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Abstract
In the present article, we construct a new sequence of positive linear operators via
Dunkl analogue of modified Szász–Durrmeyer operators. We study the moments and
basic results. Further, we investigate the pointwise approximation and uniform
approximation results in various functional spaces for these sequences of positive
linear operators. Finally, we prove the global approximation and A-statistical
convergence results for these operators.
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1 Introduction
In recent past, the Szász–Mirakjan operators and Szász–Durrmeyer type operators have
been intensively investigated in various functional spaces to approximate the continuous
functions and Lebesgue measurable functions respectively. Mazhar and Totik [17] gave an
integral modification of Szász–Mirakyan [37] operators to study the Lebesgue measurable
functions as follows:

S∗
n(g; u) = ne–nu

∞∑

k=0

(nu)k

k!

∫ ∞

0
e–nt (nt)k

k!
g(t) dt, u ≥ 0, n ∈N = {1, 2, 3, . . . }. (1.1)

Researchers have obtained several approximations of Szász–Mirakyan type operators via
Dunkl generalization; for instance, see [6, 18, 26, 28, 29, 32, 39]. Related to these results,
more approximation results have been studied in different functional spaces (see [1, 2, 4,
5, 14, 38] and [3, 16, 27, 31]). Sucu [36] introduced Szász–Mirakyan type operators for
k ∈N0 = N∪ {0} as follows:

Sn(g; u) :=
1

ei(nu)

∞∑

k=0

(nu)k

γi(k)
g
(

k + 2iθk

n

)
, (1.2)
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using generalized exponential function [33] given by

ei(t) =
∞∑

j=0

tj

γi(j)
, t ∈ [0,∞), (1.3)

where the coefficients γi are defined as follows:

γi(2j) =
22jj!Γ (j + i + 1

2 )
Γ (i + 1

2 )
and γi(2j + 1) = 22j+1j!

Γ (j + i + 3
2 )

Γ (i + 1
2 )

.

Here, Γ is the gamma function and i > – 1
2 . In [36] the pointwise and uniform approxi-

mation results for the operators defined by (1.2) are obtained. Several extensions of the
Szász–Mirakyan operators defined by (1.2) and their approximation results are studied by
the authors viz İçöz et al. [11, 12]. In [40], we have constructed Szász–Durrmeyer type
operators to approximate the Lebesgue measurable functions as follows:

Dn(g; u) =
1

ei(nu)

∞∑

j=0

(nu)j

γi(j)
nj+2iθj+λ+1

Γ (j + 2iθj + λ + 1)

∫ ∞

0
tj+2iθj+λe–ntg(t) dt, (1.4)

where Γ (t) =
∫ ∞

0 ute–u du is the gamma function, λ ≥ 0, and

θj =

⎧
⎨

⎩
0, j ∈ 2N,

1, j ∈ 2N + 1.

In order to obtain a better rate of convergence in comparison to (1.4), in this paper we
introduce a modification with two nonnegative shifted nodes as follows:

Mα,β
n (g; u) =

∞∑

k=0

νn(u; k)
∫ ∞

0
tk+2iθk+λe–ntg

(
nt + α

n + β

)
dt, (1.5)

where νn(u; k) = 1
ei(nu)

(nu)k

γi(k)
nk+2iθk +λ+1

Γ (k+2iθk+λ+1) , 0 ≤ α ≤ β , and f ∈ C[0,∞) whenever the above
series converges. One can notice that (i) for i = λ = α = β = 0, the sequence of operators
introduced in (1.5) reduces to the operators defined in (1.1) and (ii) for α = β = 0, the
sequence of positive linear operators defined in (1.5) reduces to the operators defined in
[40].

In the subsequent sections, we deduce some basic results, direct approximation results.
Further, global approximation results are studied in [19–21, 24, 25, 35].

