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Abstract
Stieltjes differential equations, which contain equations with impulses and equations
on time scales as particular cases, simply consist in replacing usual derivatives by
derivatives with respect to a nondecreasing function. In this paper we prove new
results for the existence of extremal solutions for discontinuous Stieltjes differential
equations. In particular, we prove that the pointwise infimum of upper solutions of a
Stieltjes differential equation is the minimal solution under certain hypotheses. These
results can be adapted to the context of both difference equations and impulsive
differential equations.
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1 Introduction
Let us consider the initial value problem

x′
g(t) = f

(
t, x(t)

)
, t ∈ I = [0, 1], x(0) = 0, (1.1)

where x′
g(t) denotes the Stieltjes derivative of the unknown with respect to a nondecreasing

and left-continuous function g : R−→ R as introduced in [7].
The aim of this paper is to replicate the results obtained in [4] for ODEs in the more gen-

eral context of Stieltjes differential equations. That is, to solve as satisfactorily as possible
the following problem: to find the weakest sufficient conditions over the right-hand side
f ∈L1

g (I) so that the minimal solution solution is the least upper solution and the maximal
one is the greatest lower solution. In [5] we can find some results regarding the existence of
extremal solutions of this type of equation in the presence of a pair of well-ordered lower
and upper solutions. In [6] the authors followed this line of research working in the context
of measure differential equations, and then adapted the results obtained to the framework
of Stieltjes differential equations. Therefore, this paper complements, in a sense, the study
initiated in these papers.

We have organised the paper as follows. In Sect. 2, we present the basic definitions and
results required for this paper. In Sect. 3, we are looking for some necessary conditions
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for f that assure that the infimum of all upper solutions of (1.1) is a solution. Then, in
Sect. 4 we obtain a new existence result from those proved in the previous section. Finally,
in Sect. 5, we present a result that guarantees the existence of the extremal solutions for
Stieltjes differential equations. We then adapt the results obtained to difference equations
and impulsive differential equations.

As a final comment, note that in this paper we work on the interval I = [0, 1] and the
initial condition x(0) = 0 for simplicity, but the results are true for any other interval Ĩ =
[a, b] and any other initial condition x(a) = xa, xa ∈ R, by doing the obvious changes.

2 Preliminaries
Let g : R →R be a nondecreasing and left-continuous function. In order to recall the def-
inition of the Stieltjes derivative of a function with respect to g (or simply the g-derivative
of a function) as presented in [7], we need to define the sets

Cg =
{

s ∈R : g is constant on (s – ε, s + ε) for some ε > 0
}

,

and Dg = {t ∈R : �g(t) > 0}, where �g(t) = g(t+) – g(t) and g(t+) denotes the limit of g at t
from the right. Now the g-derivative of a function x : I −→R at a point t ∈ I \ Cg is

x′
g(t) =

⎧
⎨

⎩
lims→t

x(s)–x(t)
g(s)–g(t) if t /∈ Dg ,

lims→t+ x(t)–x(t)
g(s+)–g(t) if t ∈ Dg and t < 1,

provided that the corresponding limit exists. Note that, for a point t ∈ Dg , x′
g(t) exists if

and only if x(t+) exists.
Notice that we do not define g-derivatives at points t ∈ Cg , nor it is necessary because Cg

is a null-measure set for μg (the Lebesgue–Stieltjes measure induced by g), see [7, Propo-
sition 2.5]. Therefore, the differential equation in (1.1) is not really defined for t ∈ I ∩ Cg .

The following result, the fundamental theorem of calculus for the Lebesgue–Stieltjes
integral [7, Theorem 5.4], establishes the relation between Stieltjes derivatives and the
Lebesgue–Stieltjes integral for a particularly interesting set of functions.

Theorem 2.1 (Fundamental Theorem of Calculus for the Lebesgue–Stieltjes integral) Let
a, b ∈ R, a < b, and F : [a, b] −→R. The following conditions are equivalent.

(1) The function F is absolutely continuous on [a, b] with respect to g (also expressed as
g-absolutely continuous on [a, b] or F ∈ACg([a, b])) according to the following
definition: to each ε > 0, there is some δ > 0 such that, for any family {(an, bn)}m

n=1 of
pairwise disjoint open subintervals of [a, b], the inequality

m∑

n=1

(
g(bn) – g(an)

)
< δ

implies

m∑

n=1

∣
∣F(bn) – F(an)

∣
∣ < ε.
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(2) The function F fulfills the following properties:
(a) There exists F ′

g(t) for g-almost all t ∈ [a, b) (i.e., for all t except on a set of μg

measure zero);
(b) F ′

g ∈L1
g ([a, b)), the set of Lebesgue–Stieltjes integrable functions with respect to

μg ; and
(c) For each t ∈ [a, b], we have

F(t) = F(a) +
∫

[a,t)
F ′

g(s) dμg . (2.1)

In this paper we consider integration in the Lebesgue–Stieltjes sense mainly, and we
shall call “g-measurable” any function (or set) which is measurable with respect to the
Lebesgue–Stieltjes σ -algebra generated by g . Moreover, integrals such as that in (2.1) shall
be denoted also as

∫

[a,t)
F ′

g(s) dg(s).

For properties of g-absolutely continuous functions, we refer the readers to [2, 7]. One
of the main properties is that every g-absolutely continuous function is also g-continuous
in the sense of the following definition.

Definition 2.2 ([7, Definition 3.1]) A function F : [a, b] ⊂ R → R is g-continuous at s ∈
[a, b] if, for every ε > 0, there exists δ > 0 such that

t ∈ A,
∣
∣g(t) – g(s)

∣
∣ < δ �⇒ ∣

∣f (t) – f (s)
∣
∣ < ε.

We say that f is g-continuous on A if it is g-continuous at every point t0 ∈ [a, b].

We shall denote by BCg([a, b]) the set of all g-continuous functions that are also
bounded. It is shown in [7, Definition 5.5] that ACg([a, b]) is a subset of this set. Hence,
the next result gives, indirectly, some properties of g-absolutely continuous functions.

