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Abstract
In this study, we study an inverse source problem for the time-fractional diffusion
equation, where the final data t = T are given. We show that our problem is ill-posed
in the sense of Hadamard. Applying a truncation method, we give the regularized
solution. Finally, convergence estimates under a priori and a posteriori parameter
choice rules are proved.
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1 Introduction
The last few decades have seen interest in the research of diffusion equation problems;
more and more researchers are studying the problem of the fractional diffusion equa-
tion. It can model anomalous phenomena in chemical physics, biological cell dynamics,
physiology, and finance [1–4]. In this study, we consider the following fractional diffusion
equation with Riemann–Liouville derivative:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu(x, y, t) = ∂
1–β
t (uxx(x, y, t) + uyy(x, y, t)) + Φ(t)f (x, y),

(x, y, t) ∈ Ω × (0, T),

u(x, y, t) = 0, (x, y) ∈ ∂Ω , t ∈ (0, T],

u(x, y, T) = g(x, y), (x, y) ∈ Ω ,

(1.1)

with the Riemann–Liouville fractional derivative of order 1 – β ∈ (0, 1) defined by [3, 5] as
follows:

∂
1–β
t u(x, y, t) =

1
Γ (β)

d
dt

∫ t

0
(t – ς )β–1u(x, y,ς ) dς , t > 0, (1.2)

where Γ (·) is the Gamma function and Ω = (0,π )2. The Laplacian operator 	u(x, y, t) =
uxx(x, y, t) + uyy(x, y, t) (with the homogeneous Dirichlet boundary condition) has the nor-
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malized eigenbasis

ek(x) =
(

2
π

) d
2

sin(k1x1) · · · sin(kdxd) ∈ R
d

and the eigenvalues (p2 + q2). We denote p = (p1, p2, . . . , pd), x = (x1, x2, . . . , xd) and p2 =
p2

1 + · · · + p2
d . Similarly, we have q = (q1, q2, . . . , qd), y = (y1, y2, . . . , yd) and q2 = q2

1 + · · · + q2
d .

Problem (1.1) has been studied by many authors. The direct problem (or the initial value
problem) concerning the first equation of (1.1) seems to come from [6] where the authors
introduced the integral formulation of the fractional diffusion equation. These equations
have attracted a lot of attention, see, e.g., [7, 8]. Models with a singular kernel at the ori-
gin are well-known and arise in the heat conduction and viscoelasticity, etc. [9, 10]. Some
works for the linear case can be found in [9, 10]. When we know the final data g , the prob-
lem (1.1) is about recovering the initial data u(x, y, 0), called the backward problem, which
was studied recently by Yong et al. [11]. Our main aim in this paper is to recover the source
function f from the given data g(x, y) and Φ(t). Here f (x, y) and Φ(t) describe the spatial
distribution of the source and the time evolution pattern, respectively. In this case, our
problem is called the inverse source problem (ISP) which is motivated by many practical
applications. We can list some applications of (ISP), for example, pollution in the envi-
ronment [12, 13], dislocation problems [14], biomedical imaging techniques such as the
thermo-acoustic tomography [15, 16], electroencephalography/magnetoencephalography
(EEG/MEG) problems [17, 18], optical tomography [19]. The inverse source problem for
some other fractional diffusion equations has been investigated by many authors and its
physical background can be found in [20]; see also the works by Wei et al. [21–23] and
Kirane et al. [24, 25]. To the best of our knowledge, there are no results for the inverse
source problem (1.1).

Now, we return and discuss more details on the purpose of our paper. It is known that
the inverse source problem mentioned above is not well-posed in general, i.e., when a
solution exists, it does not depend continuously on the given data. In practice, the exact
data (Φ , g) is noised by measured data (Φε , gε) with order of ε > 0 as follows:

∥
∥Φε – Φ

∥
∥
L∞(0,T) ≤ ε,

∥
∥gε – g

∥
∥
L2(Ω) ≤ ε, (1.3)

where ‖Φ‖L∞(0,T) = sup0≤t≤T |Φ(t)| for any Φ ∈L∞(0, T). This problem is ill-posed in the
sense of Hadamard, which means that small changes in the observed data can lead to a
blow-up of the solution. Hence some regularization methods are required for stable com-
putation of a sought solution. The topic of this paper is to find an approximate solution.
Employing some previously suggested ideas, in this study, using the Fourier regulariza-
tion method, we establish a regularized solution. Under an a priori bound assumption of
the sought solution and a priori parameter choice rule, we give the convergence rate. In
practice, an a priori bound is difficult to obtain and check, so we need an a posteriori pa-
rameter choice rule. The strong point of an a posteriori parameter choice rule is that it
does not depend on the a priori bound.