2 Preliminary results
For i > – 1

2 , u ≥ 0, and n ∈ N, we denote

En(u) =
ei(–nu)
ei(nu)

. (2.1)

Lemma 2.1 ([40]) For the operators given by (1.4), we have

Dn(1; u) = 1,
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Dn(t; u) = u +
λ + 1

n
,

Dn
(
t2; u

)
= u2 +

(
4 + 2λ + 2iEn(u)

)u
n

+
(λ + 1)(λ + 2)

n2 ,

Dn
(
t3; u

)
= u3 +

(
9 + 3λ – 2iEn(u)

)u2

n
+

(
18 + 3λ(λ + 5) + 4i2

+ 2i(8 + 3λ)En(u)
) u

n2 +
λ3 + 6λ2 + 11λ + 6

n3 ,

Dn
(
t4; u

)
= u4 + O

(
1
n

)
for each compact subset of [0,∞).

Lemma 2.2 For operators (1.5), we have

Mα,β
n

(
tr ; u

)
=

r∑

i=0

(
r
i

)
niαr–i

(n + β)r Dn
(
ti; u

)
, r ∈N.

Proof From (1.5), we get

Mα,β
n

(
tr ; u

)
=

∞∑

k=0

νn(u; t)
∫ ∞

0
tk+2iθk+λe–nt

(
nt + α

n + β
– u

)r

=
r∑

j=0

(
r
j

)
njαr–j

(n + β)r

∞∑

k=0

νn(u; t)
∫ ∞

0
tk+2iθk+λe–nttj dt

=
r∑

j=0

(
r
j

)
njαr–j

(n + β)r Dn
(
tj; u

)
.

�

Lemma 2.3 For r ∈N, we have the following relation:

Mα,β
n

(
(t – u)r ; u

)
=

r∑

i=0

(
r
i

)
(–u)r–iMα,β

n
(
ti; u

)
,

where Mα,β
n is defined in (1.5).

Proof From relation (1.5), we get

Mα,β
n

(
(t – u)r ; u

)
=

∞∑

k=0

νn(u; k)
∫ ∞

0
tk+2iθk+λe–nt

(
nt + α

n + β
– u

)r

dt

=
r∑

j=0

(
r
j

)
(–u)r–jMα,β

n
(
tj; u

)
.

�

Lemma 2.4 Let er(t) = tr for r ∈ {0, 1, 2, 3, 4} be the test functions and En(u) be defined in
(2.1). Then

Mα,β
n (e0; u) = 1,

Mα,β
n (e1; u) =

n
n + β

u +
λ + α + 1

n + β
,
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Mα,β
n (e2; u) =

n2

(n + β)2 u2 +
(
4 + 2λ + 2α + 2iEn(u)

) n
(n + β)2 u

+
(λ + 1)(λ + 2α + 2) + α2

(n + β)2 ,

Mα,β
n (e3; u) =

n3

(n + β)3 u3 +
(
9 + 3α + 3λ – 2iEn(u)

) n2

(n + β)3 u2

+
(
18 + 12α + 3λ(λ + 5 + 2α) + 3α2 + 4i2 + 2i(8 + 3λ + 3α)En(u)

)

× n
(n + β)3 u +

λ3 + α3 + λ2(6 + 3α) + λ(11 + 9α + 3α2) + 6 + 6α + 3α2

(n + β)3 ,

Mα,β
n (e4; u) =

n4

(n + β)4 u4 + O
(

1
n + β

)
for each compact subset of [0,∞).

Proof The proof follows immediately from Lemma 2.2. �

Lemma 2.5 Let ψ r
u(t) = (t – u)r , r ∈N, be the central moments of Mα,β

n . Then

Mα,β
n

(
ψ0

u ; u
)

= 1,

Mα,β
n

(
ψ1

u ; u
)

=
1

(n + β)
(1 + λ + α – βu),

Mα,β
n

(
ψ2

u ; u
)

=
β2

(n + β)2 u2 + 2
(

1 + iEn(u) – 2β
1 + λ + α

n

)
n

(n + β)2 u

+
α2 + (λ + 1)(λ + 2α + 2)

(n + β)2 ,

Mα,β
n

(
ψ4

u ; u
)

= O
(
(n + β)–1) for each compact subset of [0,∞).

