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1 Introduction
Based on the works of Burke and Ferris [3], Patriksson [11] and following Marcotte and
Zhu [10], the concept of weak sharp solution associated with variational-type inequalities
has attracted the attention of many researchers (see, for instance, Hu and Song [7], Liu
and Wu [9], Zhu [17] and Jayswal and Singh [8]). Recently, by using gap-type functions, in
accordance with Ferris and Mangasarian [5] and following Hiriart-Urruty and Lemaréchal
[6], Alshahrani et al. [1] studied the minimum and maximum principle sufficiency prop-
erties associated with nonsmooth variational inequalities.

In this paper, motivated and inspired by the ongoing research in this field and by using
some variational techniques developed in Ansari [2], Clarke [4] and Treanţă [12–16], we
investigate a new class of variational-type inequalities governed by (ρ, b, d)-convex path-
independent curvilinear integral functionals (a new concept introduced in Treanţă [16]).
The extended concept of a normal cone (see Treanţă [16]), firstly introduced by Marcotte
and Zhu [10], plays a crucial role in our investigations. More precisely, under some work-
ing assumptions and using a dual gap-type functional, the weak sharpness property of the
solution set for the considered variational-type inequality is studied. In this regard, two
characterization results are formulated and proved.

The present paper is organized as follows. Section 2 contains notations, problem de-
scription and some auxiliary results. The main results of this paper are included in Sect. 3.
Concretely, weak sharp solutions are investigated for an extended variational-type in-
equality involving (ρ, b, d)-convex path-independent curvilinear integral functional. Fi-
nally, Sect. 4 concludes this study.
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2 Preliminaries
In this paper, in order to introduce our study, consider the following notations and math-
ematical objects:
� Θ ⊂ R

m is a compact domain and the point Θ � t = (tβ ), β = 1, m, is considered as a
multiple parameter of evolution;

� consider Θ ⊃ Γ : t = t(τ ), τ ∈ [a, b], a piecewise smooth curve joining the different
points t1 = (t1

1 , . . . , tm
1 ), t2 = (t1

2 , . . . , tm
2 ) in Θ ;

� let L be the space of piecewise smooth functions x : Θ → R
n, endowed with the Eu-

clidean inner product

〈x, y〉 =
∫

Γ

x(t) · y(t) dtβ =
∫

Γ

n∑
i=1

xi(t)yi(t) dtβ

=
∫

Γ

n∑
i=1

xi(t)yi(t) dt1 + · · · +
∫

Γ

n∑
i=1

xi(t)yi(t) dtm, ∀x, y ∈L

and the induced norm;
� denote by L a nonempty, closed and convex subset of L, defined as

L =
{

x ∈L : x(t) ∈ E ⊂R
n, x(t1) = x1 = given, x(t2) = x2 = given

}
;

� throughout this paper, the summation over the repeated indices is assumed and x, xα

are the simplified notations for x(t), xα(t) and xα(t) = ∂x
∂tα (t);

� consider the real-valued continuously differentiable functions (closed Lagrange 1-
form densities)

fβ , gβ , hβ : J1(
R

m,Rn) →R, β = 1, m,

(see J1(Rm,Rn) as the first-order jet bundle associated to R
m and R

n) which generate
the following path-independent curvilinear integral functionals:

F : L→R, F(x) =
∫

Γ

fβ (t, x, xα) dtβ ,

G : L→R, G(x) =
∫

Γ

gβ (t, x, xα) dtβ ,

H : L→R, H(x) =
∫

Γ

hβ (t, x, xα) dtβ .

Let ρ be a real number, b(x, y) a symmetric positive real-valued functional on L×L and
d(x, y) a real-valued functional on L×L.

Definition 2.1
(i) The scalar functional F : L→ R, F(x) =

∫
Γ

fβ (t, x, xα) dtβ , is called (ρ, b, d)-convex
on L if, for any x, y ∈L,

F(x) – F(y) ≥ b(x, y)
∫

Γ

[
∂fβ
∂x

(t, y, yα)(x – y) +
∂fβ
∂xα

(t, y, yα)Dα(x – y)
]

dtβ

+ ρb(x, y)d(x, y),

where Dα denotes the total derivative operator.
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(ii) The functional F is said to be strongly b-convex, b-convex, or weakly b-convex on L,
according to ρd > 0, ρd = 0, or ρd < 0.