The paper is organized into three sections. In Sect. 2, we present a formula of the source
function f and establish some lemmas and theorems which are useful to obtain the next
results. The ill-posedness of the inverse source problem is also shown in this section. In
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Sect. 3, we apply the Fourier regularization method and give two convergence estimates
and two regularization parameter choice rules: an a priori parameter choice and an a
posteriori parameter choice are presented in Sect. 3.1 and Sect. 3.2, respectively.

2 Preliminary results
Definition 2.1 Let 〈·, ·〉 be a scalar product in L2(Ω). The notation ‖ · ‖X stands for the
norm in the Banach space X. We denote by Lp(0, T ; X), 1 ≤ p < ∞, the Banach space of
p-integrable real-valued functions u : (0, T) → X, and set

‖u‖L∞(0,T ;X) = ess sup
t∈(0,T)

∥
∥u(t)

∥
∥

X , for p = ∞. (2.1)

Definition 2.2 (see [19]) The Mittag-Leffler function is defined by the series

Eκ ,α(z) =
∞∑

n=0

zn

Γ (κn + α)
, κ > 0,α ∈ R, z ∈C, (2.2)

where κ > 0, α ∈R are arbitrary constants.

Lemma 2.1 (see [19]) Let κ > 0 and α ∈R. Then one has

Eκ ,α(z) = zEκ ,κ+α(z) +
1

Γ (α)
, z ∈ C. (2.3)

Lemma 2.2 (see [26]) Letting λ > 0 and β > 0 with k being and integer from N
∗, one has

dk

dtk Eβ ,1
(
–λtβ

)
= –λtβ–kEβ ,β–k+1

(
–λtβ

)
, t > 0,

d
dt
(
tEβ ,2

(
–λtβ

))
= Eβ ,1

(
–λtβ

)
, t > 0.

(2.4)

Lemma 2.3 (see [3]) Let 0 < β0 < β1 < 1. Then there exist positive constants Λ̃1, Λ̃2, Λ̃3

depending only on β0,β1 such that for all β ∈ [β0,β1],

Λ̃1

1 + z
≤ Eβ ,1(–z) ≤ Λ̃2

1 + z
, Eβ ,κ (–z) ≤ Λ̃3

1 + z
, for all z ≥ 0,κ ∈R. (2.5)

Lemma 2.4 (see [3]) Let 0 < β < 1 and λ, a > 0. Then
(i) ∂t(Eβ(–λtβ )) = –λtβ–1Eβ ,β(–λtβ ), for t ≥ 0,

(ii) ∂t(tβ–1Eβ ,β(–λtβ )) = tβ–2Eβ ,β–1(–λtβ ), for t ≥ 0,
(iii)

∫∞
0 e–stEα(–atα) = sα–1

sα+a , for �(s) > a 1
α .

Lemma 2.5 Let 0 < β < 1, for p, q > 0 and denote λ̃pq = p2 + q2, then

M̃†
β (Λ̃1)
λ̃pq

≤
∫ T

0
Eβ ,1

(
–̃λpq(T – ς )β

)
dς ≤ M̃††

β (Λ̃2)
λ̃pq

, (2.6)

where

M̃†
β (Λ̃1) =

2Λ̃1T
1 + 2Tβ

, M̃††
β (Λ̃2) =

Λ̃2T1–β

1 – β
. (2.7)
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Proof From Lemma 2.3, we have

∫ T

0
Eβ ,1

(
–̃λpq(T – ς )β

)
dς ≤

∫ T

0

Λ̃2 ds
1 + λ̃pq(T – ς )β

≤ Λ̃2

λ̃pq

∫ T

0

dς

(T – ς )β
=

1
λ̃pq

(
Λ̃2T1–β

1 – β

)

. (2.8)

Next, because of inequality (T – ς )β ≤ Tβ valid for any ς ∈ [0, T] and Lemma 2.3, one has

∫ T

0
Eβ ,1

(
–̃λpq(T – ς )β

)
dς ≥ Λ̃1

∫ T

0

dς

1 + λ̃pq(T – ς )β
≥ Λ̃1

λ̃pq

∫ T

0

dς
1
2 + (T – ς )β

≥ Λ̃1

λ̃pq

∫ T

0

dς
1
2 + Tβ

=
1

λ̃pq

(
2Λ̃1T

1 + 2Tβ

)