Proof In the light of Lemmas 2.2 and 2.3, we can easily prove Lemma 2.5. �

Definition 2.6 Let g ∈ C[0,∞). Then the modulus of continuity for a uniformly continu-
ous function g is defined as follows:

ω(g; δ) = sup
|t1–t2|≤δ

∣∣g(t1) – g(t2)
∣∣, t1, t2 ∈ [0,∞).

For a uniformly continuous function g in C[0,∞) and δ > 0, we get

∣∣g(t1) – g(t2)
∣∣ ≤

(
1 +

(t1 – t2)2

δ2

)
ω(g; δ). (2.2)

Theorem 2.7 Let Mα,β
n be the operators defined by (1.5) and g ∈ C[0,∞) ∩ {g : u ≥

0, g(u)
1+u2 is convergent as u → ∞}. Then the operators are defined by (1.5), Mα,β

n ⇒ g on each
compact subset of [0,∞), where ⇒ stands for uniform convergence.

Proof For the proof of uniformity for the operators Mα,β
n , we use the well-known Korovkin

theorem. So, it is sufficient to show that

Mα,β
n (eν ; u) → eν(u) for ν = 0, 1, 2.
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Using Lemma 2.4, it is obvious that Mα,β
n (eν ; u) → eν(u) as n → ∞, ν = 0, 1, 2, which proves

Theorem 2.7. �

Theorem 2.8 (See [34]) Let L : C([a, b]) → B([a, b]) be a linear and positive operator, and
let ϕx be the function defined by

ϕx(t) = |t – x|, (x, t) ∈ [a, b] × [a, b].

If f ∈ CB([a, b]) for any x ∈ [a, b] and any δ > 0, the operator L verifies

∣∣(Lf )(x) – f (x)
∣∣ ≤ ∣∣f (x)

∣∣∣∣(Le0)(x) – 1
∣∣

+
{

(Le0)(x) + δ–1
√

(Le0)(x)
(
Lϕ2

x
)
(x)

}
ωf (δ),

where C[a, b] is the space of all continuous functions defined on [a, b], and CB[a, b] is the
space of all continuous and bounded functions defined on [a, b].

Theorem 2.9 For the operators Mα,β
n given by (1.5) and g ∈ CB[0,∞), we have

∣∣Mα,β
n (g; u) – g(u)

∣∣ ≤ 2ω(g; δ),

where δ =
√

Mα,β
n (ψ2

u ; u) and CB[0,∞) is the space of continuous and bounded functions
defined on [0,∞).

Proof Using Lemma 2.4, Lemma 2.5, and Theorem 2.8, we get

∣∣Mα,β
n (g; u) – g(u)

∣∣ ≤
{

1 + δ–1
√

Mα,β
n

(
ψ2

u ; u
)}

ω(g; δ).

On taking δ =
√

Mα,β
n (ψ2

u ; u), we arrive at the required result. �

3 Direct results
Let us equip the norm on g such as ‖g‖ = sup0≤u<∞ |g(u)|. For any g ∈ CB[0,∞) and δ > 0,
Peetre’s K-functional is defined as follows:

K2(g, δ) = inf
{‖g – h‖ + δ

∥∥h′′∥∥ : h ∈ C2
B[0,∞)

}
, (3.1)

where C2
B[0,∞) = {h ∈ CB[0,∞) : h′, h′′ ∈ CB[0,∞)}. From DeVore and Lorentz ([8], p.177,

Theorem 2.4), there exists an absolute constant C > 0 in such a way that

K2(g; δ) ≤ Cω2(g;
√

δ).

Lemma 3.1 Let the auxiliary operators be

M̂α,β
n (g; u) = Mα,β

n (g; u) + g(u) – g
(

n
n + β

u +
λ + α + 1

n + β

)
. (3.2)
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For h, g ∈ C2
B[0,∞), u ≥ 0, and μ,λ ≥ 0, we get

∣∣M̂α,β
n (g; u) – g(u)

∣∣ ≤ ξu
n
∥∥h′′∥∥,

where

ξu
n = Mα,β

n
(
ψ2

u ; u
)

+
(
Mα,β

n
(
ψ1

u ; u
))2.

