
Hu et al. Journal of Inequalities and Applications         (2020) 2020:87 
https://doi.org/10.1186/s13660-020-02352-6

R E S E A R C H Open Access

Approximate Benson efficient solutions for
set-valued equilibrium problems
Shasha Hu1, Yihong Xu1* and Zhichao Niu1

*Correspondence:
xuyihong@ncu.edu.cn
1Department of Mathematics,
Nanchang University, Nanchang,
China

Abstract
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1 Introduction
The vector equilibrium problem is a broad problem in many practical fields. It covers
many typical mathematical problems, for instance, vector optimization, variational in-
equality, vector Nash equilibrium, vector complementarity, and so on. It is widely used
in investment decision-making, quantitative economy, optimal control, and engineering
technology. Because of the universality and unity of the problems involved and the pro-
fundity of solving them, vector equilibrium has become a hot issue in the field of nonlin-
ear analysis and operational research [1–6]. In Banach spaces, Feng et al. [1] established
Kuhn–Tucker-like conditions for weakly efficient solutions of vector equilibrium prob-
lems with constraints by using the Gerstewitz’s functional, and obtained sufficient condi-
tions of weakly efficient solutions under the assumption of generalized invexity. You et al.
[2] established Lagrangian-type sufficient optimality conditions for general constrained
vector optimization problems by applying Gerstewitz’s function, and, under suitable re-
striction qualifications, by virtue of Clarke subdifferentials, they obtained Karush–Kuhn–
Tucker necessary conditions. Luu et al. [3] derived necessary conditions for efficient solu-
tions to vector equilibrium problems with equality and inequality constraints. Under the
assumption of cone-convexity, Gong [4] obtained necessary and sufficient optimality con-
ditions for several efficient solutions to constrained vector equilibrium problems. By using
asymptotic analysis, Iusem et al. [5] studied vector equilibrium problems and noncoercive
pseudomonotone equilibrium problems.
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In recent years, approximate solutions of the set-valued optimization problem have at-
tracted people’s attention [6–8]. In real ordered linear spaces, Zhou et al. [6, 7] studied
several kinds of approximate properly efficient solutions of set-valued optimization prob-
lems, including ε-weakly, ε-global, ε-Benson, ε-super properly efficient solutions, and de-
rived the relationship between ε-Benson properly efficient solutions and ε-global properly
efficient solutions. Dhingra et al. [8] established existence and scalarization using a gen-
eralized Gerstewitz’s function for approximate solutions.

On the other hand, convexity is vital for studying the vector equilibrium problem. Sach
[10] proposed a new type of convexity named ic-cone-convexness in 2005. Yang et al. [9]
introduced another type of convexity called near cone-subconvexlikeness in 2001, which is
a generalization of cone-subconvexlikeness and cone-convexness. Xu et al. [11] certified
that near cone-subconvexlikeness is also an extension of ic-coneconvexness in 2011. So
far, near cone-subconvexlikeness is regarded as the most universal convexity property.

The above discussions motivate the aim of this paper—discussing the relationship be-
tween approximate Benson efficient solutions and Benson efficient solutions, and estab-
lishing Lagrange-type and Kuhn–Tucker-type optimality conditions for approximate Ben-
son efficient solutions.

2 Preliminaries
Throughout this paper, let X be a real topological vector space; let Y and Z be real locally
convex Hausdorff topological vector spaces, respectively, let S ⊂ Y and K ⊂ Z be pointed
closed convex cones with nonempty interiors. Let X0 be a nonempty subset of X, and
Υ : X0 × X0 → 2Y and G : X0 → 2Z be maps. Furthermore, 0Y denotes the zero element in
Y ; Y ∗ and Z∗ denote the topological dual space of Y and Z, respectively; S∗ and S∗i denote
the positive dual cone and strictly positive dual cone of S, respectively, that is,

S∗ =
{
φ ∈ Y ∗ : φ(s) ≥ 0,∀s ∈ S

}
,

S∗i =
{
φ ∈ Y ∗ : φ(s) > 0,∀s ∈ S\{0Y }}.

Definition 2.1 ([12]) The map F : X0 → 2Y is called generalized S-subconvexlike on X0

if and only if there exists θ ∈ int S such that, for all x1, x2 ∈ X0, λ ∈ [0, 1], and α > 0, there
exist x3 ∈ X0 and ρ > 0 such that

αθ + λF(x1) + (1 – λ)F(x2) ⊂ ρF(x3) + S.

Definition 2.2 ([9]) The map F : X0 → 2Y is called nearly S-subconvexlike on X0 iff
clcone(F(X0) + S) is convex.

Lemma 2.1 ([13]) Let C and D be two cones in Y , C ∩ D = {0Y }. If D is closed and C has
a compact base, then there exists a pointed convex cone M such that C\{0Y } ⊂ int M and
M ∩ D = {0Y }.

Lemma 2.2 ([14]) If f ∈ S∗\{0Y∗}, s ∈ int S, then f (s) > 0.
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Let Ω ⊂ X0. Consider the following constrained set-valued equilibrium problem (for
short, Υ -SEPC): find x̂ ∈ Ω such that

Υ (x̂, x) ∩ (–H) = ∅, ∀x ∈ Ω ,

where H ∪ {0} is a convex cone in Y .

Definition 2.3 A vector x̂ ∈ Ω is called a Benson efficient solution to (Υ -SEPC) if

clcone
(
Υ (x̂,Ω) + S

) ∩ (–S) = {0Y }.