. (2.9)

Combining (2.9) and (2.8), we conclude that

1
λ̃pq

(
Λ̃12T

1 + 2Tβ

)

≤
∫ T

0
Eβ ,1

(
–̃λpq(T – ς )β

)
dς ≤ 1

λ̃pq

(
Λ̃2T1–β

1 – β

)

. (2.10)

Denoting M̃†
β (Λ̃1) = ( Λ̃12T

1+2Tβ ), M̃††
β (Λ̃2) = ( Λ̃2T1–β

1–β
) shows that (2.6) holds. �

Lemma 2.6 Suppose that there exist positive constants such that m0 ≤ |Φε(t)| ≤ M0,
∀t ∈ [0, T]. By choosing ε ∈ (0, m0

2 ), we have

m0

2
≤ ∣
∣Φ(t)

∣
∣≤P(m0, M0), (2.11)

where P(m0, M0) = M0 + m0
2 .

Proof First of all, we have

∣
∣Φε(t)

∣
∣≤ ∣

∣Φ(t)
∣
∣ +

∣
∣Φε(t) – Φ(t)

∣
∣≤ ∣

∣Φ(t)
∣
∣ + sup

t∈[0,T]

∣
∣Φε(t) – Φ(t)

∣
∣

≤ ∣
∣Φ(t)

∣
∣ +

∥
∥Φε – Φ

∥
∥
L∞(0,T) ≤ ∣

∣Φ(t)
∣
∣ + ε. (2.12)

From (2.12), we know that

∣
∣Φ(t)

∣
∣≥ ∣

∣Φε(t)
∣
∣ – ε ≥ m0 – ε ≥ m0

2
. (2.13)

Similarly, we get

∣
∣Φ(t)

∣
∣≤ M0 + ε < M0 +

m0

2
. (2.14)

Denoting P(m0, M0) = M0 + m0
2 , and combining (2.13) with (2.14) leads to (2.11). �

Lemma 2.7 Let Φ : [0, T] →R
+ be a continuous function, then we have

m0M̃†
β (Λ̃1)

2̃λpq
≤
∫ T

0
Eβ ,1

(
–̃λpq(T – ς )β

)
Φ(ς ) dς ≤ P(m0, M0)M̃††

β (Λ̃2)
λ̃pq

. (2.15)
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2.1 The formula of source term f
In this section, we introduce the mild solution of the following initial value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu(x, y, t) = ∂
1–β
t (uxx(x, y, t) + uyy(x, y, t)) + H(x, y, t),

(x, y, t) ∈ Ω × (0, T),

u(x, y, t) = 0, (x, y) ∈ ∂Ω , t ∈ (0, T],

u(x, y, 0) = a(x, y), (x, y) ∈ Ω .

(2.16)

We use the separation of variables to obtain the solution of (2.16). Suppose that the exact
u is defined by Fourier series

u(x, y, t) =
∞∑

p=1

∞∑

q=1

upq(t)Spq(x, y) (2.17)

in which Spq(x, y) = sin(px) sin(qy). Taking the Laplace transform of (2.16) we obtain that

ς ũpq(ς ) – ãpq = –̃λpqς
1–β ũpq(ς ) + H̃pq(ς ), �(ς ) > 0, (2.18)

in which ṽ is the Laplace transform of function v, and so

ũpq(s) =
ςβ–1

ςβ + λ̃pq
ãpq +

ςβ–1

ςβ + λ̃pq
H̃pq(ς ), (2.19)

where Hpq(t) = 〈H(·, ·, t),Spq(x, y)〉. It follows from Lemma 2.3 and the uniqueness of
Laplace transform that

upq(t) = Eβ ,1
(
–̃λpqtβ

)
apq +

∫ t

0
Eβ ,1

(
–̃λpq(t – ς )β

)
Hpq(ς ) dς . (2.20)

By letting t = T in the last equality, recalling apq = 0 and Hpq(ς ) = Φ(ς )fpq, we have

upq(T) = gpq = fpq

∫ T

0
Eβ ,1

(
–̃λpq(T – ς )β

)
Φ(ς ) dς . (2.21)

We get the formula of the source function f as

f (x, y) =
∞∑

p=1

∞∑

q=1

gpqSpq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς
, (2.22)

where

apq =
4
π2

∫ π

0

∫ π

0
a(x, y)Spq(x, y) dx dy,

gpq =
4
π2

∫ π

0

∫ π

0
g(x, y)Spq(x, y) dx dy,

Hpq(s) =
4
π2

∫ π

0

∫ π

0
H(x, y, s)Spq(x, y) dx dy,

(2.23)

and where we note that Eβ ,1(–̃λpq(T – ς )β ) > 0 and Φ(ς ) > 0 for 0 ≤ ς ≤ T .
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Theorem 2.1 Let Φ : [0, T] → R be as in Lemma 2.7. Then the solution (u(x, y, t), f (x, y))
of Problem (1.1) is unique.