Proof From (3.2), we have

M̂α,β
n (1; u) = 1, M̂α,β

n (ψu; u) = 0 and
∣∣M̂α,β

n (g; u)
∣∣ ≤ 3‖g‖. (3.3)

From Taylor’s series for h ∈ C2
B[0,∞), we have

h(t) = h(u) + (t – u)h′(u) +
∫ t

u
(t – v)h′′(v) dv. (3.4)

Using M̂α,β
n (g; u) in (3.4), we get

M̂α,β
n (h; u) – h(u) = h′(u)M̂α,β

n (t – u; u) + M̂α,β
n

(∫ t

u
(t – v)h′′(v) dv; u

)
.

From (3.2) and (3.3), we have

M̂α,β
n (h; u) – h(u) = M̂α,β

n

(∫ t

u
(t – v)h′′(v) dv; u

)

= Mα,β
n

(∫ t

u
(t – v)h′′(v) dv; u

)

–
∫ n

n+β
u+ λ+α+1

n+β

u

(
n

n + β
u +

λ + α + 1
n + β

– v
)

g ′′(v) dv,

∣∣M̂α,β
n (h; u) – h(u)

∣∣

≤
∣∣∣∣M

α,β
n

(∫ t

u
(t – v)h′′(v) dv; u

)∣∣∣∣

+
∣∣∣∣
∫ n

n+β
u+ λ+α+1

n+β

u

(
n

n + β
u +

λ + α + 1
n + β

– v
)

h′′(v) dv
∣∣∣∣. (3.5)

Since
∣∣∣∣
∫ t

u
(t – v)h′′(v) dv

∣∣∣∣ ≤ (t – v)2∥∥h′′∥∥, (3.6)

we get

∣∣∣∣
∫ Mα,β

n (e1;u)

u

(
Mα,β

n (e1; u) – v
)
h′′(v) dv

∣∣∣∣ ≤ (
Mα,β

n (t – v; u)
)2∥∥h′′∥∥. (3.7)

Combining (3.5), (3.6), and (3.7), we have

M̂α,β
n (h; u) – h(u)| ≤ ξu

n
∥∥h′′∥∥. �
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Theorem 3.2 Let f ∈ C2
B[0,∞). Then there exists a constant C > 0 such that

∣∣Mα,β
n (g; u) – g(u)

∣∣ ≤ Cω2

(
g;

1
2
√

ξu
n

)
+ ω(g; Mα,β

n (ψu; u),

where ξu
n is defined in Lemma 3.1.

Proof For h ∈ C2
B[0,∞) and g ∈ CB[0,∞) and by the definition of M̂α,β

n , we have

∣∣Mα,β
n (g; u) – g(u)

∣∣ ≤ ∣∣M̂α,β
n (g – h; u)

∣∣ +
∣∣(g – h)(u)

∣∣ +
∣∣M̂α,β

n (h; u) – h(u))
∣∣

+
∣∣∣∣g

(
n

n + β
u +

λ + α + 1
n + β

)
– g(u)

∣∣∣∣.

From Lemma 3.1 and relations in (3.3), one gets

∣∣Mα,β
n (g; u) – g(u)

∣∣ ≤ 4‖g – h‖ +
∣∣M̂α,β

n (h; u) – h(u)
∣∣

+
∣∣∣∣g

(
n

n + β
u +

λ + α + 1
n + β

)
– g(u)

∣∣∣∣

≤ 4‖g – h‖ + ξu
n
∥∥h′′∥∥ + ω

(
g; Mα,β

n (ψu; u)
)
.

Using the definition of Peetre’s K-functional, we have

∣∣Mα,β
n (g; u) – g(u)

∣∣ ≤ Cω2

(
g;

1
2
√

ξu
n

)
+ ω(g; Mα,β

n (ψu; u).

