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Abstract
We consider a nonlinear fractional boundary value problem involving conformable
variable-order derivative with Dirichlet conditions. We prove the existence of
solutions to the considered problem by using the upper and lower solutions’ method
with Schauder’s fixed-point theorem. In addition, under some assumptions on the
nonlinear term, a new Lyapunov-type inequality is given for the corresponding
boundary value problem. The obtained inequality provides a necessary condition for
the existence of nontrivial solutions to the considered problem and a method to
prove uniqueness for the nonhomogeneous boundary value problem. These new
results are illustrated through examples.
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1 Introduction
Fractional calculus is considered to be an extremely powerful tool in describing com-
plex systems due to applications, see [1, 2]. This field has attracted many authors working
on generalizations of existing results including definitions, theorems, models, and many
more. The conventional fractional derivatives, such as Riemann–Liouville and Caputo,
have found numerous applications in science and engineering on account of their non-
locality and heredity effects. However, the two typical fractional derivatives do not obey
the product, quotient, and chain rules, which presents us with some difficulties and in-
convenience in mathematical handling. To overcome these difficulties, an interesting new
well-behaved fractional derivative, called the conformable derivative, was introduced in
[3, 4], where authors proved many similar properties as in the classical calculus. The con-
formable derivative is regarded as a natural extension of the classical derivative. Its physi-
cal interpretation given in [5] is a modification of the classical derivative in direction and
magnitude, which indicates its potential applications in physics and engineering. Recently,
there have been some works on conformable derivatives and their applications in vari-
ous fields. In [6], the fractional Newtonian mechanics with conformable derivative was
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discussed. In [7], exact solutions of Wu–Zhang system with conformable time-fractional
derivative were constructed. In [8], Sturm–Liouville eigenvalue problems in the frame-
work of conformable derivative were studied. In [9], the distributions δr and (δ′)r for any
r ∈ R with conformable derivative were found. On the other hand, in [10–12], authors
proved the existence of solutions to nonlinear conformable fractional differential equa-
tions by using some fixed-point theorems.

The classical inequalities and their applications play an essential role in the theory of dif-
ferential equations and applied mathematics. A large number of generalizations of clas-
sical inequalities by means of fractional operators are established in [9, 10, 13–29] and
the references therein. The Lyapunov inequality was presented and proved by a Russian
mathematician A.M. Lyapunov in [30], where he stated the fact that if the boundary value
problem (BVP)

⎧
⎨

⎩

x′′(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x(b) = 0,
(1.1)

has a nontrival solution, then

∫ b

a

∣
∣q(t)

∣
∣dt >

4
b – a

, (1.2)

where q : [a, b] → R is a continuous function. Generalizations of Lyapunov inequality
(1.2) to fractional boundary value problems have been the interest of some researchers
in the last few years due to their applications in the study of qualitative properties of so-
lutions for differential equations (see, e.g., [10, 17–19, 21–25] and the references therein).
In [10], Khaldi et al. gave a Lyapunov inequality for a boundary value problem involving
conformable derivative. In [24, 25, 31], some new Lyapunov-type inequalities related to
conformable fractional derivative were presented.

In [32], Zhang et al. defined a new conformable variable-order derivative. It was a
generalization of the conformable constant-order derivative introduced in [3, 4]. A few
properties of conformable variable-order derivative were presented in [32]. However, the
progress in this direction is still at its earliest stage. Motivated by the above cited excellent
works, in this paper we prove the existence of solutions and give a new Lyapunov-type in-
equality for the following boundary value problem involving conformable variable-order
derivative:

⎧
⎨

⎩

Ta
p(t)x(t) + ϕ(t, x(t)) = 0, t ∈ (a, b),

x(a) = x(b) = 0,
(1.3)

where Ta
p(t) defined in Sect. 2 is the conformable variable-order fractional derivative, p :

[a, b] → (1, 2] is a continuous function, and ϕ : [a, b] ×R →R is a given function.
The paper is organized as follows. In Sect. 2, we recall some basic definitions on con-

formable variable-order derivative, define its higher-order analogue, and establish some
preliminary results. In Sect. 3, we prove the existence of solutions to BVP (1.3) by using
the lower and upper solutions’ method with Schauder’s fixed-point theorem. In Sect. 4,
under some assumptions on the nonlinear term, a new Lyapunov-type inequality is given
and some special cases are discussed.
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2 Preliminaries
In this section, we give several definitions related to conformable variable-order fractional
derivatives which can be found in [19]. Furthermore, conformable higher variable-order
derivative is defined and some basic results are presented.