Definition 2.2 The variational (functional) derivative δβ F
δx of the path-independent curvi-

linear integral functional F : L→R, F(x) =
∫
Γ

fβ (t, x, xα) dtβ , is defined as

δβF
δx

=
∂fβ
∂x

(t, x, xα) – Dα

∂fβ
∂xα

(t, x, xα) ∈L

and, for any ψ ∈L with ψ(t1) = ψ(t2) = 0, it satisfies the following relation:

〈
δβF
δx

,ψ
〉

=
∫

Γ

δβF
δx

(t) · ψ(t) dtβ = lim
ε→0

F(x + εψ) – F(x)
ε

.

Throughout this paper, it is assumed that the inner product between the variational
derivative associated with a path-independent curvilinear integral functional and an ele-
ment ψ ∈L is accompanied by the condition ψ(t1) = ψ(t2) = 0.

By using the previous mathematical tools, we formulate the following extended
variational-type inequality problem: for some given ρ , b, d (introduced as above), find
y ∈L such that

(EVIP) b(x, y)
∫

Γ

[
∂fβ
∂x

(t, y, yα)(x – y) +
∂fβ
∂xα

(t, y, yα)Dα(x – y)
]

dtβ

+ ρb(x, y)d(x, y) ≥ 0,

for any x ∈L. The dual extended variational-type inequality problem associated to (EVIP)
is formulated as follows: for some given ρ , b, d (introduced as above), find y ∈L such that

(DEVIP) b(x, y)
∫

Γ

[
∂fβ
∂x

(t, x, xα)(x – y) +
∂fβ
∂xα

(t, x, xα)Dα(x – y)
]

dtβ

+ ρb(x, y)d(x, y) ≥ 0,

for any x ∈L.
Denote by L∗ and L∗ the solution set associated with (EVIP) and (DEVIP), respectively,

and assume they are nonempty.

Remark 2.1 As can be easily seen, the above extended variational-type inequality prob-
lems can be reformulated as follows: for some given ρ , b, d (introduced as above), find y ∈L
such that

(EVIP) b(x, y)
[〈

δβF
δy

, x – y
〉

+ ρd(x, y)
]

≥ 0, ∀x ∈L,

respectively: for some given ρ , b, d (introduced as above), find y ∈L such that

(DEVIP) b(x, y)
[〈

δβF
δx

, x – y
〉

+ ρd(x, y)
]

≥ 0, ∀x ∈L
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if and only if

dU := Dα

[
∂fβ
∂xα

(x – y)
]

dtβ

is an exact total differential and it is satisfied the condition U(t1) = U(t2). Throughout this
paper, this working hypothesis is assumed.

Further, in order to investigate the solution set L∗, we introduce the following gap func-
tionals.

Definition 2.3 For x ∈L, the primal gap functional associated to (EVIP) is defined as

G(x) = max
y∈L

{
b(x, y)

∫
Γ

[
∂fβ
∂x

(t, x, xα)(x – y) +
∂fβ
∂xα

(t, x, xα)Dα(x – y)
]

dtβ

+ ρb(x, y)d(x, y)
}

and, similarly, the dual gap functional associated to (EVIP) is defined as

H(x) = max
y∈L

{
b(x, y)

∫
Γ

[
∂fβ
∂x

(t, y, yα)(x – y) +
∂fβ
∂xα

(t, y, yα)Dα(x – y)
]

dtβ

+ ρb(x, y)d(x, y)
}

.

From now onwards, for x ∈L, consider the following notations:

Q(x) =
{

z ∈L : G(x) = b(x, z)
∫

Γ

[
∂fβ
∂x

(t, x, xα)(x – z) +
∂fβ
∂xα

(t, x, xα)Dα(x – z)
]

dtβ

+ ρb(x, z)d(x, z)
}

,

R(x) =
{

z ∈L : H(x) = b(x, z)
∫

Γ

[
∂fβ
∂x

(t, z, zα)(x – z) +
∂fβ
∂xα

(t, z, zα)Dα(x – z)
]

dtβ

+ ρb(x, z)d(x, z)
}

.