Proof Let f1 and f2 be the source functions corresponding to the final values g1 and
g2, respectively. Suppose that g1 = g2. Then we prove that f1 = f2. Using the fact that
Eβ ,1(–̃λpq(T – ς )β ) ≥ 0 for ς ≤ T . Using Lemma 2.2, we have

∫ T

0
Eβ ,1

(
–̃λpq(T – ς )β

)
Φ(ς ) dς ≥ m0

2

∫ T

0
Eβ ,1

(
–̃λpq(T – ς )β

)
dς

=
m0

2
TEβ ,2

(
–̃λpqTβ

)
> 0. (2.24)

Therefore, we get

f1(x, y) – f2(x, y) =
∞∑

p=1

∞∑

q=1

(g1
pq – g2

pq)Spq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς
= 0. (2.25)

The proof is complete. �

Theorem 2.2 The inverse source problem is ill-posed.

Proof To illustrate the ill-posedness of our problem, the relevant counterexample is in-
dicated. Choose the input final data gmn(x, y) = Smn(x,y)√

mn . By (2.22), the source term corre-
sponding to gmn is

fmn(x, y) =
∞∑

p=1

∞∑

q=1

gmnSpq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς

=
∞∑

p=1

∞∑

q=1

Smn(x,y)√
mn Spq(x, y)

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς

=
Smn(x, y)√

mn

∫ T

0
Eβ ,1(–̃λmn(T – ς )β )Φ(ς ) dς . (2.26)

Assume that input final data g(x, y) = 0. By (2.22), the source term corresponding to g is
f (x, y) = 0. The error in L2(Ω) norm between two input final data is

‖gmn – g‖L2(Ω) =
∥
∥
∥
∥
Smn(x, y)√

mn

∥
∥
∥
∥
L2(Ω)

=
1√
mn

→ 0 when m, n → ∞. (2.27)

The error in L2 norm between two corresponding source terms is

‖fmn – f ‖2
L2(Ω) =

(
π2

4

)∥
∥
∥
∥

Smn(x, y)√
mn

∫ T
0 Eβ ,1(–̃λmn(T – ς )β )Φ(ς ) dς

∥
∥
∥
∥

2

L2(Ω)

=
(

π2

4

)
1

mn

(∫ T

0
Eβ ,1

(
–̃λmn(T – ς )β

)
Φ(ς ) dς

)–2

≥
(

π2

4

)
1

mn
(
∫ T

0 Eβ ,1(–̃λmn(T – ς )β ) dς )–2

|P(m0, M0)|
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=
(

π2

4

)
1

P(m0, M0)M̃††
β (Λ̃2)

λ̃2
mn

mn
→ ∞ as m, n → ∞. (2.28)

Hence, from (2.27) and (2.28), there is in general no stability result. Thus, problem (1.1) is
ill-posed in the Hadamard sense in L2 norm. �

2.2 Conditional stability of source term f
Theorem 2.3 For M > 0 such that ‖f ‖Hδ (Ω) ≤M,

‖f ‖L2(Ω) ≤ C̃(δ,M)‖g‖
δ

δ+1
L2(Ω), (2.29)

in which

C̃(δ,M) =
(

2
m0(M̃†

β (Λ̃1))

) δ
δ+1

M 1
δ+1 . (2.30)

Proof From (2.22), combining Hölder inequality and Lemma 2.7, we obtain

‖f ‖2
L2(Ω)

≤
( ∞∑

p=1

∞∑

q=1

|〈gpq,Spq(x, y)〉|2
| ∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς |2δ+2

) 1
δ+1

( ∞∑

p=1

∞∑

q=1

∣
∣
〈
gpq,Spq(x, y)

〉∣
∣2
) δ

δ+1

≤
( ∞∑

p=1

∞∑

q=1

|〈fpq,Spq(x, y)〉|2
| ∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς |2δ

) 1
δ+1

‖g‖
2δ
δ+1
L2(Ω)

≤
(∑∞

p=1
∑∞

q=1 λ̃2δ
pq|〈fpq,Spq(x, y)〉|2

|m0
2 |2δ(M̃†

β (Λ̃1))2δ

) 1
δ+1 ‖g‖

2δ
δ+1
L2(Ω). (2.31)