Definition 2.1 ([32]) The (left) conformable variable-order fractional derivative starting
from a of a function f : [a,∞) →R of order p : [a,∞) → (0, 1] is defined by

(
Ta

p(t)f
)
(t) = lim

ε→0

f (t + ε(t – a)1–p(t)) – f (t)
ε

, t > a,

when a = 0, we write Tp(t). If (Ta
p(t)f )(t) exists on (a,∞), then (Ta

p(t)f )(a) = limt→a+ (Ta
p(t)f )(t).

Remark 2.1 ([32]) If the fractional derivative of f of order p(t) ∈ (0, 1] for all t ∈ [a,∞)
exists, then we simply say that f is p(t)-differentiable.

Lemma 2.1 ([32]) Let p : [a,∞) → (0, 1]. If a function f : [a,∞) → R is p(t)- differentiable
at t0 > a, then f is continuous at t0.

Lemma 2.2 ([32]) Let p : [a,∞) → (0, 1]. If f is differentiable at a point t > a, then
(Ta

p(t)f )(t) = (t – a)1–p(t)f ′(t).

In the higher-order case, we can generalize to the following:

Definition 2.2 Let p : [a,∞) → (n, n + 1] and q(t) = p(t) – n. Then the (left) conformable
variable-order derivative starting from a of a function f : [a,∞) →R of order p(t), where
f (n)(t) exists, is defined by

(
Ta

p(t)f
)
(t) =

(
Ta

q(t)f
(n))(t), t > a, (2.1)

when a = 0, we write Tp(t). If (Ta
p(t)f )(t) exists on (a,∞), then (Ta

p(t)f )(a) = limt→a+ (Ta
p(t)f )(t).

Note that if p(t) = α, where α ∈ (n, n + 1] is a constant, then the definition of conformable
variable-order derivative coincides with the definition in [4]. Also when n = 0 (or 0 < p(t) ≤
1), then q(t) = p(t) and the definition coincides with Definition 2.1.

Remark 2.2 If n < p(t) ≤ n + 1, q(t) = p(t) – n, and f (n+1)(t) exists, then we have

(
Ta

p(t)f
)
(t) =

(
Ta

q(t)f
(n))(t) = (t – a)1–q(t)f (n+1)(t) = (t – a)n+1–p(t)f (n+1)(t), t > a. (2.2)

Lemma 2.3 Let p : [a, b] → (1, 2]. If a function f ∈ C1[a, b] ∩ C2(a, b) attains a global min-
imum (respectively maximum) at some point ξ ∈ (a, b), then (Ta

p(t)f )(ξ ) ≥ 0 (respectively
(Ta

p(t)f )(ξ ) ≤ 0).

Proof Since f ∈ C2(a, b) attains a global minimum at ξ ∈ (a, b), we have

f ′′(ξ ) ≥ 0.
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According to Remark 2.2, we have

(
Ta

p(t)f
)
(ξ ) = (ξ – a)2–p(ξ )f ′′(ξ ) ≥ 0. �

Lemma 2.4 If both p : [a, b] → (1, 2] and h : [a, b] →R are continuous functions, then

∣
∣
∣
∣

∫ b

a
(s – a)p(s)–2h(s) ds

∣
∣
∣
∣ < ∞.

Proof Since

∣
∣
∣
∣

∫ b

a
(s – a)p(s)–2h(s) ds

∣
∣
∣
∣ ≤ ‖h‖

∫ b

a
(s – a)p(s)–2 ds,

where ‖h‖ = maxs∈[a,b] |h(s)|, we just need to demonstrate
∫ b

a (s – a)p(s)–2 ds < ∞.
Because p : [a, b] → (1, 2] is a continuous function, then there exist two constants p1,

p2 ∈ (1, 2] such that

min
s∈[a,b]

p(s) = p1, max
s∈[a,b]

p(s) = p2.

Therefore, if 0 < s – a < 1, then

∫ b

a
(s – a)p(s)–2 ds ≤

∫ b

a
(s – a)p1–2 ds =

(b – a)p1–1

p1 – 1
;

if s – a = 1, then

∫ b

a
(s – a)p(s)–2 ds = b – a;

if s – a > 1, then

∫ b

a
(s – a)p(s)–2 ds ≤

∫ b

a
(s – a)p2–2 ds =

(b – a)p2–1

p2 – 1
.