Remark 2.2 By using the previous notations, we can observe the following:
(i)

G(x) = max
y∈L

{
b(x, y)

[〈
δβF
δx

, x – y
〉

+ ρd(x, y)
]}

,

H(x) = max
y∈L

{
b(x, y)

[〈
δβF
δy

, x – y
〉

+ ρd(x, y)
]}

;

(ii) Q(x) = arg maxy∈L{b(x, y)[〈 δβ F
δx , x – y〉 + ρd(x, y)]}, where

arg max
y∈L

{
b(x, y)

[〈
δβF
δx

, x – y
〉

+ ρd(x, y)
]}
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denotes the (possibly empty) solution set of

max
y∈L

{
b(x, y)

[〈
δβF
δx

, x – y
〉

+ ρd(x, y)
]}

;

(iii) R(x) = arg maxy∈L{b(x, y)[〈 δβ F
δy , x – y〉 + ρd(x, y)]};

(iv) if Q(x) = ∅, then G(x) = supy∈L{b(x, y)[〈 δβ F
δx , x – y〉 + ρd(x, y)]}; similarly, if R(x) = ∅,

then H(x) = supy∈L{b(x, y)[〈 δβ F
δy , x – y〉 + ρd(x, y)]}.

In order to formulate and prove the main results of this paper, in accordance with Mar-
cotte and Zhu [10], we introduce the following relevant concepts.

Definition 2.4 The polar set L◦ associated to L is defined as follows:

L◦ =
{

y ∈L : 〈y, x〉 ≤ 0,∀x ∈L
}

.

Definition 2.5 The projection of a point x ∈L onto the set L is defined as

projLx = arg min
y∈L

‖x – y‖.

Definition 2.6 The normal cone to L at x ∈ L, with respect to ρ , b and d (introduced as
above), is defined as

Nρ,b,d
L (x) =

{
y ∈L : b(z, x)

[〈y, z – x〉 – ρd(z, x)
] ≤ 0,∀z ∈L

}
, x ∈L,

Nρ,b,d
L (x) = ∅, x /∈L

and the tangent cone to L at x ∈ L, with respect to ρ , b and d (introduced as above), is
Tρ,b,d
L (x) = [Nρ,b,d

L (x)]◦.

Remark 2.3 Taking into account the definition of normal cone at x ∈ L, we notice that:
x∗ ∈L∗ ⇐⇒ – δβ F

δx∗ ∈ Nρ,b,d
L (x∗).

Further, we establish some working assumptions and auxiliary results.

Working hypotheses
(i) The equalities

d
(
x1, x2) = –d

(
x2, x1), ∀x1, x2 ∈L∗,

d
(
z, x∗) = –d

(
x∗, z

)
, ∀z ∈L,∀x∗ ∈L∗,

are fulfilled.
(ii) For any y ∈ R(x) and x, z ∈L, the relations

b(z, y)(z – y) – b(x, y)(x – y) = z – x, b(z, y)d(z, y) – b(x, y)d(x, y) = d(z, x)

are true.
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(iii) For any x, v ∈L and λ > 0, there exists

lim
λ→0

d(x + λv, x)
λ

.

(iv) For any z ∈ R(x∗), x̄ ∈ Q(x∗), x∗ ∈L∗ and x ∈L, the relations

b(x, z) = b
(
x, x∗) = b

(
z, x∗) = b

(
x̄, x∗) [= 1],

d(x, z) = d
(
x, x∗), d(z, x) = d

(
x∗, x

)
= d

(
x∗, x̄

)

are satisfied.

Proposition 2.1 (Treanţă [16]) Assume the functional F(x) =
∫
Γ

fβ (t, x, xα) dtβ is (ρ, b, d)-
convex on L. Then:

(i) for any x1, x2 ∈L∗, it follows

b
(
x1, x2)∫

Γ

[
∂fβ
∂x

(
t, x2, x2

α

)(
x1 – x2) +

∂fβ
∂xα

(
t, x2, x2

α

)
Dα

(
x1 – x2)]dtβ

+ ρb
(
x1, x2)d

(
x1, x2) = 0;

(ii) the inclusion L∗ ⊂L∗ is true.

Remark 2.4 The continuity property of the variational derivative δβ F
δx implies L∗ ⊂L∗. By

Proposition 2.1, we conclude L∗ = L∗. As well, the solution set L∗ associated to (DEVIP)
is convex and, consequently, the solution set L∗ associated to (EVIP) is a convex set.