This completes the proof of Theorem 3.2. �

We consider the Lipschitz type space [30]:

Lipk1,k2
M (ρ) :=

{
g ∈ CB[0,∞) :

∣∣g(t) – g(u)
∣∣ ≤ M

|t – u|ρ
(t + k1u + k2u2)

ρ
2

: u, t ∈ (0,∞)
}

,

where M ≥ 0 is a constant, k1, k2 > 0, ρ > 0, and ρ ∈ (0, 1].

Theorem 3.3 For g ∈ Lipk1,k2
M (ρ), we have

∣∣Mα,β
n (g; u) – g(u)

∣∣ ≤ M
(

η∗
n(u)

k1u + k2u2

) ρ
2

, (3.8)

where u > 0 and η∗
n(u) = Mα,β

n (ψ2
u ; u).

Proof For ρ = 1, we have

∣∣Mα,β
n (g; u) – g(u)

∣∣ ≤ Mα,β
n

(∣∣g(t) – g(u)
∣∣)(u)

≤ MMα,β
n

( |t – u|
(t + k1u + k2u2) 1

2
; u

)
.
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Since 1
t+k1u+k2u2 < 1

k1u+k2u2 for all t, u ∈ (0,∞), we get

∣∣Mα,β
n (g; u) – g(u)

∣∣ ≤ M
(k1u + k2u2) 1

2

(
Mα,β

n
(
(t – u)2; x

)) 1
2

≤ M
(

η∗
n(u)

k1u + k2u2

) 1
2

.

Thus Theorem 3.3 holds for ρ = 1. Next, for ρ ∈ (0, 1) and from Hölder’s inequality with
p = 2

ρ
and q = 2

2–ρ
, we get

∣∣Mα,β
n (g; u) – g(u)

∣∣ ≤ (
Mα,β

n
((∣∣g(t) – g(u)

∣∣) 2
ρ ; u

)) ρ
2

≤ M
(

Mα,β
n

( |t – u|2
(t + k1u + k2u2)

; u
)) ρ

2
.

Since 1
t+k1u+k2u2 < 1

k1u+k2u2 for all t, u ∈ (0,∞), we obtain

∣∣Mα,β
n (g; u) – g(u)

∣∣ ≤ M
(

Mα,β
n (|t – u|2; u)
k1u + k2u2

) ρ
2

≤ M
(

η∗
n(u)

k1u + k2u2

) ρ
2

.

Hence, we prove Theorem 3.3. �

4 Global approximation
From [10], we recall some notation to prove the global approximation results.

For the weight function 1 + u2 and 0 ≤ u < ∞, we have

B1+u2 [0,∞) =
{

f (u) :
∣∣f (u)

∣∣ ≤ Mf
(
1 + u2)}, (4.1)

where Mf is a constant depending on f and C1+u2 [0,∞) ⊂ B1+u2 [0,∞) is a space of con-
tinuous functions equipped with the norm ‖f ‖1+u2 = supu∈[0,∞)

|f |
1+u2 .

Denote

Ck
1+u2 [0,∞) =

{
f ∈ C1+u2 : lim

u→∞
f (u)

1 + u2 = k, where k is a constant
}

. (4.2)

Theorem 4.1 Let the operators be defined by (1.5) acting from Ck
1+u2 [0,∞) to B1+u2 [0,∞).

Then, for every f ∈ Ck
1+u2 [0,∞), we have

lim
n→∞

∥∥Mα,β
n (g; u) – g

∥∥
1+u2 = 0,

where B1+u2 and Ck
1+u2 are defined in (4.1) and (4.2).

Proof To prove this result, it is sufficient to show that

lim
n→∞

∥∥Mα,β
n (ei; u) – ui∥∥

1+u2 = 0, i = 0, 1, 2.
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Using Lemma 2.4, we obtain

∥∥Mα,β
n (e0; u) – u0∥∥

1+u2 = sup
u∈[0,∞)

|Mα,β
n (1; u) – 1|

1 + u2 = 0 for i = 0.