In conclusion, | ∫ b
a (s – a)p(s)–2h(s) ds| < ∞. �

Lemma 2.5 Assume that h ∈ C[a, b] and p : [a, b] → (1, 2] is a continuous function. A
function x ∈ C1[a, b]∩C2(a, b) is a solution of the following BVP with conformable variable-
order derivative:

⎧
⎨

⎩

Ta
p(t)x(t) + h(t) = 0, t ∈ (a, b),

x(a) = x(b) = 0
(2.3)

if and only if it satisfies the integral equation

x(t) =
∫ b

a
H(t, s)h(s) ds, (2.4)
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where H is the Green function given by

H(t, s) =

⎧
⎨

⎩

(b–t)(s–a)p(s)–1

b–a , a ≤ s ≤ t ≤ b,
(t–a)(b–s)(s–a)p(s)–2

b–a , a ≤ t ≤ s ≤ b.
(2.5)

Proof If x ∈ C1[a, b] ∩ C2(a, b) is a solution of BVP (2.3), then using Remark 2.2, we have

x′′(t) = –(t – a)p(t)–2h(t). (2.6)

Integrating twice both sides of equation (2.6) and taking into account the boundary con-
dition x(a) = x(b) = 0, we obtain

x(t) =
∫ b

a
H(t, s)h(s) ds.

On the other hand, if

x(t) =
∫ b

a
H(t, s)h(s) ds,

using the branches of (2.5), we have

x(t) =
∫ t

a

b – t
b – a

(s – a)p(s)–1h(s) ds +
∫ b

t

(s – a)p(s)–2(t – a)(b – s)
b – a

h(s) ds.

Checking the boundary value conditions, we see that x(a) = 0, x(b) = 0. Taking second-
order derivative yields

x′′(t) = –(t – a)p(t)–2h(t).

According to Remark 2.2,

Ta
p(t)x(t) + h(t) = 0,

which is what we set out to prove. �

Lemma 2.6 The Green function H given by (2.5) has the following properties:
(i) H(t, s) ≥ 0 for all s, t ∈ [a, b];

(ii) maxt∈[a,b] H(t, s) = H(s, s) for any a ≤ s ≤ b;
(iii) There exists a point s∗ ∈ (a, b) such that H(s∗, s∗) = maxs∈[a,b] H(s, s). In particular, if

p′(t) exists, then s∗ is the solution of equation p′(s) ln(s – a) + p(s)–1
s–a = 1

b–s .

Proof (i) It is clear that H(t, s) ≥ 0 for all s, t ∈ [a, b].
(ii) Set

h1(t, s) =
(b – t)(s – a)p(s)–1

b – a
, a ≤ s ≤ t ≤ b,
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and

h2(t, s) =
(t – a)(b – s)(s – a)p(s)–2

b – a
, a ≤ t ≤ s ≤ b.

For every fixed s, h1(t, s) is a decreasing function in t and h2(t, s) is an increasing function
in t. Hence, maxt∈[a,b] H(t, s) = H(s, s) for any a ≤ s ≤ b.

(iii) Let g(s) = H(s, s) = (b–s)(s–a)p(s)–1

b–a , then g(s) ≥ 0. Since g(s) ∈ C[a, b] and g(a) = g(b) = 0,
we conclude that there must exist a point s∗ ∈ (a, b) such that the maximum of function
g(s) is achieved at s∗, denoted as H(s∗, s∗) = maxs∈[a,b] H(s, s). If p′(t) exists, then g ′(s) =
(s–a)p(s)–1

b–a [(b – s)(p′(s) ln(s – a) + p(s)–1
s–a ) – 1]. From g ′(s∗) = 0, we conclude that p′(s∗) ln(s∗ –

a) + p(s∗)–1
s∗–a = 1

b–s∗ . �

3 Existence of solutions
In the section, our aim is to prove the existence of solutions for BVP (1.3) by using the
lower and upper solutions’ method. Therefore, we need to give the definitions of lower
and upper solutions of BVP (1.3) as follows.

Definition 3.1 A function u ∈ C1[a, b]∩C2(a, b) is said to be a lower solution of BVP (1.3)
if we have

⎧
⎨

⎩

Ta
p(t)u(t) + ϕ(t, u(t)) ≥ 0, t ∈ [a, b],

u(a) ≤ 0, u(b) ≤ 0.