3 Main results
In this section, weak sharp solutions are investigated for the considered extended
variational-type inequality governed by (ρ, b, d)-convex path-independent curvilinear in-
tegral functional. In accordance with Ferris and Mangasarian [5], following Marcotte and
Zhu [10], the weak sharpness property of the solution set L∗ for (EVIP) is studied. In this
regard, two characterization results are formulated and proved.

Definition 3.1 The solution set L∗ associated to (EVIP) is called weakly sharp if

–
δβF
δx∗ ∈ int

( ⋂
u∈L∗

[
Tρ,b,d
L (u) ∩ Nρ,b,d

L∗ (u)
]◦

)
, ∀x∗ ∈L∗,

or, equivalently, there exists a positive number γ > 0 such that

γ B ⊂ δβF
δx∗ +

[
Tρ,b,d
L

(
x∗) ∩ Nρ,b,d

L∗
(
x∗)]◦, ∀x∗ ∈L∗,

where int(S) stands for interior of the set S and B denotes the open unit ball in L.

Lemma 3.1 There exists a positive number γ > 0 such that

γ B ⊂ δβF
δy

+
[
Tρ,b,d
L (y) ∩ Nρ,b,d

L∗ (y)
]◦, ∀y ∈L∗, (3.1)
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if and only if

〈
δβF
δy

, z
〉
≥ γ ‖z‖, ∀z ∈ Tρ,b,d

L (y) ∩ Nρ,b,d
L∗ (y), z(t1) = z(t2) = 0. (3.2)

Proof Relation (3.1) is equivalent with

γ b –
δβF
δy

∈ [
Tρ,b,d
L (y) ∩ Nρ,b,d

L∗ (y)
]◦, ∀y ∈L∗,∀b ∈ B,

or

〈
γ b –

δβF
δy

, z
〉
≤ 0, ∀y ∈L∗,∀b ∈ B,∀z ∈ Tρ,b,d

L (y) ∩ Nρ,b,d
L∗ (y), z(t1) = z(t2) = 0.

Considering B � b = z
‖z‖ , z �= 0, the previous inequality becomes (3.2).

Conversely, if Eq. (3.2) holds, then there exists a positive number γ > 0 such that

〈
γ b –

δβF
δy

, z
〉

= 〈γ b, z〉 –
〈
δβF
δy

, z
〉

≤ γ ‖z‖ – γ ‖z‖ = 0,

∀y ∈L∗,∀b ∈ B,∀z ∈ Tρ,b,d
L (y) ∩ Nρ,b,d

L∗ (y), z(t1) = z(t2) = 0,

that is,

〈
γ b –

δβF
δy

, z
〉
≤ 0, ∀y ∈L∗,∀b ∈ B,∀z ∈ Tρ,b,d

L (y) ∩ Nρ,b,d
L∗ (y), z(t1) = z(t2) = 0,

or, equivalently,

γ b –
δβF
δy

∈ [
Tρ,b,d
L (y) ∩ Nρ,b,d

L∗ (y)
]◦, ∀y ∈L∗,∀b ∈ B,

which implies (3.1) and the proof is complete. �

Theorem 3.1 Assume the scalar functional H(x) is differentiable on L∗ and the scalar
functional F(x) is strongly b-convex on L. Also, for any x∗ ∈L∗, v ∈L, z ∈ R(x∗), the impli-
cation

〈
δβH
δx∗ , v

〉
≥

〈
δβF
δz

, v
〉

�⇒ δβH
δx∗ =

δβF
δz

is true, with v(t1) = v(t2) = 0, and δβ F
δx∗ is constant on L∗. Then L∗ is weakly sharp if and only

if there exists a positive number γ > 0 such that

H(x) ≥ γ d
(
x,L∗), ∀x ∈L,

where d(x,L∗) = miny∈L∗ ‖x – y‖.
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Proof “�⇒” Consider L∗ is weakly sharp. Consequently, by Definition 3.1, it follows

–
δβF
δy

∈ int

( ⋂
u∈L∗

[
Tρ,b,d
L (u) ∩ Nρ,b,d

L∗ (u)
]◦

)
, ∀y ∈L∗,

or, by Lemma 3.1, there exists a positive number γ > 0 such that (3.1) (or (3.2)) is fulfilled.
Further, taking into account the convexity property of the solution set L∗ associated to