The set of all Benson efficient solutions to (Υ -SEPC) is denoted by XBen(Υ ,Ω).

Definition 2.4 Let ε ∈ S. A vector x̂ ∈ Ω is said to be an ε-Benson efficient solution to
(Υ -SEPC) if

clcone
(
Υ (x̂,Ω) + ε + S

) ∩ (–S) = {0Y }.

The set of all ε-Benson efficient solutions to (Υ -SEPC) is denoted by ε-XBen(Υ ,Ω).

In what follows, we discuss the relationship between Benson and ε-Benson efficient so-
lution sets to constrained set-valued equilibrium problems.

Proposition 2.1 For any ε ∈ S, we have XBen(Υ ,Ω) ⊂ ε-XBen(Υ ,Ω).

Proof Let x ∈ XBen(Υ ,Ω), then

clcone
(
Υ (x,Ω) + S

) ∩ (–S) = {0Y }. (2.1)

Since ε ∈ S and S is a cone, we have ε + S ⊂ S + S ⊂ S. Then

Υ (x,Ω) + ε + S ⊂ Υ (x,Ω) + S.

Hence, 0Y ∈ clcone(Υ (x,Ω) + ε + S) ⊂ clcone(Υ (x,Ω) + S). Together with (2.1), this
yields clcone(Υ (x,Ω) + ε + S) ∩ (–S) = {0Y }. Then, x ∈ ε-XBen(Υ ,Ω). Hence we obtain
XBen(Υ ,Ω) ⊂ ε-XBen(Υ ,Ω). �

Remark 2.1 From Proposition 2.1, it follows that

XBen(Υ ,Ω) ⊂
⋂

ε∈S\{0Y }
ε-XBen(Υ ,Ω).

However, the reversed inclusion is not necessarily true. The following example illustrates
the case.

Example 2.1 Let X = Y = R
2, X0 = R

2, S = {(x1, x2) ∈ R
2 : x1 ≥ 0, x2 ≥ 0},Ω = {(x1, x2) ∈

R
2 : x2 ≥ x2

1}. Consider the set-valued map Υ : X0 × X0 → 2Y defined by Υ (x, u) = u – x. If
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x̂ = (0, 0), then Υ (x̂,Ω) = Ω . Then for any ε ∈ S\{0Y }, one has

clcone
(
Υ (x̂,Ω) + S

) ∩ (–S) =
{

(x1, 0) : x1 ≤ 0
} �= {0Y } 
⇒ x̂ /∈ XBen(Υ ,Ω),

however,

clcone
(
Υ (x̂,Ω) + ε + S

) ∩ (–S) = {0Y } 
⇒ x̂ ∈ ε-XBen(Υ ,Ω).

Hence,

⋂

ε∈S\{0Y }
ε-XBen(Υ ,Ω) �⊂ XBen(Υ ,Ω).

Proposition 2.2 For any ε1, ε2 ∈ S, if ε2 – ε1 ∈ S, then

ε1-XBen(Υ ,Ω) ⊂ ε2-XBen(Υ ,Ω).

Proof Similar to the proofs of Proposition 2.1 and [16], Proposition 3.2. �

In the above, Ω ⊂ X0 is the normal constraint set in the constrained set-valued equi-
librium problem. In the following, we give a specific constraint set, that is, E = {x ∈ X0 :
G(x) ∩ (–K) �= ∅}.

Let F : X0 → 2Y . Consider the following set-valued optimization problem:

(SOP) min F(x),

s.t. x ∈ E =
{

x ∈ X0 : G(x) ∩ (–K) �= ∅}
.

Definition 2.5 ([15]) A vector x̂ ∈ E is called a Benson efficient solution to (SOP) if there
exists ŷ ∈ F(x̂) such that

clcone
(
F(E) – ŷ + S

) ∩ (–S) = {0Y }.

In this case, (x̂, ŷ) is called a Benson efficient pair to (SOP).

3 Kuhn–Tucker-type optimality conditions
In this part, under the assumption of near cone-subconvexlikeness, we present Kuhn–
Tucker-type optimality conditions for ε-Benson efficient solutions to constrained set-
valued equilibrium problems.

If ∅ �= Q ⊂ Y , ∅ �= W ⊂ Y , ψ ∈ Y ∗, then

ψ(W ) ≥ ψ(Q) implies ψ(w) ≥ ψ(q), ∀w ∈ W , q ∈ Q.

Definition 3.1 ([16]) Let x̂ ∈ X0 and define an ordered pair map ϕ : X0 → 2Y×Z as follows:

ϕ(x) =
(
Υ (x̂, x) + ε, G(x)

)
, ∀x ∈ X0.
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Remark 3.1 ([16]) Note that ϕ is nearly S×K-subconvexlike on X0 iff clcone(ϕ(X0)+S×K)
is convex, where ϕ(X0) =

⋃
x∈X0

ϕ(x) =
⋃

x∈X0
(Υ (x̂, x) + ε, G(x)).

Theorem 3.1 Assume that x̂ ∈ E, S has a compact base, ϕ is nearly S×K-subconvexlike on
X0, and that there exists x′ ∈ X0 such that G(x′) ∩ (– int K) �= ∅. If x̂ is an ε-Benson efficient
solution to (Υ -SEPC), then there exist γ ∗ ∈ S∗i, ω∗ ∈ K∗ such that

γ ∗(y) + γ ∗(ε) + ω∗(z) ≥ 0, ∀x ∈ X0, y ∈ Υ (x̂, x), z ∈ G(x).