Proposition 2.3 ([7, Definition 3.2]) If F : [a, b] → R is a g-continuous function on [a, b],
then

(1) F is continuous from the left at every s ∈ (a, b];
(2) if g is continuous at s ∈ [a, b), then so is F ;
(3) if g is constant on some [c, d] ⊂ [a, b], then so is F .

Further properties about the behaviour of g-absolutely continuous functions can be
found in another result from the same paper.

Proposition 2.4 ([7, Proposition 5.2]) If F is g-absolutely continuous on [a, b], then it has
bounded variation.

For the purpose of this paper, we shall also recall the following result.
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Proposition 2.5 ([2, Proposition 5.6]) Let S ⊂ ACg(I) be such that {F(t0) : F ∈ S} is
bounded. Assume that there exists h ∈L1

g ([t0, t1)) such that

∣∣F ′
g(t)

∣∣ ≤ h(t) for g-almost all t ∈ [t0, t1), and for all F ∈ S .

Then S is relatively compact in BCg(I).

As a final note for this section, we establish the definition of a solution of (1.1), as well
as other relevant definitions such as lower and upper solutions.

Definition 2.6 A function x : I −→R is a solution of (1.1) if x ∈ACg(I), x(0) = 0 and

x′
g(t) = f

(
t, x(t)

)
, g-a.a. t ∈ I.

We say that xmin is the minimal solution if xmin is a solution and xmin ≤ x on I for any other
solution x. The maximal solution is defined in an analogous way with the obvious changes.

When both the minimal and the maximal solutions exist, we call them the extremal
solutions.

Definition 2.7 A function u : I −→ R is an upper solution of (1.1) if u ∈ ACg(I), u(0) ≥ 0
and

u′
g(t) ≥ f

(
t, u(t)

)
, g-a.a. t ∈ I.

A function l : I −→R is a lower solution of (1.1) if l ∈ACg(I), l(0) ≤ 0 and

l′g(t) ≤ f
(
t, l(t)

)
, g-a.a. t ∈ I.

3 Properties of the infimum of upper solutions
Consider problem (1.1). We will assume that f satisfies the following hypothesis:

(H1) There exists M ∈L1
g (I) such that |f (t, x)| ≤ M(t) for g-a.a. t ∈ I , all x ∈R.

Remark 3.1 If f satisfies a local boundedness condition, such as
(H1∗) For each R > 0, there exists MR ∈ L1

g (I) such that |f (t, x)| ≤ MR(t) for g-a.a. t ∈ I ,
all x ∈R, |x| ≤ R,

we can study the existence of local solutions. To do so, we fix R > 0, we define

f̃ (t, x) = f
(
t, max

{
–R, min{x, R}}),

and we study (1.1) with f replaced by f̃ , which satisfies (H1). Observe that solutions of the
new problem are local solutions of the former one.

In the following, we shall denote the set of admissible upper solutions for (1.1) as follows:

U =
{

u ∈ACg(I) : u(0) ≥ 0, u′
g(t) ≥ f

(
t, u(t)

)
g-a.e. on I,

∣∣u′
g(t)

∣∣ ≤ M(t) g-a.e. on I
}

,
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and define uinf(t) := inf{u(t) : u ∈ U}, t ∈ I . Note that uinf(0) = 0 as the function u given by
u(t) =

∫
[0,t) M(s) dg(s) belongs to U and, trivially, u(0) = 0.

Since the aim of this paper is to find out some conditions guaranteeing that the function
uinf is the minimal solution of the problem, we first need to obtain conditions that assure
that uinf ∈ ACg(I) and |(uinf)′g | ≤ M. In order to do so, we need the following lemma, in
which the first condition for our goal, due to Antunes Monteiro and Slavík (see condition
(C4) in [1]), will appear.

Lemma 3.2 Consider β1,β2, . . . ,βn ∈ U . If f verifies (H1) and
(H2) For all t ∈ I ∩ Dg , the map u ∈R �→ u + f (t, u)(g(t+) – g(t)) is nondecreasing,

then the function βmin(t) = min{β1(t),β2(t), . . . ,βn(t)}, t ∈ I , is an element of U .

Proof To prove this result, it suffices to show that given β1,β2 ∈ U , βmin(t) = min{β1(t),
β2(t)}, t ∈ I , belongs to U . First of all, note that βmin ∈ ACg(I) since we can write it as the
difference of two g-absolutely continuous functions:

βmin(t) =
β1(t) – β2(t)

2
–

|β1(t) – β2(t)|
2

.

Moreover, βmin(0) ≥ 0 trivially, and so, all that is left to prove is that for g-a.a. t ∈ I
(βmin)′g(t) ≥ f (t,βmin(t)) and |(βmin)′g(t)| ≤ M(t).

Let E = {t ∈ I : ∃(β1)′g(t), (β2)′g(t), (βmin)′g(t)}, and let t0 ∈ E. Note that t0 /∈ Cg since there
exist g-derivatives at that point. We distinguish two possible cases: either β1 ≥ β2 on a set
S ⊂ [0, 1] such that t0 ∈ [S ∩ (t0, 1)]′ or β1 < β2 on (t0, t0 + δ) for some δ > 0. Assume the
first one holds. If β1(t0) ≥ β2(t0), then

(βmin)′g(t0) = lim
t→t+

0

βmin(t) – βmin(t0)
g(t) – g(t0)

= lim
t→t+

0 ,t∈S∩(t0,1)

βmin(t) – βmin(t0)
g(t) – g(t0)

= lim
t→t+

0

β2(t) – β2(t0)
g(t) – g(t0)

= (β2)′g(t0) ≥ f
(
t0,β2(t0)

)
= f

(
t0,βmin(t0)

)
.

Otherwise, β2(t0) > β1(t0), and so t0 ∈ Dg . Note that β1(t+
0 ) = limt→t+

0 ,t∈S∩(t0,1) β1(t) ≥ β2(t+
0 ).

Hence, using hypothesis (H2),

(βmin)′g(t0) =
βmin(t+

0 ) – βmin(t0)
g(t+

0 ) – g(t0)
=

β2(t+
0 ) – β1(t0)

g(t+
0 ) – g(t0)

=
β2(t0) + �g(t0)(β2)′g – β1(t0)

�g(t0)

≥ β2(t0) + �g(t0)f (t0,β2(t0)) – β1(t0)
�g(t0)

≥ β1(t0) + �g(t0)f (t0,β1(t0)) – β1(t0)
�g(t0)

= f
(
t0,β1(t0)

)
= f

(
t0,βmin(t0)

)
.