(EVIP) (see Remark 2.4), it results

projL∗ (x) = ŷ ∈L∗, ∀x ∈L

and, following Hiriart-Urruty and Lemaréchal [6], we get x – ŷ ∈ Tρ,b,d
L (ŷ) ∩ Nρ,b,d

L∗ (ŷ). By
the hypothesis and Lemma 3.1, we get

〈
δβF
δŷ

, x – ŷ
〉
≥ γ ‖x – ŷ‖ = γ d

(
x,L∗),

or, equivalently,

∫
Γ

[
∂fβ
∂x

(t, ŷ, ŷα)(x – ŷ) +
∂fβ
∂xα

(t, ŷ, ŷα)Dα(x – ŷ)
]

dtβ ≥ γ d
(
x,L∗), ∀x ∈L. (3.3)

Since

H(x) ≥ b(x, ŷ)
∫

Γ

[
∂fβ
∂x

(t, ŷ, ŷα)(x – ŷ) +
∂fβ
∂xα

(t, ŷ, ŷα)Dα(x – ŷ)
]

dtβ

+ ρb(x, ŷ)d(x, ŷ), ∀x ∈L,

by the strong b-convexity on L of the scalar functional F(x) and the Working hypotheses,
it results

H(x) ≥
∫

Γ

[
∂fβ
∂x

(t, ŷ, ŷα)(x – ŷ) +
∂fβ
∂xα

(t, ŷ, ŷα)Dα(x – ŷ)
]

dtβ , ∀x ∈L.

Now, by using (3.3), we obtain

H(x) ≥ γ d
(
x,L∗), ∀x ∈L.

“⇐�” Consider there exists a positive number γ > 0 such that

H(x) ≥ γ d
(
x,L∗), ∀x ∈L.

Obviously, for any y ∈L∗, the case Tρ,b,d
L (y) ∩ Nρ,b,d

L∗ (y) = {0} involves

[
Tρ,b,d
L (y) ∩ Nρ,b,d

L∗ (y)
]◦ = L

and, consequently,

γ B ⊂ δβF
δy

+
[
Tρ,b,d
L (y) ∩ Nρ,b,d

L∗ (y)
]◦, ∀y ∈L∗
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is trivial. In the following, let 0 �= u ∈ Tρ,b,d
L (y) ∩ Nρ,b,d

L∗ (y), with u(t1) = u(t2) = 0, 〈u, x – y〉 ≤
0, x ∈ L, involving there exists a sequence uk converging to u with y + tkuk ∈ L (for some
sequence of positive numbers {tk} decreasing to zero), such that

d
(
y + tkuk ,L∗) ≥ d

(
y + tkuk , Hu

)
=

tk〈u, uk〉
‖u‖ , (3.4)

where Hu = {x ∈ L : 〈u, x – y〉 = 0} is a hyperplane passing through y and orthogonal to u.
By the hypothesis and (3.4), it follows

H
(
y + tkuk) ≥ γ

tk〈u, uk〉
‖u‖ ,

or, equivalently (H(y) = 0, ∀y ∈L∗),

H(y + tkuk) – H(y)
tk

≥ γ
〈u, uk〉
‖u‖ . (3.5)

Further, by taking the limit for k → ∞ in (3.5) and using a classical result of functional
analysis, we get

lim
λ→0

H(y + λu) – H(y)
λ

≥ γ ‖u‖, (3.6)

where λ > 0. By Definition 2.2, the inequality (3.6) can be rewritten as

〈
δβH
δy

, u
〉
≥ γ ‖u‖. (3.7)

Now, taking into account the hypothesis and (3.7), for any b ∈ B, it results

〈
γ b –

δβF
δy

, u
〉

= 〈γ b, u〉 –
〈
δβH
δy

, u
〉
≤ γ ‖u‖ – γ ‖u‖ = 0

and therefore

γ B ⊂ δβF
δy

+
[
Tρ,b,d
L (y) ∩ Nρ,b,d

L∗ (y)
]◦, ∀y ∈L∗

and the proof is complete. �

Remark 3.1
(i) The weak sharpness property of the solution set associated to the scalar variational

problem

min
x∈L

H(x)

is described by the inequality (H(y) = 0, ∀y ∈L∗)

H(x) – H
(
x∗) ≥ γ d

(
x,L∗), ∀x ∈L, x∗ ∈L∗,

formulated in Theorem 3.1.
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(ii) If the condition

H(x) ≥ γ d
(
x,L∗), ∀x ∈L

is fulfilled, the function H provides an error bound for the distance from a feasible
point and the solution set L∗. The positive constant γ is called the modulus of
sharpness for the solution set L∗.