For i = 1,

∥∥Mα,β
n (e1; u) – u

∥∥
1+u2 = sup

u∈[0,∞)

( n
n+β

– 1)u + λ+α+1
n+β

1 + u2

=
(

n
n + β

– 1
)

sup
u∈[0,∞)

u
1 + u2 +

λ + α + 1
n + β

sup
u∈[0,∞)

1
1 + u2 .

This shows that ‖Mα,β
n (e1; u) – u‖1+u2 → 0, n → ∞. For i = 2,

∥∥Mα,β
n (e2; u) – u2∥∥

1+u2 = sup
u∈[0,∞)

|Mα,β
n (e2; u) – u2|

1 + u2

≤
(

n2

(n + β)2 – 1
)

sup
u∈[0,∞)

u2

1 + u2

+
(
4 + 2λ + 2α + 2iEn(u)

) n
(n + β)2 sup

u∈[0,∞)

u
1 + u2

+
(λ + 1)(λ + 2α + 2) + α2

(n + β)2 sup
u∈[0,∞)

1
1 + u2 ,

which shows that ‖Mα,β
n (e2; u) – u2‖1+u2 → 0, n → ∞. �

Let f ∈ Ck
ρ[0,∞), Yüksel and Ispir [41] introduced the weighted modulus of continuity

as follows:

Ω(g; δ) = sup
u∈[0,∞),0<h≤δ

|g(u + h) – g(u)|
1 + (u + h)2 .

Lemma 4.2 ([41]) Let f ∈ Ck
1+x2 [0,∞). Then

(i) Ω(f ; δ) is a monotone increasing function of δ;
(ii) limδ→0+ Ω(f ; δ) = 0;

(iii) for each λ ∈ [0,∞), Ω(f ;λδ) ≤ (1 + λ)(1 + δ2)Ω(f ; δ).
For t, x ∈ [0,∞), one gets

∣∣f (t) – f (x)
∣∣ ≤ 2

(
1 +

|t – x|
δ

)(
1 + δ2)(1 + x2)(1 + (t – x)2)Ω(f ; δ). (4.3)

Theorem 4.3 Let g ∈ Ck
1+u2 [0,∞). Then we have

sup
u∈[0,∞)

|Mα,β
n (g; u) – g(x)|

(1 + u2)3 ≤ C(n)
(

1 +
1

n + β

)
Ω

(
g;

1√
n + β

)
,

where C(n) = 1 + C1
n+β

· 3
√

(3)
16 +

√
C1
2 + 1

4

√
C1C2
n+β

and C1, C2 ∈ (0,∞).
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Proof Using (4.3) and x, t ∈ (0,∞), we have

∣∣Mα,β
n (g; u) – g(u)

∣∣ ≤ 2
(

1 +
Mα,β

n (|t – u|; u)
δ

)(
1 + δ2)(1 + u2)

× (
1 + Mα,β

n
(
(t – u)2; u

))
Ω(g; δ). (4.4)

Applying the Cauchy–Schwarz inequality for (4.4), we get

∣∣Mα,β
n (g; u) – g(u)

∣∣

≤ 2
(
1 + δ2)(1 + u2)Ω(g; δ)

(
1 + Mα,β

n
(
(t – u)2; u

)

+

√
Mα,β

n ((t – u)2; u)
δ

+

√
Mα,β

n ((t – u)2; u)Mα,β
n ((t – u)4; u)

δ

)
. (4.5)

By elementary calculations, we get

lim
n→∞(n + β)Mα,β

n
(
ψ2

u ; u
)

= 2(1 + i)u;

lim
n→∞(n + β)Mα,β

n
(
ψ4

u ; u
)

= 3(8i + 1)u3.