From (2.31), we conclude that

‖f ‖2
L2(Ω) ≤

(
2

|m0|(M̃†
β (Λ̃1))

) 2δ
δ+1 ‖f ‖

2
δ+1
Hδ (Ω)‖g‖

2δ
δ+1
L2(Ω). (2.32)

�

3 Fourier truncation regularization and error estimate
In this section, we eliminate all the components of large p, q from the solution where the
positive integer NT R plays the role of the regularization parameter. The nature of our
regularization method is just eliminating all high frequencies from the solution and con-
sidering instead of (2.22) only for λ̃pq = p2 + q2, where NT R is a suitable positive constant.
We note that the NT R constant will be selected appropriately as a formal parameter. This
regularization method is quite simple and convenient to handle some of the problems
posed. The current article is devoted to establishing such an approach for problem (1.1).
Let

Bε :=
{

p, q ∈N
∗, λ̃pq = p2 + q2 ≤NT R

}
, (3.1)

Bε :=
{

p, q ∈N
∗, λ̃pq = p2 + q2 > NT R

}
. (3.2)
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We have the regularized solution as follows:

f NT R
ε (x, y) =

∑

p,q∈Bε

gε
pqSpq(x, y)

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς ) dς

. (3.3)

Next, we show error estimation for ‖f (x, y) – f NT R
ε (x, y)‖L2(Ω) and give convergence rate

under a suitable choice for the regularization parameter.

3.1 Convergence estimate under an a priori regularization parameter choice rule
Theorem 3.1 Let f NT R

ε (x, y) be the regularized solution of Problem (1.1) with observed
data gε(x, y) and let f (x, y) be the exact solution of Problem (1.1) with exact data g(x, y).
By choosing parameter regularization NT R = [ζ ], where [ζ ] denotes the largest integer less
than or equal to ζ ,

• If 0 < δ ≤ 1 then, by choosing ζ = (M
ε

)
1

δ+1 , we obtain

∥
∥f (x, y) – f NT R

ε (x, y)
∥
∥
L2(Ω) ≤ ε

δ
δ+1 M 1

δ+1 D(m0,β , f ,Λ1). (3.4)

• If δ > 1, then, by choosing ζ = (M
ε

) 1
2 , we obtain

∥
∥f (x, y) – f NT R

ε (x, y)
∥
∥
L2(Ω) ≤ ε

1
2 M 1

2 D(m0,β , f ,Λ1), (3.5)

where D(m0,β , f ,Λ1) = π
2 (1 + max{ 1

|m0|M̃†
β (Λ1)

,
‖f ‖L2(Ω)

|m0| }).

Proof of Theorem 3.1 Using (2.22) and (3.3) and the triangle inequality, we have

f (x, y) – f NT R
ε (x, y)

=
∞∑

p=1

∞∑

q=1

gpqSpq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς

–
∑

p,q∈Bε

gε
pqSpq(x, y)

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς ) dς

=
∞∑

p=1

∞∑

q=1

gpqSpq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς

–
∑

p,q∈Bε

gpqSpq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς

+
∑

p,q∈Bε

gpqSpq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(s) ds

–
∑

p,q∈Bε

gε
pqSpq(x, y)

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς ) dς

. (3.6)

Using (3.6), we can write

f (x, y) – f NT R
ε (x, y)
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=
∑

p,q∈Bε

gpqSpq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς )dς
︸ ︷︷ ︸

:=A1

+
∑

p,q∈Bε

(gpq(x) – gε
pq(x))Spq(x, y)

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς )dς

︸ ︷︷ ︸
:=A2

+
∑

p,q∈Bε

gpqSpq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς )dς
×

∑

p,q∈Bε

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )(Φε(ς ) – Φ(ς ))dς

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς )dς

︸ ︷︷ ︸
:=A3

.