The second characterization of weak sharpness for L∗ implies the notion of minimum
principle sufficiency property, introduced by Ferris and Mangasarian [5].

Definition 3.2 It is said that (EVIP) satisfies minimum principle sufficiency property if
Q(x∗) = L∗, for any x∗ ∈L∗.

Lemma 3.2 The inclusion arg maxy∈L{b(x, y)[〈r, y – x〉 + ρd(x, y)]} ⊂L∗ is fulfilled for any
(r, x) ∈ int(

⋂
u∈L∗ [Tρ,b,d

L (u) ∩ Nρ,b,d
L∗ (u)]◦) ×L [�= ∅].

Proof Let y ∈L \L∗. By convexity property of L∗ (see Remark 2.4), it results

projL∗ (y) = ŷ ∈L∗

and, following Hiriart-Urruty and Lemaréchal [6], we get y– ŷ ∈ Tρ,b,d
L (ŷ)∩Nρ,b,d

L∗ (ŷ). There
exists a positive number α > 0 such that

〈r + v, y – x + x – ŷ〉 < 0, ∀v ∈ αB,

for any (r, x) ∈ int(
⋂

u∈L∗ [Tρ,b,d
L (u) ∩ Nρ,b,d

L∗ (u)]◦) ×L, or, equivalently,

〈r, y – x〉 < 〈r, ŷ – x〉 – 〈v, y – ŷ〉, ∀v ∈ αB,

for any (r, x) ∈ int(
⋂

u∈L∗ [Tρ,b,d
L (u) ∩ Nρ,b,d

L∗ (u)]◦) × L. For v = α
y–ŷ

‖y–ŷ‖ ∈ αB, the previous
inequality becomes

〈r, y – x〉 < 〈r, ŷ – x〉 – α‖y – ŷ‖, (3.8)

for any (r, x) ∈ int(
⋂

u∈L∗ [Tρ,b,d
L (u) ∩ Nρ,b,d

L∗ (u)]◦) ×L. By (3.8), we conclude

y /∈ arg max
y∈L

{
b(x, y)

[〈r, y – x〉 + ρd(x, y)
]}

,

that is, arg maxy∈L{b(x, y)[〈r, y – x〉 + ρd(x, y)]} ⊂L∗, for any

(r, x) ∈ int

( ⋂
u∈L∗

[
Tρ,b,d
L (u) ∩ Nρ,b,d

L∗ (u)
]◦

)
×L.

The proof is complete. �
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Theorem 3.2 If the solution set L∗ associated to (EVIP) is weakly sharp and the scalar
functional F(x) is strongly b-convex on L, then (EVIP) satisfies the minimum principle suf-
ficiency property.

Proof By Definition 3.2, (EVIP) satisfies the minimum principle sufficiency property if
Q(x∗) = L∗, for any x∗ ∈L∗. Since L∗ is weakly sharp, by Definition 3.1, we get

–
δβF
δx∗ ∈ int

( ⋂
u∈L∗

[
Tρ,b,d
L (u) ∩ Nρ,b,d

L∗ (u)
]◦

)
, ∀x∗ ∈L∗

and, according to Lemma 3.2, it results

arg max
y∈L

{
b
(
x∗, y

)[〈
–

δβF
δx∗ , y – x∗

〉
+ ρd

(
x∗, y

)]}
⊂L∗ ⇐⇒ Q

(
x∗) ⊂L∗. (3.9)

Further, let z ∈L∗. For x∗ ∈L∗, in accordance with Proposition 2.1, we have

b
(
z, x∗)∫

Γ

[
∂fβ
∂x

(
t, x∗, x∗

α

)(
z – x∗) +

∂fβ
∂xα

(
t, x∗, x∗

α

)
Dα

(
z – x∗)]dtβ

+ ρb
(
z, x∗)d

(
z, x∗) = 0. (3.10)