Thus (βmin)′g(t) ≥ f (t,βmin(t)) for g-a.a. t ∈ I . Moreover, |(βmin)′g)| ≤ M. Indeed, if β1(t0) ≥
β2(t0), then it is clear. If β1(t0) < β2(t0), we have (βmin)′g(t0) ≥ f (t0,βmin(t0)) ≥ –M(t0) and

(βmin)′g(t0) =
β2(t+

0 ) – β1(t0)
�g(t0)

≤ β1(t+
0 ) – β1(t0)
�g(t0)

= (β1)′g(t0) ≤ M(t0).

The case β1 < β2 on (t0, t0 + δ) for some δ > 0 is similar. �
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Using the previous lemma, one can show that uinf verifies some of the required proper-
ties.

Lemma 3.3 If f satisfies hypotheses (H1)–(H2), then uinf ∈ACg(I) and

∣
∣(uinf)′g(t)

∣
∣ ≤ M(t), g-a.a. t ∈ I.

Proof Let s, t ∈ I be such that s < t. By definition of uinf, given ε > 0, there exist u1, u2 ∈ U
such that

0 ≤ u1(t) – uinf(t) <
ε

2
, 0 ≤ u2(s) – uinf(s) <

ε

2
.

Define u(z) = min{u1(z), u2(z)} for all z ∈ I . By Lemma 3.2, u ∈ U . Moreover, 0 ≤ u(t) –
uinf(t) < ε/2, 0 ≤ u(s) – uinf(s) < ε/2. Hence,

∣∣uinf(t) – uinf(s)
∣∣ ≤ ∣∣uinf(t) – u(t)

∣∣ +
∣∣u(t) – u(s)

∣∣ +
∣∣u(s) – uinf(s)

∣∣

<
ε

2
+

∣
∣∣
∣

∫

[s,t)
M dg

∣
∣∣
∣ +

ε

2
=

∫

[s,t)
M dg + ε.

Since ε > 0 is arbitrary, we have that |uinf(t) – uinf(s)| ≤ ∫
[s,t) M dg . Now, using that M ∈

L1
g (I), it is easy to check using standard arguments that uinf ∈ ACg(I). Moreover, for each

s ∈ I that (uinf)′g(s) exists, define Φs(t) =
∫

[s,t) M dg , t ∈ I , t > s. Note that Φs is g-absolutely
continuous, so, by the fundamental theorem of calculus [7, Theorem 2.4], we have that

∣∣(uinf)′g(t)
∣∣ = lim

t→s+

|uinf(t) – uinf(s)|
g(t) – g(s)

≤ lim
t→s+

Φs(t) – Φs(s)
g(t) – g(s)

= (Φs)′g(s) = M(s).

Now, since uinf ∈ ACg(I), we have that (uinf)′g(s) exists for g-a.a. s ∈ I , and the result fol-
lows. �

Furthermore, one can show that uinf can be approximated by a sequence of U .

Lemma 3.4 If f verifies (H1)–(H2), then there exists a nonincreasing sequence {un} ⊂ U
that converges uniformly on I to uinf.

Proof For each t ∈ [0, 1], define u0(t) =
∫

[0,t) M(τ ) dg(τ ) ∈ U . Assume that u1, u2, . . . , un–1 ∈
U have been defined. For every i ∈ {0, 1, . . . , n – 1}, choose yi ∈ U satisfying the following
inequalities:

uinf

(
i
n

)
≤ yi

(
i
n

)
≤ uinf

(
i
n

)
+

1
n

.

Define un = min{un–1, y0, . . . , yn–1}. Then un ∈ U by Lemma 3.2; moreover, the sequence
{un}∞n=1 is nonincreasing. Furthermore, {un}∞n=1 verifies Proposition 2.5 since, for each
n ∈ N, |(un)′g(t)| ≤ M(t) for g-a.a. t ∈ I and {un(0) : n ∈ N} = {0} as 0 ≤ un(0) ≤ u1(0) = 0.
Hence, {un} is a relatively compact set, and therefore there exists a subsequence {unk } that
converges uniformly in BCg(I) to a limit, say v. Since {un} is a monotone sequence, it also
converges uniformly to v. Therefore, it is enough to show that v = uinf.
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Since un ≥ uinf for all n ∈N, we have that v ≥ uinf. Assume that v �= uinf. Then there exists
t0 ∈ I such that v(t0) > uinf(t0). Both functions belong to BCg(I), so Proposition 2.3 ensures
that they are left-continuous. Hence, there exist c > 0 and δ > 0 such that uinf(t) < v(t) – c
for all t ∈ (t0 – δ, t0]. Consider n ∈ N such that 1/n < min{c, δ}. Then uinf(t) < v(t) – c ≤
un(t) – c ≤ un(t) – 1/n for all t ∈ (t0 – δ, t0], and so uinf(t) + 1/n < un(t) for all t ∈ (t0 – 1/n, t0].
Now, for some i = 0, 1, . . . , n, i/n ∈ (t0 – 1/n, t0], and so uinf(i/n) + 1/n < un(i/n), which is a
contradiction. Therefore, v = uinf. �

In the last two theorems of this section, we study the behaviour of f over the graph of
uinf, from which one can obtain conditions over f so that uinf is a solution.

Theorem 3.5 Consider (1.1) under hypotheses (H1)–(H2). Then, for g-a.a. t ∈ I ,

(uinf)′g(t) ≥ f
(
t, uinf(t)

)
χI1 (t) + lim inf

y→(uinf(t))+
f (t, y)χI2 (t),

where I1 = {t ∈ I : uinf(t) = u(t), u′
g(t) ≥ f (t, u(t)) for some u ∈ U} ∪ Dg and I2 = I \ I1.

Proof First, note that hypotheses (H1)–(H2) guarantee that uinf ∈ ACg(I), and therefore
(uinf)′g exists g-almost everywhere.