Similarly, a function u(t) ∈ C1[a, b] ∩ C2(a, b) is said to be an upper solution of BVP (1.3)
if we have

⎧
⎨

⎩

Ta
p(t)u(t) + ϕ(t, u(t)) ≤ 0, t ∈ [a, b],

u(a) ≥ 0, u(b) ≥ 0.

Theorem 3.1 Assume that the following hypotheses hold:
(i) u and u are lower and upper solutions of BVP (1.3), respectively, such that u ≤ u,

(ii) Define E = {(t, y)|(t, y) ∈ [a, b] ×R, u ≤ y ≤ u}, and assume ϕ(t, y) is continuous on E.
Then BVP (1.3) has at least one solution x ∈ C1[a, b] ∩ C2(a, b) such that

u(t) ≤ x(t) ≤ u(t), a ≤ t ≤ b.

Proof Consider the following modified problem:

⎧
⎨

⎩

Ta
p(t)x(t) + φ(t, x(t)) = 0, t ∈ (a, b),

x(a) = x(b) = 0,
(3.1)

where φ(t, y) is given by

φ(t, y) =

⎧
⎪⎪⎨

⎪⎪⎩

ϕ(t, u(t)) + u(t)–y
y–u(t)+1 , y > u(t),

ϕ(t, y), u(t) ≤ y ≤ u(t),

ϕ(t, u(t)) + u(t)–y
u(t)–y+1 , y < u(t).
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Since ϕ(t, y) is continuous on E, from the definition of φ, we deduce that φ(t, y) is contin-
uous on [a, b] ×R and there exists M = max(t,x)∈E |ϕ(t, x)| such that

∣
∣φ(t, y)

∣
∣ ≤ M + 1, ∀(t, y) ∈ [a, b] ×R. (3.2)

According to Lemma 2.5, the modified BVP (3.1) is transformed into a fixed-point prob-
lem. Consider the operator A : C[a, b] → C[a, b] defined by

Ax(t) =
∫ b

a
H(t, s)φ

(
s, x(s)

)
ds.

Set δ = (M + 1)(b – a)H(s∗, s∗), where H(s∗, s∗) is given by Lemma 2.6, and Ω = {y ∈ C[a, b] :
‖y‖ ≤ δ}. Clearly, Ω is a closed, bounded, and convex subset of C[a, b], and A maps Ω into
Ω . We shall show that A satisfies the assumptions of Schauder’s fixed-point theorem. The
proof will be given in several steps.

Step 1. A is continuous. Indeed, consider any xn ∈ Ω such that xn → x in Ω . Then

∣
∣Axn(t) – Ax(t)

∣
∣ =

∣
∣
∣
∣

∫ b

a
H(t, s)

(
φ
(
s, xn(s)

)
– φ

(
s, x(s)

))
ds

∣
∣
∣
∣

≤ H
(
s∗, s∗)(b – a)

∥
∥φ

(·, xn(·)) – φ
(·, x(·))∥∥.

Since φ is a continuous function, we have

‖Axn – Ax‖ ≤ H
(
s∗, s∗)(b – a)

∥
∥φ

(·, xn(·)) – φ
(·, x(·))∥∥ → 0, n → ∞.

Step 2. A(Ω) is uniformly bounded. For any x ∈ Ω , using Lemma 2.6 and (3.2), we get

∣
∣Ax(t)

∣
∣ ≤ H

(
s∗, s∗)

∫ b

a

∣
∣φ

(
s, x(s)

)∣
∣ds ≤ (M + 1)(b – a)H

(
s∗, s∗) = δ.

Therefore, A(Ω) is uniformly bounded and A(Ω) ⊂ Ω .
Step 3. A(Ω) is equicontinuous. Consider arbitrary t1, t2 ∈ [a, b], x ∈ Ω , and, without loss

of generality, let t1 < t2. Then

∣
∣Ax(t2) – Ax(t1)

∣
∣ ≤ (M + 1)

[

(t2 – t1)
∫ t1

a
(s – a)p(s)–2 ds + 2(t2 – t1)

∫ t2

t1

(s – a)p(s)–2 ds

+ (t2 – t1)
∫ b

t2

(s – a)p(s)–2 ds
]

≤ 4(M + 1)(t2 – t1)
∫ b

a
(s – a)p(s)–2 ds → 0,

when t1 → t2.
As a consequence of Steps 1–3, together with the Arzela–Ascoli theorem, we can con-

clude that A : Ω → Ω is completely continuous. From the Schauder’s fixed-point theorem,
we deduce that A has a fixed point x ∈ Ω which is a solution of the modified BVP (3.1).