Proof Since x̂ is an ε-Benson efficient solution to (Υ -SEPC), we have

clcone
(
Υ (x̂, E) + ε + S

) ∩ (–S) = {0Y }.

Since clcone(Υ (x̂, E) + ε + S) is a closed cone, and S has a compact base, from Lemma 2.1
we deduce that there exists a pointed convex cone P such that –S\{0Y } ⊂ – int P and

clcone
(
Υ (x̂, E) + ε + S

) ∩ (–P) = {0Y }.

From 0Y /∈ – int P, we have int P ⊂ P\{0Y }, hence

clcone
(
Υ (x̂, E) + ε + S

) ∩ (– int P) = ∅. (3.1)

Next, we prove

clcone
(
ϕ(X0) + S × K

) ∩ (
–(int P × int K)

)
= ∅,

where ϕ(X0) =
⋃

x∈X0
ϕ(x) =

⋃
x∈X0

(Υ (x̂, x) + ε, G(x)).
If not, then there exists (ỹ, z̃) ∈ Y × Z such that

(ỹ, z̃) ∈ clcone
(
ϕ(X0) + S × K

) ∩ (
–(int P × int K)

)
.

Thus, ỹ ∈ – int P, z̃ ∈ – int K , and there exist λn > 0, xn ∈ X0, (yn, zn) ∈ (Υ (x̂, xn), G(xn)) and
(sn, kn) ∈ S × K such that

ỹ = lim
n→∞λn(yn + ε + sn),

and

z̃ = lim
n→∞λn(zn + kn).

Since – int K is open and K is a cone, we have zn + kn ∈ –K , and from kn ∈ K , we get
zn ∈ –K . Thus, zn ∈ G(xn) ∩ (–K), therefore, xn ∈ E, combining with ỹ ∈ – int P, we obtain
ỹ ∈ clcone(Υ (x̂, E) + ε + S) ∩ (– int P), which contradicts (3.1). Hence clcone(ϕ(X0) + S ×
K) ∩ (–(int P × int K)) = ∅. From Remark 3.1, we know clcone(ϕ(X0) + S × K) is convex. By
the separation theorem for convex sets, there exists (γ ∗,ω∗) ∈ Y ∗ × Z∗\{(0Y∗ , 0Z∗ )} such
that

(
γ ∗,ω∗)(clcone

(
ϕ(X0) + S × K

)) ≥ γ ∗(– int P) + ω∗(– int K). (3.2)
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Since clcone(ϕ(X0)+S×K) is a cone and on which (γ ∗,ω∗) has a lower bound, we conclude

(
γ ∗,ω∗)(clcone

(
ϕ(X0) + S × K

)) ≥ 0. (3.3)

It follows from (0Y , 0Z) ∈ S × K and (3.3) that (γ ∗,ω∗)(ϕ(X0)) ≥ 0. In other words,

γ ∗(y) + γ ∗(ε) + ω∗(z) ≥ 0, ∀x ∈ X0, y ∈ Υ (x̂, x), z ∈ G(x). (3.4)

In view of (0Y , 0Z) ∈ clcone(ϕ(X0) + S × K) and (3.2), one has

γ ∗(– int P) + ω∗(– int K) ≤ 0. (3.5)

From (3.3), we conclude that for any x ∈ X0, y ∈ Υ (x̂, x), z ∈ G(x), β1,β2 ≥ 0, s ∈ S and
k ∈ K , one has

γ ∗(y + ε + β1s) + ω∗(z + β2k) ≥ 0. (3.6)

(i) Firstly, we prove that ω∗ ∈ K∗, i.e., ω∗(k) ≥ 0,∀k ∈ K .
If not, then there exists k0 ∈ K such that ω∗(k0) < 0. When β2 is large enough, there exist

x2 ∈ X0, y2 ∈ Υ (x̂, x2), z2 ∈ G(x2), β ′
1 ≥ 0, and s2 ∈ S such that

ω∗(β2k0) = β2ω
∗(k0) < –γ ∗(y2 + ε + β ′

1s2
)

– ω∗(z2),

which contradicts (3.6). Hence we obtain ω∗(k) ≥ 0,∀k ∈ K .
(ii) Next, we prove that γ ∗ �= 0Y∗ .
If not, then γ ∗ = 0Y∗ . Since (γ ∗,ω∗) �= (0Y∗ , 0Z∗ ), we have ω∗ �= 0Z∗ , and then ω∗ ∈

K∗\{0Z∗}. From γ ∗ = 0Y∗ and (3.4), we get

ω∗(G(x)
) ≥ 0, ∀x ∈ X0. (3.7)

On the other hand, from G(x′) ∩ (– int K) �= ∅, there exists z′ ∈ G(x′) such that z′ ∈ – int K ,
hence combining with Lemma 2.2, we have ω∗(z′) < 0, which contradicts (3.7). Hence we
get γ ∗ �= 0Y∗ .