Let s ∈ I1 \ Dg be such that (uinf)′g(s) exists, and let u ∈ U be the corresponding function
to the definition of I1. Then (uinf)′g(s) = u′

g(s) ≥ f (t, u(s)) = f (t, uinf(s)). On the other hand,
for s ∈ Dg , consider a sequence {un}∞n=1 ⊂ U as in Lemma 3.4. We know that, for all n, it
holds that

un
(
s+) ≥ un(s) + �g(s)f

(
s, un(s)

) ≥ uinf(s) + �g(s)f
(
s, uinf(s)

)
.

Hence, since {un} converges uniformly to uinf, it follows from the Moore–Osgood theorem
[3, Chapter VII, Theorem 2] that

uinf
(
s+) ≥ uinf(s) + �g(s)f

(
s, uinf(s)

)
,

or equivalently, (uinf)′g(s) ≥ f (s, uinf(s)).
Finally, we study (uinf)′g on I2. To do so, we consider again a sequence {un}∞n=1 ⊂ U as in

Lemma 3.4. Since |(un)′g | is uniformly L1
g -bounded on I , we have that lim infn→∞(un)′g ∈

L1
g (I). Moreover, by Fatou’s lemma, for t̃ < t,

uinf(t) – uinf(t̃) = lim inf
n→∞

(
un(t) – un(t̃)

)
= lim inf

n→∞

∫

[t̃,t)
(un)′g dg ≥

∫

[t̃,t)
lim inf

n→∞ (un)′g dg.

Now, since uinf ∈ACg(I), we have that uinf(t) – uinf(t̃) =
∫

[t̃,t)(uinf)′g dg . Hence,

(uinf)′g(t) ≥ lim inf
n→∞ (un)′g(t) ≥ lim inf

n→∞ f
(
t, un(t)

)
g-a.a. t ∈ I.

Now, if s ∈ I2 and uinf(s) = un(s) for some n, the definition of I2 implies that s /∈ Dg and
either (un)′g(s) does not exist or (un)′g(s) < f (s, un(s)). The set

⋃

n∈N

({
t ∈ I \ Dg : � (un)′g(s)

} ∪ {
t ∈ I \ Dg : (un)′g(s) < f

(
s, un(s)

)})
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is a null-measure set with respect to the g-measure. Hence, for g-a.a. t ∈ I2, we have that
uinf(t) < un(t) for all n ∈N, and so, since {un(t)} is one of the infinitely many sequences that
converge to uinf(t)+, we have that

(uinf)′g(t) ≥ lim inf
n→∞ f

(
t, un(t)

) ≥ lim inf
y→(uinf(t))+

f (t, y),

which concludes the proof. �

Remark 3.6 It follows from Theorem 3.5 that if the following condition is satisfied

lim inf
y→(uinf(t))+

f (t, y) ≥ f
(
t, uinf(t)

)
, for g-a.a. t ∈ I,

then (uinf)′g ≥ f (t, uinf(t)), i.e., uinf is an upper solution.
Note, however, that for all t ∈ I ∩ Dg , uinf is a “solution”, i.e., (uinf(t))′g = f (t, uinf(t)) as long

as hypotheses (H1)–(H2) are satisfied. Indeed, we already know that (uinf)′g(t) ≥ f (t, uinf(t))
for t ∈ I ∩ Dg . Reasoning by contradiction, assume that there exists t0 ∈ I ∩ D such that
(uinf)′g(t0) > f (t0, uinf(t0)), or equivalently, uinf(t+

0 ) > uinf(t0) + �g(t0)f (t0, uinf(t0)) = a. Then
one can find z0 ∈ (a, uinf(t+

0 )). Define

u(t) =

⎧
⎨

⎩
uinf(t) if t ∈ [0, t0],

z0 +
∫

(t0,t) M(τ ) dg(τ ) if t ∈ (t0, 1].

First, note that

u′
g(t0) =

u(t+
0 ) – u(t0)
�g(t0)

=
z0 – uinf(t0)

�g(t0)
>

a – uinf(t0)
�g(t0)

= f
(
t0, uinf(t0)

)
= f

(
t0, u(t0)

)
.

Moreover, |u′
g | ≤ M trivially and u ∈ ACg(I) as it is defined as a piecewise function of

ACg(I) functions. Hence, u ∈ U , which is a contradiction, as u(t+
0 ) = z0 < uinf(t+

0 ).
Therefore, in order to determine the conditions guaranteeing that uinf is a solution, there

is no need to see what happens at points of Dg as long as (H1)–(H2) hold.

We now prove the following lemma that we will need in order to obtain a necessary
condition for uinf being an upper solution.

Lemma 3.7 Let M : [0, 1] → [0,∞] be a g-integrable function. If F ⊂ [0, 1] is a set of posi-
tive g-measures, then there exists F1 ⊂ F such that, for all s ∈ F1,

lim
t→s+

g(t) – g(s)
μg([s, t) ∩ F)

= 1, lim
t→s+

1
μg([s, t) ∩ F)

∫

[s,t)\F
M(τ ) dg(τ ) = 0.

Proof First, let G : I = [0, 1] →R be the map given by

G(0) = 0, G(t) =
∫

[0,t)
χF (s) dg(s), ∀t ∈ (0, 1],

where χF denotes the characteristic function of the set F . Clearly χF ∈L1
g ((0, 1]) and there-

fore it is trivial that G ∈ ACg(I). Hence, there exists a set F0 ⊂ F such that μg(F \ F0) = 0
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and there exists G′
g(s) for all s ∈ F0. Moreover, G′

g(s) = χF (s) = 1 for all s ∈ F0. Thus,

1 = G′
g(s) = lim

t→s+

G(t) – G(s)
g(t) – g(s)

= lim
t→s+

∫
[0,t) χF (τ ) dg(τ ) –

∫
[0,s) χF (τ ) dg(τ )

g(t) – g(s)

= lim
t→s+

∫
[s,t)∩F dg(τ )
g(t) – g(s)

= lim
t→s+

μg([s, t) ∩ F)
g(t) – g(s)

.

Consider now the map H : I →R defined as

H(0) = 0, H(t) =
∫

[0,t)
M(s) · χI\F dg(s), ∀t ∈ (0, 1].