Step 4. The solution x of BVP (3.1) satisfies

u(t) ≤ x(t) ≤ u(t), a ≤ t ≤ b.
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First, we prove that

u(t) ≤ x(t), a ≤ t ≤ b.

Assume on the contrary and set v(t) = x(t) – u(t), then there exists t0 ∈ [a, b] such that

min
t∈[a,b]

v(t) = v(t0) = x(t0) – u(t0) < 0.

We conclude that x(t0) < u(t0). Then we distinguish the following cases.
Case 1. If t0 ∈ (a, b), then Ta

p(t)v(t0) ≥ 0 is obtained from Lemma 2.3. Using the fact that
u is a lower solution of BVP (1.3) and x is a solution of BVP (3.1), we get

Ta
p(t)v(t0) = Ta

p(t)x(t0) – Ta
p(t)u(t0)

= –φ
(
t, x(t0)

)
– Ta

p(t)u(t0)

= –ϕ
(
t0, u(t0)

)
–

u(t0) – x(t0)
u(t0) – x(t0) + 1

– Ta
p(t)u(t0) < 0,

which is a contradiction to Ta
p(t)v(t0) ≥ 0.

Case 2. If t0 = a, since x(a) = 0, we get

u(a) > 0.

On the other hand, u(a) ≤ 0 thanks to the fact that u is a lower solution of BVP (1.3). This
is a contradiction.

Case 3. If t0 = b, we obtain a contradiction as in the second case. Thus we have

u(t) ≤ x(t), a ≤ t ≤ b.

Analogously, we can prove that x(t) ≤ u(t), a < t < b. This shows that the modified BVP
(3.1) has a solution x ∈ C1[a, b] ∩ C2(a, b) satisfying u(t) ≤ x(t) ≤ u(t) which is solution of
BVP (1.3). The proof is completed. �

Example 3.1 Consider the following fractional boundary value problem:

⎧
⎨

⎩

Tp(t)x(t) – tln(1 + x) = 0, t ∈ (0, 1),

x(0) = x(1) = 0.
(3.3)

It can be easily seen that u = 0 is a lower solution of BVP (3.3) and u = 2 is an upper
solution of BVP (3.3). According to Theorem 3.1, BVP (3.3) has at least one solution x ∈
C1[0, 1] ∩ C2(0, 1) such that 0 ≤ x(t) ≤ 2.

4 Lyapunov-type inequality
Letting ϕ(t, x(t)) = q(t)f (x(t)), BVP (1.3) becomes

⎧
⎨

⎩

Ta
p(t)x(t) + q(t)f (x) = 0, t ∈ (a, b),

x(a) = x(b) = 0.
(4.1)
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Now we are ready to give a Lyapunov-type inequality of BVP (4.1) under the following
assumptions:

(i) The function f : R →R is continuous and monotone,
(ii) q(t) ∈ C[a, b].

Theorem 4.1 If x(t) ∈ C1[a, b] ∩ C2(a, b) is a nontrivial solution of BVP (4.1), then

∫ b

a

∣
∣q(t)

∣
∣dt >

η

H(s∗, s∗) max{|f (η)|, |f (γ )|} , (4.2)

where η = ‖x‖ = maxt∈[a,b] |x(t)|, γ = mint∈[a,b] x(t), and H(s∗, s∗) is given by Lemma 2.6.

Proof According to Lemma 2.5, if x(t) ∈ C1[a, b] ∩ C2(a, b) is a solution of BVP (4.1), then

x(t) =
∫ b

a
H(t, s)q(s)f

(
x(s)

)
ds.