(iii) Finally, we prove that γ ∗ ∈ S∗i.
From (3.5) we derive γ ∗(int P) ≥ ω∗(– int K). Since int P is a cone on which γ ∗ has a

lower bound, we conclude that γ ∗(int P) ≥ 0. Since P is a convex cone, we have P ⊂ clP =
cl(int P). Then, for any p ∈ P, there exists a net {pα} ⊂ int P such that p = lim pα . Thus
γ ∗(p) = γ ∗(lim pα) = limγ ∗(pα) ≥ 0, which implies γ ∗(P) ≥ 0, therefore γ ∗ ∈ P∗. It follows
from (ii) that γ ∗ ∈ P∗\{0Y∗}. From Lemma 2.2, we have γ ∗(int P) > 0. By S\{0Y } ⊂ int P, we
get γ ∗(S\{0Y }) > 0. Thus, γ ∗ ∈ S∗i. �

Corollary 3.1 Assume that x̂ ∈ E, 0 ∈ Υ (x̂, x̂), S has a compact base, (Υ (x̂, ·), G(·)) is nearly
S × K-subconvexlike on X0, and that there exists x′ ∈ X0 such that G(x′) ∩ (– int K) �= ∅. If
x̂ is a Benson efficient solution to (Υ -SEPC), then there exist γ ∗ ∈ S∗i, ω∗ ∈ K∗ such that
minω∗(G(x̂)) = 0 and

min
{
γ ∗(y) + ω∗(z) : x ∈ X0, y ∈ Υ (x̂, x), z ∈ G(x)

}
= 0.



Hu et al. Journal of Inequalities and Applications         (2020) 2020:87 Page 7 of 16

Proof In Theorem 3.1, letting ε = 0, we see that there exist γ ∗ ∈ S∗i, ω∗ ∈ K∗ such that

γ ∗(y) + ω∗(z) ≥ 0, ∀x ∈ X0, y ∈ Υ (x̂, x), z ∈ G(x). (3.8)

According to x̂ ∈ E, we obtain G(x̂)∩ (–K) �= ∅. Thus there exists ẑ ∈ G(x̂) such that ẑ ∈ –K ,
and since ω∗ ∈ K∗ we know

ω∗(ẑ) ≤ 0. (3.9)

In equation (3.8), letting x = x̂, from 0 ∈ Υ (x̂, x̂) we get

ω∗(z) ≥ 0, ∀z ∈ G(x̂). (3.10)

Since ẑ ∈ G(x̂), we know ω∗(ẑ) ≥ 0, which, together with (3.9), implies ω∗(ẑ) = 0. Then

0 ∈ ω∗(G(x̂)
)
. (3.11)

It follows from (3.10) that minω∗(G(x̂)) = 0. It follows from 0 ∈ Υ (x̂, x̂) and (3.11) that
0 ∈ γ ∗(Υ (x̂, x̂)) + ω∗(G(x̂)). From (3.8), we derive

min
{
γ ∗(y) + ω∗(z) : x ∈ X0, y ∈ Υ (x̂, x), z ∈ G(x)

}
= 0. �

Theorem 3.2 Suppose that
(i) x̂ ∈ E;

(ii) there exist γ ∗ ∈ S∗i, ω∗ ∈ K∗ such that

γ ∗(y) + γ ∗(ε) + ω∗(z) ≥ 0, ∀x ∈ E, y ∈ Υ (x̂, x), z ∈ G(x).

Then x̂ is an ε-Benson efficient solution to (Υ -SEPC).

Proof Let s ∈ clcone(Υ (x̂, E) + ε + S) ∩ (–S), then there exist λn > 0, yn ∈ Υ (x̂, E), and sn ∈ S
such that

s = lim
n→∞λn(yn + ε + sn).

Thus,

γ ∗(s) = lim
n→∞λn

(
γ ∗(yn) + γ ∗(ε) + γ ∗(sn)

)
. (3.12)

It follows from (ii) that

γ ∗(Υ (x̂, x)
)

+ γ ∗(ε) + ω∗(G(x)
) ≥ 0, ∀x ∈ E. (3.13)

By x ∈ E, there exists zx ∈ G(x) such that zx ∈ –K , combining with ω∗ ∈ K∗, we know
ω∗(zx) ≤ 0, hence ω∗(G(x)) ∩ (–∞, 0] �= ∅. Then, from (3.13) we have

γ ∗(Υ (x̂, x)
)

+ γ ∗(ε) ≥ 0, ∀x ∈ E.
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Thus γ ∗(yn) + γ ∗(ε) ≥ 0, and since γ ∗ ∈ S∗i, we derive γ ∗(sn) ≥ 0. Hence, by (3.12) we
obtain γ ∗(s) ≥ 0. On the other hand, from s ∈ –S we know γ ∗(s) ≤ 0. Thus γ ∗(s) = 0,
combining with γ ∗ ∈ S∗i, we know s = 0Y . Then,

clcone
(
Υ (x̂, E) + ε + S

) ∩ (–S) = {0Y }.

Thus, x̂ is an ε-Benson efficient solution to (Υ -SEPC). �

Corollary 3.2 Suppose that
(i) x̂ ∈ E;

(ii) there exist γ ∗ ∈ S∗i, ω∗ ∈ K∗ such that

γ ∗(y) + ω∗(z) ≥ 0, ∀x ∈ E, y ∈ Υ (x̂, x), z ∈ G(x).

Then x̂ is a Benson efficient solution to (Υ -SEPC).

Proof In Theorem 3.2, letting ε = 0, we derive that the conclusion is true. �

Remark 3.2 Let Υ (y, x) = F(x) – ŷ. Since ŷ ∈ F(x̂) and x̂ ∈ E, Υ (·, ·) depends only on the
second variable. Then Theorem 2.3 in [15] is a special case of Corollary 3.2.

