}

] 1
n

+

[ n∏
j=1

{
v2(1 – sj(T)

)2}
] 1

n

+

[ n∏
j=1

{
2v

(
1 – s

1
2
j (T)

)2}
] 1

n
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+

[ n∏
j=1

{
r
(
1 – s

1
4
j (T)

)2}
] 1

n

= F̃(v) det
(
Tv) 2

n + v2 det(I – T)
2
n + 2v det

(
I – T

1
2
) 2

n + r det
(
I – T

1
4
) 2

n .

The first inequality is obtained by (2.36), while the second by Lemma 2.14. Multiplying by
(det A 1

2 ) 2
n both sides of inequalities above, we can get the desired inequality (2.32) directly.

Using the same technique above in (2.7)–(2.9), we can (2.33)–(2.35), respectively. To keep
our paper concise, we omit the details. �
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