Once again, since M0 = M · χI\F ∈ L1
g ((0, 1]), it follows that H ∈ ACg(I), and therefore

there exists F1 ⊂ F0 such that μg(F0 \ F1) = 0 and H ′
g(s) exists for all s ∈ F1. Moreover,

H ′
g(s) = M(s) · χI\F (s) = 0 for all s ∈ F1. Hence,

0 = H ′
g(s) = lim

t→s+

H(t) – H(s)
g(t) – g(s)

= lim
t→s+

∫
[0,t) M0(τ ) dg(τ ) –

∫
[0,s) M0(τ ) dg(τ )

g(t) – g(s)
.

Now, since s ∈ F1 ⊂ F0, we have that

0 = lim
t→s+

∫
[s,t) M0(τ ) dg(τ )

g(t) – g(s)
= lim

t→s+

∫
[s,t) M0(τ ) dg(τ )

g(t) – g(s)
· lim

t→s+

g(t) – g(s)
μg([s, t) ∩ F)

= lim
t→s+

∫
[s,t) M0(τ ) dg(τ )

g(t) – g(s)
· g(t) – g(s)
μg([s, t) ∩ F)

= lim
t→s+

∫
[s,t) M0(τ ) dg(τ )
μg([s, t) ∩ F)

,

and so, for all s ∈ F1, we have

lim
t→s+

g(t) – g(s)
μg([s, t) ∩ F)

= 1, lim
t→s+

1
μg([s, t) ∩ F)

∫

[s,t)\F
M(τ ) dg(τ ) = 0. �

We can now state and prove the following necessary condition for uinf being an upper
solution.

Theorem 3.8 Consider problem (1.1) under hypotheses (H1)–(H2). Assume (uinf)′g(t) ≥
f (t, uinf(t)) for g-a.a. t ∈ I . Then:

(a) The set J = {t ∈ I \ Dg : (uinf)′g(t) > lim supy→(uinf(t))– f (t, y)} is a countable union of sets
which contain no positive measure set. Specifically, J =

⋃
n,m∈N Jn,m, where

Jn,m =
{

t ∈ I \ Dg : (uinf)′g(t) –
1
n

> sup

{
f (t, y) : uinf(t) –

1
m

< y < uinf(t)
}}

.

(b) (uinf)′g(t) ≤ lim supy→(uinf(t))– f (t, y) for g-a.a. t ∈ I \ Dg provided that, for all n, m ∈N,
the set Jn,m is g-measurable.

Proof For each t ∈ J , there exists n ∈N such that

(uinf)′g(t) –
1
n

> lim sup
y→(uinf(t))–

f (t, y) = inf
ε>0

{
sup

uinf(t)–ε<y<uinf(t)
f (t, y)

}
.
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Therefore, there exists m ∈N such that (uinf)′g(t) – 1/n > sup{f (t, y) : uinf – 1/m < y < uinf(t)},
and so t ∈ Jn,m. Conversely, if t ∈ Jn,m for some n, m ∈N, then

(uinf)′g(t) –
1
n

> sup
uinf(t)–1/m<y<uinf

f (t, y) ≥ lim sup
y→(uinf(t))–

f (t, y).

Hence, t ∈ J and we can write J =
⋃

n,m∈N Jn,m. Thus, it is enough to show that, for all
n, m ∈N, Jn,m contains no positive g-measure subset.

Reasoning by contradiction, assume that there exist n, m ∈ N such that Jn,m contains a
subset of positive g-measure, denoted again by Jn,m for simplicity. By Lemma 3.7 there
exist t0 ∈ Jn,m ∩ (0, 1) and δ > 0 such that, for all t ∈ (t0, t0 + δ),

μg
(
[t0, t) ∩ Jn,m

) ≥ 1
2
(
g(t) – g(t0)

)
,

∫

[t0,t)\Jn,m

M(s) dg(s) ≤ 1
4n

μg
(
[t0, t) ∩ Jn,m

)
.

Moreover, since t0 /∈ Dg , δ can be chosen so that g(t) – g(t0) < n/m for all t ∈ (t0, t0 + δ). Let
us define u ∈ACg(I) such that u(0) = 0 and, for all t ∈ I ,

u′
g(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(uinf)′g(t) if t < t0,

(uinf)′g(t) – 1/n if t ∈ [t0, t0 + δ] ∩ Jn,m,

M(t) otherwise.

First of all, note that

u(t0) =
∫

[0,t0)
u′

g(s) dg(s) =
∫

[0,t0)
u′

inf(s) dg(s) = uinf(t0).

Moreover, note that |u′
g(t)| ≤ M(t) for g-a.a. t ∈ I \([t0, t0 +δ]∩Jn,m). For t ∈ [t0, t0 +δ]∩Jn,m,

we have that (uinf)′g(t) – 1/n ≤ M(t) – 1/n < M(t) and

(uinf)′g(t) –
1
n

> sup

{
f (t, y) : uinf(t) –

1
m

< y < uinf(t)
}

≥ –M(t).

Thus |u′
g(t)| ≤ M(t) for g-a.a. t ∈ I .

Now, since uinf is an upper solution by hypothesis, it is trivial that u′
g(t) ≥ f (t, u(t)) for

g-a.a. t ∈ I \ ([t0, t0 + δ] ∩ Jn,m). For t ∈ (t0, t0 + δ), we have

uinf(t) – u(t) =
∫

[t0,t)

(
(uinf)′g(s) – u′

g(s)
)

dg(s)

=
∫

[t0,t)∩Jn,m

(
(uinf)′g(s) – u′

g(s)
)

dg(s) +
∫

[t0,t)\Jn,m

(
(uinf)′g(s) – u′

g(s)
)

dg(s)

=
∫

[t0,t)∩Jn,m

1
n

dg(s) +
∫

[t0,t)\Jn,m

(
(uinf)′g(s) – M(s)

)
dg(s)

=
1
n

μg
(
[t0, t) ∩ Jn,m

)
+

∫

[t0,t)\Jn,m

(
(uinf)′g(s) – M(s)

)
dg(s).