It follows that, for each fixed point u > 0, there exists Nu ∈N such that, for all n > Nu,

Mα,β
n

(
ψ2; u

) ≤ C1
u

n + β
, (4.6)

Mα,β
n

(
ψ4; u

) ≤ C2
u3

n + β
, (4.7)

where C1, C2 ∈ (0,∞). From (4.5)–(4.7) and choosing δ = 1√
n+β

, we get the required re-
sult. �

5 A-statistical convergence
From [7, 15] we first introduce convergence approximation theorems in operators theory.
Here, we recall same notation from [7, 15]. Let A = (ank) be a nonnegative infinite summa-
bility matrix. For a given sequence x := (xk), the A-transform of x denoted by Ax : ((Ax)n)
is defined as follows:

(Ax)n =
∞∑

k=1

ankxk ,

provided the series converges for each n. A is said to be regular if lim(Ax)n = L whenever
lim x = L. Then x = (xn) is said to be an A-statistical convergence to L i.e. stA – lim x = L if,
for every ε > 0, limn

∑
k:|xk–L|≥ε ank = 0. In addition, A-statistical convergence results are

studied in [13, 22, 23].

Theorem 5.1 Let A = (ank) be a nonnegative regular summability matrix and x ≥ 0. Then
we have

stA – lim
n

∥∥Mα,β
n (g; u) – g

∥∥
1+u2 = 0 for all g ∈ Ck

1+u2 [0,∞).
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Proof From ([9], p. 191, Th. 3), it is sufficient to show that, for λ1 = 0,

stA – lim
n

∥∥Mα,β
n (ei; u) – ei

∥∥
1+u2 = 0 for i ∈ {0, 1, 2}. (5.1)

Using Lemma 2.4, we have

∥∥Mα,β
n (e1; u) – u

∥∥
1+u2 = sup

u∈[0,∞)

1
1 + u2

∣∣∣∣

(
n

n + β
– 1

)
u +

λ + α + 1
n + β

∣∣∣∣

≤
∣∣∣∣

n
n + β

– 1
∣∣∣∣ sup

u∈[0,∞)

u
1 + u2 +

∣∣∣∣
λ + α + 1

n + β

∣∣∣∣ sup
u∈[0,∞)

1
1 + u2

≤ 1
2

∣∣∣∣
n

n + β
– 1

∣∣∣∣ +
∣∣∣∣
λ + α + 1

n + β

∣∣∣∣.

We have

stA – lim
n

1
2

∣∣∣∣
n

n + β
– 1

∣∣∣∣ = stA – lim
n

∣∣∣∣
λ + α + 1

n + β

∣∣∣∣ = 0. (5.2)

Now, for given ε > 0, we define the following sets:

J1 :=
{

n :
∥∥Mα,β

n (e1; u) – u
∥∥ ≥ ε

}
,

J2 :=
{

n :
1
2

∣∣∣∣
n

n + β
– 1

∣∣∣∣ ≥ ε

2

}
,

J3 :=
{

n :
∣∣∣∣
λ + α + 1

n + β

∣∣∣∣ ≥ ε

2

}
.

This implies that J1 ⊆ J2 ∪ J3, which shows that
∑

k1∈J1
ank1 ≤ ∑

k1∈J2
ank +

∑
k1∈J3

ank .
Hence, from (5.2) we get

stA – lim
n

∥∥Mα,β
n (e1; u) – u

∥∥
1+u2 = 0. (5.3)

In a similar way the following can be proved:

stA – lim
n

∥∥Mα,β
n (e2; u) – u2∥∥

1+u2 = 0. (5.4)

This completes the proof of Theorem 5.1. �

6 Conclusion
The motive of the present paper is to give a generalized error estimation of convergence by
modification of Szász–Mirakyan integral operators via Dunkl analogue. We have defined
the Szász–Mirakyan integral operators based on Dunkl analogue with the aid of two non-
negative parameters 0 ≤ α ≤ β . This type of modification enables us to give a generalied
error estimation for a certain function in comparison to the Szász–Mirakyan integral op-
erators based on Dunkl analogue. We investigated some approximation results by means
of the well-known Korovkin type theorem. We have also calculated the rate of convergence
of operators by means of Peetre’s K-functional and second order modulus of continuity.
Lastly, we studied the global approximation results.
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