Corollary 3.3 Suppose that x̂ ∈ E, S has a compact base, ϕ is nearly S × K-subconvexlike
on X0, and that there exists x′ ∈ X0 such that G(x′) ∩ (– int K) �= ∅. Then x̂ is an ε-Benson
efficient solution to (Υ -SEPC) if and only if there exist γ ∗ ∈ S∗i, ω∗ ∈ K∗ such that

γ ∗(y) + γ ∗(ε) + ω∗(z) ≥ 0, ∀x ∈ X0, y ∈ Υ (x̂, x), z ∈ G(x).

Proof It follows from Theorems 3.1 and 3.2 that the conclusion is true. �

Corollary 3.4 Suppose that x̂ ∈ E, 0 ∈ Υ (x̂, x̂), S has a compact base, (Υ (x̂, ·), G(·)) is nearly
S×K-subconvexlike on X0, and that there exists x′ ∈ X0 such that G(x′)∩ (– int K) �= ∅. Then
x̂ is a Benson efficient solution to (Υ -SEPC) if and only if there exist γ ∗ ∈ S∗i, ω∗ ∈ K∗ such
that minω∗(G(x̂)) = 0 and

min
{
γ ∗(y) + ω∗(z) : x ∈ X0, y ∈ Υ (x̂, x), z ∈ G(x)

}
= 0.

Proof By Corollaries 3.1 and 3.2, we can easily see that the conclusions are true. �

Corollary 3.5 Assume that
(i) x̂ ∈ E;

(ii) there exist ŷ ∈ F(x̂), γ ∗ ∈ S∗i, ω∗ ∈ K∗ such that

γ ∗(ŷ) = min
{
γ ∗(y) + ω∗(z) : x ∈ E, y ∈ F(x), z ∈ G(x)

}
.

Then (x̂, ŷ) is a Benson efficient pair to (SOP).
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Proof From (ii), we have

γ ∗(F(x) – ŷ
)

+ ω∗(G(x)
) ≥ 0, ∀x ∈ E.

Letting Υ (y, x) = F(x) – ŷ, then Υ (x̂, x) = F(x) – ŷ. From ŷ ∈ F(x̂) we get 0 ∈ F(x̂) – ŷ. Then,
0 ∈ Υ (x̂, x̂) and F(x) – ŷ = Υ (x̂, x). Thus

γ ∗(Υ (x̂, x)
)

+ ω∗(G(x)
) ≥ 0, ∀x ∈ E.

It follows from Corollary 3.2 that x̂ is a Benson efficient solution to (Υ -SEPC). Hence, (x̂, ŷ)
is a Benson efficient pair to (SOP). �

Remark 3.3 Comparing with Theorem 2.5 in [15], this corollary does not require
infω∗(G(x̂)) = 0.

4 Lagrange-type optimality conditions
In this section, we establish Lagrange-type optimality conditions for ε-Benson efficient
solutions to unconstrained set-valued equilibrium problems.

Let L(Z, Y ) be the space of continuous linear operators from Z to Y , and let

L+(Z, Y ) =
{

T ∈ L(Z, Y ) : T(K) ⊂ S
}

.

Let Θ : X0 × X0 → 2Y . We consider unconstrained set-valued equilibrium problem (in
brief, Θ-USEP): find x̂ ∈ X0 such that

Θ(x̂, x) ∩ (–H) = ∅, ∀x ∈ X0,

where H ∪ {0} is a convex cone on Y .
Next, we introduce Benson and ε-Benson efficient solutions to unconstrained set-valued

equilibrium problems.

Definition 4.1 A vector x̂ ∈ X0 is said to be a Benson efficient solution to (Θ-USEP) if

clcone
(
Θ(x̂, X0) + S

) ∩ (–S) = {0Y }.

Definition 4.2 Let ε ∈ S. A vector x̂ ∈ X0 is called an ε-Benson efficient solution to (Θ-
USEP) if

clcone
(
Θ(x̂, X0) + ε + S

) ∩ (–S) = {0Y }.

Let F : X0 → 2Y , T̂ ∈ L+(Z, Y ). We consider the following unconstrained set-valued op-
timization problem:

(USOP)T̂ min
x∈X0

ζ (x, T̂),

where ζ (x, T̂) = F(x) + T̂(G(x)).
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Definition 4.3 ([18]) A vector x̂ ∈ X0 is called a Benson efficient solution to (USOP)T̂ if
there exists ŷ ∈ F(x̂) such that

clcone
(
ζ (X0, T̂) – ŷ + S

) ∩ (–S) = {0Y },

where ζ (X0, T̂) =
⋃

x∈X0
ζ (x, T̂) =

⋃
x∈X0

(F(x) + T̂(G(x))). In this case, (x̂, ŷ) is called a Ben-
son efficient pair to (USOP)T̂.

Definition 4.4 Let ε ∈ S. A vector x̂ ∈ X0 is called an ε-Benson efficient solution to
(USOP)T̂ if there exists ŷ ∈ F(x̂) such that

clcone
(
ζ (X0, T̂) – ŷ + ε + S

) ∩ (–S) = {0Y },

where ζ (X0, T̂) =
⋃

x∈X0
ζ (x, T̂) =

⋃
x∈X0

(F(x) + T̂(G(x))). In this case, (x̂, ŷ) is called an ε-
Benson efficient pair to (USOP)T̂.

Theorem 4.1 Assume that x̂ ∈ E, 0 ∈ Υ (x̂, x̂), S has a compact base, ϕ is nearly S × K-
subconvexlike on X0, and that there exists x′ ∈ X0 such that G(x′) ∩ (– int K) �= ∅. If x̂ is an
ε-Benson efficient solution to (Υ -SEPC), then there exists T̂ ∈ L+(Z, Y ) such that x̂ is an
ε-Benson efficient solution to (Ψ -USEP) and

–T̂
(
G(x̂) ∩ (–K)

) ⊂ S\(ε +
(
S\{0Y })),

where Ψ : X0 × X0 → 2Y is defined as Ψ (y, x) = Υ (y, x) + T̂(G(x)).