Hence, on the one hand,

uinf(t) – u(t) ≥ 1
n

μg
(
[t0, t) ∩ Jn,m

)
– 2

∫

[t0,t)\Jn,m

M(s) dg(s)
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≥ 1
n

μg
(
[t0, t) ∩ Jn,m

)
–

1
2n

μg
(
[t0, t) ∩ Jn,m

)
=

1
2n

μg
(
[t0, t) ∩ Jn,m

)
> 0.

On the other hand,

uinf(t) – u(t) =
1
n

μg
(
[t0, t) ∩ Jn,m

)
+

∫

[t0,t)\Jn,m

(
(uinf)′g(s) – M(s)

)
dg(s)

≤ 1
n

μg
(
[t0, t) ∩ Jn,m

) ≤ 1
n

μg
(
[t0, t)

)
=

1
n

(
g(t) – g(t0)

)
<

1
m

.

That is, for t ∈ (t0, t0 + δ), we have 0 < uinf(t) – u(t) < 1/m, or equivalently uinf(t) – 1/m <
u(t) < uinf(t). Therefore, for g-a.a. t ∈ (t0, t0 + δ) ∩ Jn,m, we have

u′
g(t) = (uinf)′g(t) –

1
n

> sup
uinf(t)–1/m<y<uinf(t)

f (t, y) ≥ f
(
t, u(t)

)
.

Thus, u′
g(t) ≥ f (t, u(t)) for g-a.a. t ∈ I , i.e., u ∈ U , which is a contradiction, since uinf(t) –

u(t) > 0 for all t ∈ (t0, t0 + δ).
Part (b) follows from (a) and the extra assumption. �

Combining Remark 3.6 with part (b) of Theorem 3.8, it is easy to see that uinf is a solution
of (1.1) if the sets Jn,m are g-measurable and

lim sup
y→(uinf(t))–

f (t, y) ≤ f
(
t, uinf(t)

) ≤ lim inf
y→(uinf(t))+

f (t, y), g-a.a. t ∈ I \ Dg .

However, since uinf is unknown a priori, a reasonable sufficient condition to impose is

lim sup
y→x–

f (t, y) ≤ f (t, x) ≤ lim inf
y→x+

f (t, y), g-a.a. t ∈ I \ Dg ,∀x ∈R.

4 Existence of minimal solution
We start this section with the following lemma, which is an adaptation of [8, Lemma 6.92].
This lemma will be used later to obtain an existence result.

Lemma 4.1 Let Φ : [a, b] →R be a map such that Φ ′
g(t) exists for all t ∈ E ⊂ [a, b] \ Dg . If

m(Φ(E)) = 0, where m denotes Lebesgue’s measure, then Φ ′
g(t) = 0 for g-a.a. t ∈ E.

Proof Without loss of generality, we can assume that E ∩ (Cg ∪ Ng) = ∅, where Cg can be
expressed as the union of pairwise disjoint intervals Cg =

⋃∞
n=1(an, bn) and Ng = {an, bn :

n ∈N} \ Dg (see [4, Remark 2.1]). Let us define the sets

Bn =
{

t ∈ E :
∣
∣Φ(s) – Φ(t)

∣
∣ >

∣
∣g(s) – g(t)

∣
∣/n, ∀ s ∈ [a, b], 0 < s – t < 1/n

}
, n ∈N,

and B = {t ∈ E : Φ ′
g �= 0}. Then B =

⋃
n∈N Bn. Indeed, if t ∈ B, then there exists c > 0 such

that

c =
∣
∣Φ ′

g(t)
∣
∣ = lim

s→t+

∣∣
∣∣
Φ(s) – Φ(t)
g(s) – g(t)

∣∣
∣∣.
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Let δ > 0 be such that, for 0 < s – t < δ,

∣
∣∣
∣
Φ(s) – Φ(t)
g(s) – g(t)

∣
∣∣
∣ >

c
2

.

Let N ∈N be such that 1/N < min{δ, c/2}. Then, for all n ≥ N , if 0 < s – t < 1/n, it holds that

∣
∣∣
∣
Φ(s) – Φ(t)
g(s) – g(t)

∣
∣∣
∣ <

c
2

<
1
n

,

and so t ∈ Bn for some n ∈N. Conversely, if t ∈ Bn for some n ∈N, then t ∈ B as

∣
∣Φ ′

g(t)
∣
∣ = lim

s→t+

∣∣
∣∣
Φ(s) – Φ(t)
g(s) – g(t)

∣∣
∣∣ >

1
n

> 0.

Hence, it is enough to show that μg(Bn) = 0 for all n ∈ N. Moreover, since each Bn can be
covered by finitely many intervals of length less than 1/n, it suffices to show that μg(J ∩
Bn) = 0 for every such interval J . Therefore, if we denote A = J ∩ Bn, we need to show that
μg(A) = 0.

Let ε > 0. Since m(Φ(A)) = 0, there exists a family {Jk}∞k=1 of open intervals such that

Φ(A) ⊂
∞⋃

k=1

Jk ,
∞∑

k=1

|Jk| <
ε

n
.

Let us denote Ak = A ∩ Φ–1(Jk). Then A =
⋃∞

k=1 Ak . Moreover, g- diam(Ak) ≤ n ·
diam(Φ(Ak)). Indeed, by definition g- diam(Ak) = sup{|g(s) – g(t)| : s, t ∈ Ak}. Therefore,
for each pair s, t ∈ Ak such that s < t, the definition of Bn yields

0 < g(s) – g(t) =
∣∣g(s) – g(t)

∣∣ < n
∣∣Φ(s) – Φ(t)

∣∣ ≤ n · diam
(
Φ(Ak)

)
,

and so, the inequality follows. Thus, if we prove that μg(Ak) ≤ g- diam(Ak), we are done,
since

μg(Ak) ≤
∞∑

k=1

μg(Ak) ≤
∞∑

k=1

g- diam(Ak) ≤ n
∞∑

k=1

diam
(
Φ(Ak)

) ≤ n
∞∑

k=1

|Jk| < ε.

To show that μg(Ak) ≤ g- diam(Ak), let us denote ak = inf Ak and bk = sup Ak . We distin-
guish two cases: ak ∈ Ak or ak /∈ Ak .