(3.7)

Step 1. Firstly, we have the following estimate:

‖A1‖2
L2(Ω) =

π2

4
∑

p,q∈Bε

|〈gpq,Spq(x, y)〉|2
| ∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς |2

=
π2

4
∑

p,q∈Bε

∣
∣
〈
fpq,Spq(x, y)

〉∣
∣2

≤ π2

4
∑

p,q∈Bε

(1 + λ̃pq)–2δ(1 + λ̃pq)2δ
∣
∣
〈
fpq,Spq(x, y)

〉∣
∣2

≤ π2

4
(1 + NT R)–2δM2. (3.8)

Hence, we obtain

‖A1‖L2(Ω) ≤ π

2
(1 + NT R)–δM. (3.9)

Step 2. The term ‖A2‖L2(Ω) is bounded by

‖A2‖2
L2(Ω) ≤ π2

4
∑

p,q∈Bε

|gpq(x) – gε
pq(x)|2

| ∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς ) dς |2

≤ π2

4
∑

p,q∈Bε

λ̃2
pq|gpq – gε

pq|2
|m0|2(M̃†

β (Λ̃1))2

≤ π2

4
sup

1≤p≤NT R
sup

1≤q≤NT R

λ̃2
pq

|m0|2(M̃†
β (Λ̃1))2

∑

p,q∈Bε

∣
∣gpq – gε

pq
∣
∣2

≤ π 2̃λ2
pq

4|m0|2(M̃†
β (Λ1))2

∥
∥g – gε

∥
∥2
L2(Ω) ≤ π2NT R

2ε2

4|m0|2(M̃†
β(Λ1))2

. (3.10)

Therefore,

‖A2‖L(Ω) ≤ επNT R

2|m0|M̃†
β (Λ1)

. (3.11)

Step 3. The term ‖A3‖L2(Ω) can be estimated as follows:

‖A3‖2
L2(Ω) ≤ π2

4

( ∑

p,q∈Bε

∣
∣
∣
∣

|〈gpq,Spq(x, y)〉|
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς ) dς

∣
∣
∣
∣

2)
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×
( ∑

p,q∈Bε

∣
∣
∣
∣

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )(Φε(ς ) – Φ(ς )) dς

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς ) dς

∣
∣
∣
∣

2)

. (3.12)

From (3.12), we get

‖A3‖2
L2(Ω)

≤ π2

4

( ∑

p,q∈Bε

| ∫ T
0 Eβ ,1(–̃λpq(T – ς )β )(Φε(ς ) – Φ(ς )) dς |2

| ∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς ) dς |2

)

×
( ∑

p,q∈Bε

|〈gpq,Spq(x, y)〉|2
| ∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς |2
)

≤ π2

4
‖Φε – Φ‖2

L∞(0,T)

|m0|2
∞∑

p=1

∞∑

q=1

|〈gpq,Spq(x, y)〉|2
| ∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς |2

=
π2

4
‖Φε – Φ‖2

L∞(0,T)

|m0|2 ‖f ‖2
L2(Ω) ≤

π2ε2‖f ‖2
L2(Ω)

4|m0|2 . (3.13)

From (3.12), we conclude that

‖A3‖L2(Ω) ≤ πε‖f ‖L2(Ω)

2|m0| . (3.14)

Combining (3.8), (3.11), and (3.12) yields

∥
∥f (x, y) – f NT R

ε (x, y)
∥
∥
L2(Ω)

≤ πM
2(1 + NT R)δ

+
πεNT R

2|m0|M̃†
β (Λ1)

+
πε‖f ‖L2(Ω)

2|m0| . (3.15)

Using the fact that NT R ≤ ζ ≤NT R + 1 gives

∥
∥f (x, y) – f NT R

ε (x, y)
∥
∥
L2(Ω)

≤ π

2

[

ζ –δM + εζ max

{
1

|m0|M̃†
β (Λ1)

,
‖f ‖L2(Ω)

|m0|
}]

(3.16)

≤ ε
δ

δ+1 M 1
δ+1

π

2

(

1 + max

{
1

|m0|M̃†
β (Λ1)

,
‖f ‖L2(Ω)

|m0|
})

. (3.17)
�

3.2 Convergence estimate under an a posteriori regularization parameter choice
rule

In this subsection, by using the discrepancy principle, we consider an a posteriori regu-
larization parameter choice. Define

RNT Rgε =
∑

p,q∈Bε

gε
pqSpq(x, y). (3.18)

Because of the discrepancy principle, we take K = K(ε, gε) as the solution of

∥
∥(I – RNT R )gε

∥
∥
L2(Ω) ≤ τε ≤ ∥

∥(I – RNT R–1)gε
∥
∥
L2(Ω), τ > 1. (3.19)
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For this choice rule, we get an upper bound estimate for the NT R in the following
lemma.