Proof It follows from Theorem 3.1 that there exist γ ∗ ∈ S∗i, ω∗ ∈ K∗ such that

γ ∗(y) + γ ∗(ε) + ω∗(z) ≥ 0, ∀x ∈ X0, y ∈ Υ (x̂, x), z ∈ G(x). (4.1)

From γ ∗ ∈ S∗i, we obtain that there exists s0 ∈ S\{0Y } ⊂ S such that γ ∗(s0) = 1. Define the
operator T̂ : Z → Y as follows:

T̂(z) = ω∗(z)s0, ∀z ∈ Z.

Thus, T̂(K) = ω∗(K)s0 ⊂ S, which implies T̂ ∈ L+(Z, Y ). In equation (4.1), letting x = x̂,
from 0 ∈ Υ (x̂, x̂) we obtain

γ ∗(ε) + ω∗(z) ≥ 0, ∀z ∈ G(x̂) ∩ (–K). (4.2)

From z ∈ –K , we know –T̂(z) = –ω∗(z)s0 ∈ S. Then,

–T̂
(
G(x̂) ∩ (–K)

)
= –ω∗(G(x̂) ∩ (–K)

)
s0 ⊂ S. (4.3)

In the following, we prove –T̂(G(x̂) ∩ (–K)) ∩ (ε + (S\{0Y })) = ∅.
If not, then there exists ẑ ∈ G(x̂) ∩ (–K) such that

–T̂(ẑ) ∈ ε +
(
S\{0Y }). (4.4)
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Hence, –T̂(ẑ) – ε ∈ S\{0Y }. It follows from (4.2) and the definition of T̂ that

γ ∗(–T̂(ẑ) – ε
)

= γ ∗(–ω∗(ẑ)s0 – ε
)

= –
(
γ ∗(ε) + ω∗(ẑ)

) ≤ 0.

On the other hand, from γ ∗ ∈ S∗i we have γ ∗(S\{0Y }) > 0. Then, –T̂(ẑ) –ε /∈ S\{0Y }, which
contradicts (4.4). Hence, –T̂(G(x̂) ∩ (–K)) ∩ (ε + (S\{0Y })) = ∅, and, combining with (4.3),
we have –T̂(G(x̂) ∩ (–K)) ⊂ S\(ε + (S\{0Y })).

Ultimately, we prove clcone(Ψ (x̂, X0) + ε + S) ∩ (–S) = {0Y }.
Let s ∈ clcone(Ψ (x̂, X0) + ε + S) ∩ (–S), then there exist λn > 0, yn ∈ Ψ (x̂, X0), and sn ∈ S

such that

s = lim
n→∞λn(yn + ε + sn).

Thus,

γ ∗(s) = lim
n→∞λn

(
γ ∗(yn) + γ ∗(ε) + γ ∗(sn)

)
. (4.5)

From γ ∗ ∈ S∗i we get γ ∗(sn) ≥ 0. By the definition of T̂ , γ ∗(s0) = 1 and (4.1), we get that
for any x ∈ X0,

γ ∗(Ψ (x̂, x)
)

+ γ ∗(ε) = γ ∗(Υ (x̂, x)
)

+ γ ∗(T̂
(
G(x)

))
+ γ ∗(ε)

= γ ∗(Υ (x̂, x)
)

+ γ ∗(ω∗(G(x)
)
s0

)
+ γ ∗(ε)

= γ ∗(Υ (x̂, x)
)

+ ω∗(G(x)
)
γ ∗(s0) + γ ∗(ε)

= γ ∗(Υ (x̂, x)
)

+ ω∗(G(x)
)

+ γ ∗(ε)

≥ 0.

Hence, by (4.5) we obtain γ ∗(s) ≥ 0. On the other hand, from s ∈ –S we know γ ∗(s) ≤ 0.
Thus, γ ∗(s) = 0, together with γ ∗ ∈ S∗i, this yields s = 0Y . Then,

clcone
(
Ψ (x̂, X0) + ε + S

) ∩ (–S) = {0Y }.

Thus, x̂ is an ε-Benson efficient solution to (Ψ -USEP). �

Corollary 4.1 Assume that x̂ ∈ E, 0 ∈ Υ (x̂, x̂), S has a compact base, (Υ (x̂, ·), G(·)) is nearly
S × K-subconvexlike on X0, and that there exists x′ ∈ X0 such that G(x′) ∩ (– int K) �= ∅. If
x̂ is a Benson efficient solution to (Υ -SEPC), then there exists T̂ ∈ L+(Z, Y ) such that x̂ is a
Benson efficient solution to (Ψ -USEP) and

T̂
(
G(x̂) ∩ (–K)

)
= {0Y },

where Ψ : X0 × X0 → 2Y is defined as Ψ (y, x) = Υ (y, x) + T̂(G(x)).

Proof In Theorem 4.1, letting ε = 0, we get that the conclusions hold. �

Theorem 4.2 Assume that
(i) x̂ ∈ E;
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(ii) there exists T̂ ∈ L+(Z, Y ) such that x̂ is an ε-Benson efficient solution to (Ψ -USEP),
where Ψ : X0 × X0 → 2Y is defined as

Ψ (y, x) = Υ (y, x) + T̂
(
G(x)

)
.