Taking into account (3.10), for any y ∈L and using the Working hypotheses, it follows

b(z, y)
∫

Γ

[
∂fβ
∂x

(
t, x∗, x∗

α

)
(z – y) +

∂fβ
∂xα

(
t, x∗, x∗

α

)
Dα(z – y)

]
dtβ

+ ρb(z, y)d(z, y)

= b
(
x∗, y

)∫
Γ

[
∂fβ
∂x

(
t, x∗, x∗

α

)(
x∗ – y

)
+

∂fβ
∂xα

(
t, x∗, x∗

α

)
Dα

(
x∗ – y

)]
dtβ

+ ρb
(
x∗, y

)
d
(
x∗, y

)
. (3.11)

Since x∗ ∈L∗, relation (3.11) provides

b(z, y)
∫

Γ

[
∂fβ
∂x

(
t, x∗, x∗

α

)
(z – y) +

∂fβ
∂xα

(
t, x∗, x∗

α

)
Dα(z – y)

]
dtβ

+ ρb(z, y)d(z, y) ≤ 0, ∀y ∈L,

that is, z ∈ Q(x∗) and, consequently,

L∗ ⊂ Q
(
x∗). (3.12)

By using (3.9) and (3.12), the proof is complete. �

Theorem 3.3 Assume the scalar functional H(x) is differentiable on L∗ and the scalar
functional F(x) is strongly b-convex on L. Also, for any x∗ ∈L∗, v ∈L, z ∈ R(x∗), the impli-
cation

〈
δβH
δx∗ , v

〉
≥

〈
δβF
δz

, v
〉

�⇒ δβH
δx∗ =

δβF
δz
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is true, with v(t1) = v(t2) = 0, and δβ F
δx∗ is constant on L∗. Then (EVIP) satisfies the minimum

principle sufficiency property if and only if L∗ is weakly sharp.

Proof “�⇒” Let (EVIP) satisfies the minimum principle sufficiency property. In conse-
quence, Q(x∗) = L∗, for any x∗ ∈L∗. Obviously, for x∗ ∈L∗ and x ∈L, we obtain

H(x) ≥ b
(
x, x∗)∫

Γ

[
∂fβ
∂x

(
t, x∗, x∗

α

)(
x – x∗) +

∂fβ
∂xα

(
t, x∗, x∗

α

)
Dα

(
x – x∗)]dtβ

+ ρb
(
x, x∗)d

(
x, x∗), (3.13)

or, applying the strong b-convexity property on L of the scalar functional F(x) and the
Working hypotheses, we get

H(x) ≥
∫

Γ

[
∂fβ
∂x

(
t, x∗, x∗

α

)(
x – x∗) +

∂fβ
∂xα

(
t, x∗, x∗

α

)
Dα

(
x – x∗)]dtβ . (3.14)

In the following, considering P(x) = {b(x∗, x)[〈 δβ F
δx∗ , x – x∗〉 – ρd(x∗, x)]}, x ∈ L, we have

Q(x∗) the solution set for minx∈L P(x). In accordance with Remark 3.1 and using the Work-
ing hypotheses, we can write

P(x) – P(x) ≥ γ d
(
x, Q

(
x∗)), ∀x ∈L, x ∈ Q

(
x∗),

or
〈
δβF
δx∗ , x – x∗

〉
≥ γ d

(
x,L∗), ∀x ∈L,

or, equivalently,

∫
Γ

[
∂fβ
∂x

(
t, x∗, x∗

α

)(
x – x∗) +

∂fβ
∂xα

(
t, x∗, x∗

α

)
Dα

(
x – x∗)]dtβ

≥ γ d
(
x,L∗), ∀x ∈L. (3.15)

By (3.13)–(3.15) and Theorem 3.1, we get L∗ is weakly sharp.
“⇐�” This implication is a consequence of Theorem 3.2. �

4 Conclusions
In this paper, by using a dual gap-type functional and some working hypotheses, the solu-
tion set has been studied for a new variational-type inequality involving (ρ, b, d)-convex
path-independent curvilinear integral functional. Moreover, weak sharp solutions for the
considered variational-type inequality have been investigated. Also, under some hypothe-
ses, an equivalence between minimum principle sufficiency property and weak sharpness
property of the solution set associated with the considered variational-type inequality has
been established.
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