Lemma 3.1 We have

NT R ≤
(

πM̃††
β (Λ̃2)P(m0, M0)M

2(τ – 1)ε

) 1
1+δ

. (3.20)

Proof From ‖gε – g‖L2(Ω) ≤ ε and (3.19), we have

‖RNT R–1g – g‖L2(Ω) =
∥
∥(RNT R–1 – I)gε – (I – RNT R–1)

(
g – gε

)∥
∥
L2(Ω)

≥ ∥
∥(RNT R–1 – I)gε

∥
∥
L2(Ω) –

∥
∥(I – RNT R–1)

(
g – gε

)∥
∥
L2(Ω)

≥ (τ – 1)ε. (3.21)

On the other hand, for λ̃pq ≥NT R, we obtain

∫ T

0
Eβ ,1

(
–̃λpq(T – ς )β

)
Φ(ς ) dς

≤ ∣
∣P(m0, M0)

∣
∣
∫ T

0
Eβ ,1

(
–̃λpq(T – ς )β

)
Φ(ς ) dς

=
∣
∣P(m0, M0)

∣
∣
M̃††

β (Λ̃2)
λ̃pq

≤ |P(m0, M0)|M̃††
β (Λ̃2)

NT R
. (3.22)

This implies that

‖RNT R–1g – g‖2
L2(Ω)

=
π2

4
∑

p,q∈Bε

∣
∣
〈
g(·, ·),Spq(x, y)

〉∣
∣2

=
π2

4
∑

p,q∈Bε

∣
∣
∣
∣

∫ T

0
Eβ ,1

(
–̃λpq(T – ς )β

)
Φ(ς ) dς

〈
fpq,Spq(x, y)

〉
∣
∣
∣
∣

2

≤ π2

4
|P(m0, M0)|2(M̃††

β (Λ̃2))2

(NT R)2

∑

p,q∈Bε

∣
∣
〈
fpq,Spq(x, y)

〉∣
∣2

≤ π2

4
|P(m0, M0)|2(M̃††

β (Λ̃2))2

(NT R)2

∑

p,q∈Bε

(1 + λ̃pq)–2δ(1 + λ̃pq)2δ
∣
∣
〈
fpq,Spq(x, y)

〉∣
∣2

≤ π2

4
|P(m0, M0)|2(M̃††

β (Λ̃2))2

(NT R)2(NT R)2δ

∑

p,q∈Bε

(1 + λ̃pq)2δ
∣
∣
〈
fpq,Spq(x, y)

〉∣
∣2

≤ π2

4
|P(m0, M0)|2(M̃††

β (Λ̃2))2‖f ‖2
Hδ (Ω)

(NT R)2+2δ

≤ π2

4
|P(m0, M0)|2(M̃††

β (Λ̃2))2M2

(NT R)2+2δ
. (3.23)
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Hence, we conclude that

‖FN–1g – g‖L2(Ω) ≤ π |P(m0, M0)|M̃††
β (Λ̃2)M

2(NT R)1+δ
. (3.24)

Combining (3.21) and (3.24), we conclude that

(τ – 1)ε ≤ π |P(m0, M0)|M̃††
β (Λ̃2)M

2(NT R)1+δ
. (3.25)

From (3.25), so we can obtain

NT R ≤
(

π |P(m0, M0)|M̃††
β (Λ̃2)M

2(τ – 1)ε

) 1
1+δ

. (3.26)
�

Next we present an error estimate for the approximate solution of problem (1.1).

Theorem 3.2 Let f NT R
ε and f be as in Theorem 3.1. Then we obtain

∥
∥f (x, y) – f NT R

ε (x, y)
∥
∥
L2(Ω) ≤ ε

δ
δ+1 M 1

δ+1
[
Q1 + Q2(τ + 1)

δ
δ+1

]
, (3.27)

where

Q1 =
(

πM̃††
β (Λ̃2)|P(m0, M0)|

2(τ – 1)|m0|δ+1

) 1
δ+1

max

{

‖f ‖L2(Ω),
π

2M̃†
β (Λ̃1)

}

,

Q2 =
1

|m0
2 | δ

δ+1 (M̃†
β (Λ̃1))

δ
δ+1

. (3.28)

Proof Using the triangle inequality, we have

∥
∥f (x, y) – f NT R

ε (x, y)
∥
∥
L2(Ω)

≤ ∥
∥f (x, y) – f NT R (x, y)

∥
∥
L2(Ω) +

∥
∥f NTR (x, y) – f NTR

ε (x, y)
∥
∥
L2(Ω). (3.29)

We split the proof into two steps.
Step 1. Estimate for ‖f (·, ·) – f NT R (·, ·)‖L2(Ω). We obtain it as

∥
∥f (x, y) – f NT R (x, y)