Then x̂ is an ε-Benson efficient solution to (Υ -SEPC).

Proof Since x̂ is an ε-Benson efficient solution to (Ψ -USEP), we gain

clcone
(
Ψ (x̂, X0) + ε + S

) ∩ (–S) = {0Y }. (4.6)

For any x ∈ E, we know G(x) ∩ (–K) �= ∅. Thus, there exists zx ∈ G(x) such that zx ∈ –K .
Since T̂ ∈ L+(Z, Y ), we get –T̂(zx) ∈ S, hence S – T̂(zx) ∈ S + S ⊂ S, and thus S ⊂ T̂(zx) + S.
It follows from zx ∈ G(x) that S ⊂ T̂(G(x)) + S. Hence

Υ (x̂, E) + ε + S =
⋃

x∈E

(
Υ (x̂, x) + S + ε

)

⊂
⋃

x∈E

(
Υ (x̂, x) + T̂

(
G(x)

)
+ S + ε

)

⊂
⋃

x∈X0

(
Υ (x̂, x) + T̂

(
G(x)

)
+ S + ε

)

= Ψ (x̂, X0) + ε + S.

Thus

0Y ∈ clcone
(
Υ (x̂, E) + ε + S

) ⊂ clcone
(
Ψ (x̂, X0) + ε + S

)
.

Together with (4.6), this yields

clcone
(
Υ (x̂, E) + ε + S

) ∩ (–S) = {0Y }.

Thus x̂ is an ε-Benson efficient solution to (Υ -SEPC). �

Corollary 4.2 Assume that
(i) x̂ ∈ E;

(ii) there exists T̂ ∈ L+(Z, Y ) such that x̂ is a Benson efficient solution to (Ψ -USEP),
where Ψ : X0 × X0 → 2Y is defined as

Ψ (y, x) = Υ (y, x) + T̂
(
G(x)

)
.

Then x̂ is a Benson efficient solution to (Υ -SEPC).

Proof In Theorem 4.2, letting ε = 0, we gain that the conclusion is true. �

Remark 4.1 Let Υ (y, x) = F(x) – ŷ. Since ŷ ∈ F(x̂) and x̂ ∈ E, Υ (·, ·) depends only on the
second variable. Then Theorem 5.2 in [18] is a special case of Corollary 4.2.
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Corollary 4.3 Suppose that x̂ ∈ E, 0 ∈ Υ (x̂, x̂), S has a compact base, ϕ is nearly S × K-
subconvexlike on X0, and that there exists x′ ∈ X0 such that G(x′) ∩ (– int K) �= ∅. Then x̂ is
an ε-Benson efficient solution to (Υ -SEPC) if and only if there exists T̂ ∈ L+(Z, Y ) such that
x̂ is an ε-Benson efficient solution to (Ψ -USEP), where Ψ : X0 × X0 → 2Y is defined as

Ψ (y, x) = Υ (y, x) + T̂
(
G(x)

)
.

Proof This proof follows immediately from Theorems 4.1 and 4.2. �

Corollary 4.4 Suppose that x̂ ∈ E, 0 ∈ Υ (x̂, x̂), S has a compact base, (Υ (x̂, ·), G(·)) is nearly
S×K-subconvexlike on X0, and that there exists x′ ∈ X0 such that G(x′)∩ (– int K) �= ∅. Then
x̂ is a Benson efficient solution to (Υ -SEPC) if and only if there exists T̂ ∈ L+(Z, Y ) such that
x̂ is a Benson efficient solution to (Ψ -USEP), where Ψ : X0 × X0 → 2Y is defined as

Ψ (y, x) = Υ (y, x) + T̂
(
G(x)

)
.

Proof It follows from Corollaries 4.1 and 4.2 that the conclusion is true. �

Corollary 4.5 Suppose that x̂ ∈ E, ŷ ∈ F(x̂), S has a compact base, (F – ŷ, G) is nearly
S × K-subconvexlike on X0, and that there exists x′ ∈ X0 such that G(x′) ∩ (– int K) �= ∅. If
(x̂, ŷ) is an ε-Benson efficient pair to (SOP), then there exists T̂ ∈ L+(Z, Y ) such that (x̂, ŷ) is
an ε-Benson efficient pair to (USOP)T̂ and

–T̂
(
G(x̂) ∩ (–K)

) ⊂ S\(ε +
(
S\{0Y })).

Proof Since (x̂, ŷ) is an ε-Benson efficient pair to (SOP), we have

clcone
(
F(E) – ŷ + ε + S

) ∩ (–S) = {0Y }.

Letting Υ (y, x) = F(x) – ŷ, then Υ (x̂, x) = F(x) – ŷ. From ŷ ∈ F(x̂) we have 0 ∈ F(x̂) – ŷ. Then,
0 ∈ Υ (x̂, x̂) and F(E) – ŷ = Υ (x̂, E). Thus

clcone
(
Υ (x̂, E) + ε + S

) ∩ (–S) = {0Y }.

Therefore, x̂ is an ε-Benson efficient solution to (Υ -SEPC). By Theorem 4.1, we can see
that there exists T̂ ∈ L+(Z, Y ) such that x̂ is an ε-Benson efficient solution to (Ψ -SEPC)
and –T̂(G(x̂) ∩ (–K)) ⊂ S\(ε + (S\{0Y })). Then

clcone
(
Ψ (x̂, X0) + ε + S

) ∩ (–S) = {0Y }.