Assume first that ak ∈ Ak , then by definition of bk , one can find a sequence {xn}n∈N ⊂ Ak

such that {xn} is nondecreasing and xn
n→∞−−−→ bk . Hence,

g- diam(Ak) = sup
{

g(t) – g(s) : t, s ∈ Ak , s < t
} ≥ g(xn) – g(ak), ∀n ∈N,

and so g- diam(Ak) ≥ g(bk) – g(ak). Now, if bk ∈ Ak , then bk /∈ Dg and Ak ⊂ [ak , bk], so

μg(Ak) ≤ μg
(
[ak , bk]

)
= g

(
b+

k
)

– g(ak) = g(bk) – g(ak) ≤ g- diam(Ak).

Otherwise bk /∈ Ak , so Ak ⊂ [ak , bk) and μg(Ak) ≤ μg([ak , bk)) = g(bk)–g(ak) ≤ g- diam(Ak).



López Pouso and Márquez Albés Journal of Inequalities and Applications         (2020) 2020:47 Page 13 of 21

Assume now that ak /∈ Ak , then ak < s < t ≤ bk , and so g(t) – g(s) ≤ g(bk) – g(a+
k ). There-

fore g- diam(Ak) ≤ g(bk) – g(a+
k ). Moreover, g- diam(Ak) = g(bk) – g(a+

k ). Indeed, let ε′ > 0.
Since g is left-continuous at bk , there exists δ1 > 0 such that if 0 ≤ bk – t < δ1, then
g(bk) – g(t) < ε′/2. Since bk = sup Ak , there exists t0 ∈ Ak such that 0 ≤ bk – t0 < δ1, and
so g(bk) – g(t0) < ε′/2. On the other hand, by definition of g(a+

k ), there exists δ2 > 0 such
that if 0 < s – ak < δ2, then g(s) – g(a+

k ) < ε′/2. Since ak = inf(Ak), there exists s ∈ Ak such
that 0 < s – ak < min{δ2, t0 – ak}. Hence, there exist s < t, s, t ∈ Ak such that

g(t) – g(s) > g(bk) –
ε′

2
– g

(
a+

k
)

–
ε′

2
= g(bk) – g

(
a+

k
)

– ε′.

Therefore g- diam(Ak) = g(bk) – g(a+
k ). Again, if bk ∈ Ak , then bk /∈ Dg and Ak ⊂ (ak , bk], so

μg(Ak) ≤ μg
(
(ak , bk]

)
= g

(
b+

k
)

– g
(
a+

k
)

= g(bk) – g
(
a+

k
)

= g- diam(Ak).

Otherwise, bk /∈ Ak , so Ak ⊂ (ak , bk) and μg(Ak) ≤ μg((ak , bk)) = g(bk) – g(a+
k ) =

g- diam(Ak). �

Using Theorems 3.5 and 3.8, we obtain the following existence result.

Theorem 4.2 Let f : [0, 1] ×R →R be a mapping satisfying hypotheses (H1)–(H2). More-
over, assume that f satisfies the following:

(H3) Either

lim sup
y→x–

f (t, y) ≤ f (t, x) ≤ lim inf
y→x+

f (t, y), g-a.a. t ∈ I \ Dg ,∀x ∈R, (4.1)

or there exists a family of g-absolutely continuous functions γn : [cn, dn] ⊂ I →R,
n ∈N, such that, for g-a.a. t ∈ I \ Dg and all x ∈R \ ⋃

{n∈N:cn≤t≤dn}{γn(t)},
inequality (4.1) holds, while for each n ∈ N and g-a.a. t ∈ [cn, dn] \ Dg , we have
either (γn)′g(t) = f (t,γn(t)) or

(γn)′g(t) ≥ f
(
t,γn(t)

)
whenever (γn)′g(t) ≥ lim inf

y→(γn(t))+
f (t, y), (4.2)

(γn)′g(t) ≤ f
(
t,γn(t)

)
whenever (γn)′g(t) ≤ lim sup

y→(γn(t))–
f (t, y). (4.3)

Then:
(a) (uinf)′g(t) = f (t, uinf(t)) for g-a.a. t ∈ I \ J , where J is a countable union of sets which

contain no positive g-measure set. Specifically, J =
⋃

n,m∈N Jn,m, where, for all
n, m ∈ N, the set

Jn,m =
{

t ∈ I \ Dg : (uinf)′g(t) –
1
n

> sup

{
f (t, y) : uinf(t) –

1
m

< y < uinf(t)
}}

contains no positive g-measure set.
(b) uinf is the minimal solution of (1.1) provided that, for all n, m ∈N, the set Jn,m is

g-measurable.
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Proof We shall assume that the second alternative in (H3) holds, as the proof in the other
case is analogous, but simpler. By Theorem 3.5 there exists I1 ⊂ I such that Dg ⊂ I1 and

(uinf)′g(t) ≥ f
(
t, uinf(t)

)
χI1 (t) + lim inf

y→(uinf(t))+
f (t, y)χI\I1 (t), g-a.a. t ∈ I. (4.4)

We then deduce from (H3) that

(uinf)′g(t) ≥ f
(
t, uinf(t)

)
holds for g-a.a. t ∈ I

∖ ⋃

n∈N
An, (4.5)

where An = {t ∈ [cn, dn] \ Dg : uinf(t) = γn(t)}.
For each n ∈ N, define Φn(t) = uinf(t) – γn(t), t ∈ [cn, dn], and

En =
{

t ∈ An : ∃ (uinf)′g(t), (γn)′g(t)
}

.

Applying Lemma 4.1 with Φ = Φn and E = En, we obtain (uinf)′g(t) = (γn)′g(t) for g-a.a. t ∈ En.
Since uinf and γn are g-absolutely continuous, we have μg(An \ En) = 0, hence (uinf)′g(t) =
(γn)′g(t) for g-a.a. t ∈ An. Therefore, (4.5) yields

(uinf)′g(t) ≥ f
(
t, uinf(t)

)
for g-a.a. t ∈ I

∖ ⋃

n∈N
Γn,

where Γn = {t ∈ [cn, dn] \ Dg : uinf(t) = γn(t), (γn)′g(t) �= f (t,γn(t))}.
Let us show that, in fact, the inequality holds for g-a.a. t ∈ I . To do so, let n ∈N be fixed,

and let t0 ∈ Γn be such that (uinf)′g(t0) = (γn)′g(t0). We study separately two cases: either

(γn)′g(t0) < lim inf
y→(γn(t0))+

f (t, y) or (γn)′g(t0) ≥ lim inf
y→(γn(t0))+

f (t, y).