∥
∥

Hδ (Ω)

≤
∥
∥
∥
∥
∥

∞∑

p=NT R+1

∞∑

q=NT R+1

〈
fpq,Spq(x, y)

〉
∥
∥
∥
∥
∥

=

( ∞∑

p=NT R+1

∞∑

q=NT R+1

(1 + λ̃pq)2δ
∣
∣
〈
f (·, ·),Spq(x, y)

〉∣
∣2
)1/2

≤M. (3.30)

From (3.19), we get

∥
∥Af (x, y) – Af NT R (x, y)

∥
∥
L2(Ω)
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≤ ∥
∥(I – RNT R )g

∥
∥
L2(Ω)

≤ ∥
∥(I – RNTR )gε + (I – RNT R )

(
g – gε

)∥
∥
L2(Ω)

≤ ∥
∥(I – RNT R )gε

∥
∥
L2(Ω) +

∥
∥(I – RNT R )

(
g – gε

)∥
∥
L2(Ω)

≤ (τ + 1)ε. (3.31)

Therefore, we have

∥
∥f (·, ·) – f NT R (·, ·)∥∥L2(Ω) ≤ Q2

(
(τ + 1)ε

) δ
δ+1 . (3.32)

Step 2. Estimate for ‖f NT R (·, ·) – f NT R
ε (·, ·)‖L2(Ω). We obtain it from

f NT R (x, y) – f NT R
ε (x, y)

=
∑

p,q∈Bε

gpqSpq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς –
∑

p,q∈Bε

gε
pqSpq(x,y)

∫ T
0 Eβ ,1(–̃λpq(T–ς )β )Φε(ς ) dς

≤
∑

p,q∈Bε

gpqSpq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς ) dς
–

∑

p,q∈Bε

gpqSpq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς ) dς

+
∑

p,q∈Bε

(gpq – gε
pq)Spq(x, y)

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς ) dς

. (3.33)

From (3.33), we know that

f NT R (x, y) – f NT R
ε (x, y)

≤
∑

p,q∈Bε

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )(Φ(ς ) – Φε(ς ))dς

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς )dς

×
∑

p,q∈Bε

gpqSpq(x, y)
∫ T

0 Eβ ,1(–̃λpq(T – ς )β )Φ(ς )dς

︸ ︷︷ ︸
:=A3

+
∑

p,q∈Bε

〈gpq – gε
pq,Spq(x, y)〉

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς )dς

︸ ︷︷ ︸
:=A4

. (3.34)

From (3.33), it is easy to check that

‖A3‖L2(Ω) ≤ ε‖f ‖L2(Ω)

m0
. (3.35)

Our estimate of A4 is based on Lemma 2.7, and we obtain

‖A4‖2
L2(Ω) =

π2

4
∑

p,q∈Bε

∣
∣
∣
∣

〈gpq(x, y) – gε
pq(x, y),Spq(x, y)〉

∫ T
0 Eβ ,1(–̃λpq(T – ς )β )Φε(ς ) dς

∣
∣
∣
∣

2

≤ π2

4
∑

p,q∈Bε

λ̃2
pq|〈gpq(x, y) – gε

pq(x, y),Spq(x, y)〉|2
|m0|2(M̃†

β (Λ̃1))2
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≤ π2

4
ε2(NT R)2

m2
0(M̃†

β (Λ̃1))2
. (3.36)

Hence, we get

‖A4‖L2(Ω) ≤ πεNT R

2m0M̃†
β (Λ̃1)

. (3.37)

From the above observations, we deduce that

∥
∥f NT R (x, y) – f NT R

ε (x, y)
∥
∥
L2(Ω) ≤ εNT R

m0
max

{

‖f ‖L2(Ω),
π

2M̃†
β (Λ̃1)

}

. (3.38)

Substituting (3.26) into (3.38), we obtain

∥
∥f NT R (x, y) – f NT R

ε (x, y)
∥
∥
L2(Ω) ≤ ε

δ
δ+1 M 1

δ+1 Q1. (3.39)

Combining Steps 1 and 2, we obtain the final estimate as follows:

∥
∥f (x, y) – f NT R

ε (x, y)
∥
∥
L2(Ω) ≤ ε

δ
δ+1 M 1

δ+1
[
Q1 + Q2(τ + 1)

δ
δ+1

]
, (3.40)

in which Q1 depends on m0, M0,Λ1,Λ2, δ, f , τ ,β , and Q2 depends on m0, δ,β ,Λ1 defined
in (3.28). This completes the proof. �
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