Since x(t) is a nontrivial solution, taking the norm of x(t) and making use of the properties
of Green function H(t, s) given by Lemma 2.6, we obtain that

‖x‖ = max
t∈[a,b]

∣
∣
∣
∣

∫ b

a
H(t, s)q(s)f

(
x(s)

)
ds

∣
∣
∣
∣

< H
(
s∗, s∗)

∫ b

a

∣
∣q(s)

∣
∣
∣
∣f

(
x(s)

)∣
∣ds

≤ H
(
s∗, s∗)max

{∣
∣f (η)

∣
∣,

∣
∣f (γ )

∣
∣
}
∫ b

a

∣
∣q(s)

∣
∣ds,

from which (4.2) follows. Then the proof is completed. �

Example 4.1 Consider Example 3.1 with p(t) = t+3
2 , then H(s, s) = (1 – s)s s+1

2 . We can cal-
culate H(s∗, s∗) = maxs∈[a,b] H(s, s) ≈ 0.320573 when s∗ ≈ 0.324077. According to Exam-
ple 3.1, BVP (3.3) has at least one solution 0 ≤ x(t) ≤ 2. Since f (x) = ln(1 + x) is continuous
and increasing on [0, 2], and, in addition, q(t) = –t ∈ C[0, 1] satisfies the conditions of The-
orem 4.1, we obtain

∫ 1

0
| – t|dt >

η

H(s∗, s∗) ln(1 + η)
≥ η

H(s∗, s∗)η
=

1
H(s∗, s∗)

≈ 3.11941.

On the other hand,
∫ 1

0 | – t|dt = 0.5 < 3.11941. Hence, by Theorem 4.1, x(t) ≡ 0 is the only
solution of Example 3.1 with p(t) = t+3

2 .

If f (x(t)) = x(t), BVP (4.1) becomes

⎧
⎨

⎩

Ta
p(t)x(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x(b) = 0.
(4.3)

In this case, taking f (x(t)) = x(t) in Theorem 4.1, we obtain the following result.
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Corollary 4.1 If x(t) ∈ C1[a, b] ∩ C2(a, b) is a nontrivial solution of BVP (4.3), then

∫ b

a

∣
∣q(t)

∣
∣dt >

1
H(s∗, s∗)

. (4.4)

Remark 4.1 If p(t) = α ∈ (1, 2], then H(s, s) = b–s
b–a (s – a)α–1. Moreover, s∗ = a+(α–1)b

α
is such

that H(s∗, s∗) = (α–1)α–1(b–a)α–1

αα . Thus inequality (4.4) reduces to the Lyapunov-type inequal-
ity in [24]. If p(t) = 2, inequality (4.4) reduces to the classical Lyapunov inequality (1.2).

Consider the following nonhomogeneous boundary value problem:

⎧
⎨

⎩

Ta
p(t)x(t) + q(t)x(t) = g(t), t ∈ (a, b),

x(a) = x(b) = 0.
(4.5)

Corollary 4.2 If a solution of BVP (4.5) exists, and

∫ b

a

∣
∣q(t)

∣
∣dt ≤ 1

H(s∗, s∗)
, (4.6)

then BVP (4.5) has a unique solution.

Proof Assume that x1(t), x2(t) are both solutions of BVP (4.5), then x(t) = x1(t) – x2(t) is a
solution of the corresponding homogeneous BVP. According to (4.6) and Corollary 4.1, the
corresponding homogeneous BVP has only zero solution. Therefore the nonhomogeneous
BVP (4.5) has a unique solution. �

In the end, we consider the following conformable eigenvalue problem:

⎧
⎨

⎩

Ta
p(t)x(t) + λx(t) = 0, t ∈ (a, b)

x(a) = x(b) = 0.
(4.7)

Corollary 4.3 If λ is an eigenvalue of (4.7), then

|λ| >
1

(b – a)H(s∗, s∗)
.

Proof If λ is an eigenvalue of (4.7),then there exists a nontrivial solution x = xλ to (4.7).
Using Corollary 4.1 with q(t) = λ, we obtain

|λ| >
1

(b – a)H(s∗, s∗)
. �

5 Conclusions
In this paper, we have proved the existence of solutions to a nonlinear boundary value
problem involving conformable variable-order derivative. We have also obtained a new
Lyapunov-type inequality for the considered problem. The obtained inequality provides
a necessary condition for the existence of nontrivial solutions and a method to prove
uniqueness for the corresponding nonhomogeneous boundary value problem. We notice
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that when p(t) = 2, the obtained inequality reduces to the classical Lyapunov inequality
and when p(t) = α, it reduces to the inequality in [24]. The new results generalize some
existing results in the literature. We expect that the proposed approaches and the obtained
results in this paper can be adapted to study other fractional boundary value problems.
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