Consequently,

clcone
( ⋃

x∈X0

(
Υ (x̂, x) + T̂

(
G(x)

))
+ ε + S

)
∩ (–S) = {0Y }.

From Υ (x̂, x) = F(x) – ŷ, we get

clcone
( ⋃

x∈X0

(
F(x) – ŷ + T̂

(
G(x)

))
+ ε + S

)
∩ (–S) = {0Y },
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that is, clcone(ζ (X0, T̂) – ŷ + ε + S) ∩ (–S) = {0Y }. Hence, (x̂, ŷ) is an ε-Benson efficient pair
to (USOP)T̂. �

Corollary 4.6 Assume that
(i) x̂ ∈ E, ŷ ∈ F(x̂);

(ii) there exists T̂ ∈ L+(Z, Y ) such that (x̂, ŷ) is an ε-Benson efficient pair to (USOP)T̂.
Then x̂ is an ε-Benson efficient pair to (SOP).

Proof It follows from (ii) that clcone(ζ (X0, T̂) – ŷ + ε + S) ∩ (–S) = {0Y }, that is,

clcone
( ⋃

x∈X0

(
F(x) + T̂

(
G(x)

))
– ŷ + ε + S

)
∩ (–S) = {0Y }.

Letting Υ (y, x) = F(x) – ŷ, then Υ (x̂, x) = F(x) – ŷ. From ŷ ∈ F(x̂) we have 0 ∈ F(x̂) – ŷ. Then,
0 ∈ Υ (x̂, x̂) and F(x) – ŷ = Υ (x̂, x). Thus

clcone
( ⋃

x∈X0

(
Υ (x̂, x) + T̂

(
G(x)

))
+ ε + S

)
∩ (–S) = {0Y }.

Thus, clcone(Ψ (x̂, X0) + ε + S) ∩ (–S) = {0Y }, Hence, x̂ is an ε-Benson efficient solution
to (Ψ -USEP). By Theorem 4.2, we can see that x̂ is an ε-Benson efficient solution to
(Υ -SEPC), that is, clcone(Υ (x̂, E) + ε + S) ∩ (–S) = {0Y }. From Υ (x̂, E) = F(E) – ŷ, we get
clcone(F(E) – ŷ + ε + S) ∩ (–S) = {0Y }. Thus, (x̂, ŷ) is an ε-Benson efficient pair to (SOP). �

Corollary 4.7 Suppose that x̂ ∈ E, ŷ ∈ F(x̂), S has a compact base, (F – ŷ, G) is nearly S×K-
subconvexlike on X0, and that there exists x′ ∈ X0 such that G(x′) ∩ (– int K) �= ∅. Then (x̂, ŷ)
is an ε-Benson efficient pair to (SOP) if and only if there exists T̂ ∈ L+(Z, Y ) such that (x̂, ŷ)
is an ε-Benson efficient pair to (USOP)T̂.

Proof It follows from Corollaries 4.5 and 4.6 that the conclusion holds. �

Corollary 4.8 Suppose that x̂ ∈ E, ŷ ∈ F(x̂), S has a compact base, (F – ŷ, G) is nearly S×K-
subconvexlike on X0, and that there exists x′ ∈ X0 such that G(x′) ∩ (– int K) �= ∅. If (x̂, ŷ) is
a Benson efficient pair to (SOP), then there exists T̂ ∈ L+(Z, Y ) such that (x̂, ŷ) is a Benson
efficient pair to (USOP)T̂ and

T̂
(
G(x̂) ∩ (–K)

)
= {0Y }.

Proof In Corollary 4.5, letting ε = 0, we get that the conclusions are true. �

Remark 4.2 Corollary 4.8 generalizes Theorem 5.1 of [18] at the following points:
(i) If (F , G) is S × K-subconvexlike on X0, then (F – ŷ, G) is nearly S × K-subconvexlike

on X0;
(ii) Comparing with Theorem 5.1 in [18], this corollary does not require the convexity

of F .

Corollary 4.9 Suppose that x̂ ∈ E, ŷ ∈ F(x̂), S has a compact base, (F – ŷ, G) is nearly S×K-
subconvexlike on X0, and that there exists x′ ∈ X0 such that G(x′) ∩ (– int K) �= ∅. Then (x̂, ŷ)
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is a Benson efficient pair to (SOP) if and only if there exists T̂ ∈ L+(Z, Y ) such that (x̂, ŷ) is
a Benson efficient pair to (USOP)T̂ and

T̂
(
G(x̂) ∩ (–K)

)
= {0Y }.

Proof It follows from Corollary 4.8 and Remark 4.1 that the conclusions are true. �

Remark 4.3 Corollary 4.9 is different from Theorem 5.1 of [19] at the following points:
(i) The vector-valued function is extended to a set-valued function;

(ii) According to Remarks 3.1 and 3.3 in [17], we know that if (F – ŷ, G) is generalized
S × K-subconvexlike on X0, then (F – ŷ, G) is nearly S × K-subconvexlike on X0.
Hence, Corollary 4.9 generalizes Theorem 5.1 in [19].

5 Conclusions
In this paper, we investigated the relationship between Benson and ε-Benson efficient so-
lutions, and established Kuhn–Tucker-type and Lagrange-type optimality conditions to
set-valued equilibrium problems. The results we obtained generalize those of Liu [15], Li
[18], and Chen [19], respectively. As a mathematical topic, further research on ε-Benson
efficient solutions seems to be of value and interest.
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