If (γn)′g(t0) < lim infy→(γn(t0))+ f (t, y), then (uinf)′g(t0) < lim infy→(γn(t0))+ f (t, y). Hence, by (4.4),
either t0 belongs to a null-measure set or t0 ∈ I1, and so (uinf)′g(t0) ≥ f (t0, uinf(t0)). Other-
wise, (γn)′g(t0) ≥ lim infy→(γn(t0))+ f (t, y), and so by (4.2) either t0 belongs to a null-measure
set or (γn)′g(t0) ≥ f (t0,γn(t0)), and therefore (uinf)′g(t0) ≥ f (t0, uinf(t0)).

We have thus proven that (uinf)′g(t) ≥ f (t, uinf(t)) for g-a.a. t ∈ I . Now, applying Theo-
rem 3.8, for g-a.a. t ∈ I \ J , we have either t ∈ Dg , and then (uinf)′(t) = f (t, uinf(t)), or t /∈ Dg

and

(uinf)′g(t) ≤ lim sup
y→(uinf(t))–

f (t, y). (4.6)

Therefore, (4.1) implies that (uinf)′g(t) ≤ f (t, uinf(t)) for g-a.a. t ∈ (I \ J) \ ⋃
n∈N An. Let us

show that the inequality holds for g-a.a. t ∈ I \ J .
Let n ∈N be fixed. Since (uinf)′g = (γn)′g g-almost everywhere in An, it suffices to see what

happens at an arbitrary point t0 ∈ An such that (uinf)′g(t0) = (γn)′g(t0). Recall that uinf(t0) =
γn(t0) and t0 /∈ Dg . Now, if (γn)′g(t0) > lim supy→(γn(t0))– f (t, y), then

(uinf)′g(t0) > lim sup
y→(uinf(t0))–

f (t, y),
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hence, t0 ∈ J . Otherwise, (γn)′g(t0) ≤ lim supy→(γn(t0))– f (t, y), by (4.3), either t0 belongs to a
null-measure set or (γn)′g(t0) ≤ f (t0,γn(t0)), and therefore (uinf)′g(t0) ≤ f (t0, uinf(t0)).

Hence (uinf)′g(t) ≤ f (t, uinf(t)) for g-a.a. t ∈ I \ J , and so

(uinf)′g(t) = f
(
t, uinf(t)

)
, g-a.a. t ∈ I \ J .

Part (b) follows from (a) with the extra assumption. �

Part (a) of Theorem 4.2 ensures that uinf is some sort of “weak” solution, which is an
extremely weak concept as a countable union of sets having no positive g-measure may be
rather big. Anyway, the measurability of the sets Jn,m is enough to turn uinf into a solution.

To conclude this section, we shall prove the result that will give an easily verifiable suf-
ficient condition for the measurability of Jn,m. In order to do so, we first start by proving
two lemmas related to a family of functions Sx that shall be needed later in the proof of
the mentioned result.

Lemma 4.3 Let x : I →R be a function of bounded variation. Then there exists a sequence
{xn}∞n=1 of step functions such that xn(t) ∈Q for all t ∈ I and {xn} → x uniformly on I.

Proof It is enough to show that such a sequence exists for a nondecreasing function
f : I → R, as any function of bounded variation can be expressed as difference of two
nondecreasing functions. Consider the sequence

fn(t) :=
1
n

[
n · f (t)

]
,

where [z] denotes the integer part of z. First, note that fn(t) ∈ Q for all t ∈ I ; moreover,
each fn is a step function since f is nondecreasing. Therefore, it is enough to show that
‖f – fn‖∞ → 0 as n → ∞. Indeed,

0 ≤ ‖f – fn‖∞ = sup
t∈I

∣∣∣
∣fn(t) –

1
n

[
n · f (t)

]
∣∣∣
∣ =

1
n

sup
∣∣n · f (t) –

[
n · f (t)

]∣∣

≤ 1
n

n→∞−−−→ 0. �

Given x ∈ACg(I) and ε > 0, let us denote by {xn} the sequence obtained from Lemma 4.3
and denote by D the set

D =
⋃

n∈N
{t ∈ I : xn is not continuous at t}.

Note that D is a countable set as it is a countable union of countable sets. We define the
set Sx as the set of step functions defined as follows: v : (0, 1) → R belongs to Sx if, and
only if,

1. x(t) – ε < v(t) < x(t) for all t ∈ (0, 1);
2. v(t) ∈Q for all t ∈ (0, 1);
3. There exist a1 < a2 < · · · < am ∈ D such that v is constant on

(0, a1), (a1, a2), . . . , (am–1, am), (am, 1).
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Note that the set Sx is nonempty. Indeed, since {xn} converges uniformly on I to x, there
exists N ∈N such that

x(t) –
ε

3
< xN (t) < x(t) +

ε

3
, ∀t ∈ I.

Define s(t) = xN (t) – q for some q ∈ (ε/3, 2ε/3) ∩Q. It is easy to see that s ∈ S .

Lemma 4.4 Let x ∈ACg(I). For all t0 ∈ (0, 1), all ε > 0, all y ∈ (x(t0) – ε, x(t0)) and all δ > 0,
there exists s ∈ Sx such that y – δ < s(t0) < y. Analogously, for all t0 ∈ (0, 1), all ε > 0, all
y ∈ (x(t0) – ε, x(t0)) and all δ > 0, there exists s ∈ Sx such that y < s(t0) < y + δ.

Proof We shall prove the first part of the statement, as the second part is analogous. Fix
t0 ∈ (0, 1), ε > 0, y ∈ (x(t0) – ε, x(t0)) and δ > 0. Take δ̃ ∈ (0, δ] such that x(t0) – ε < y – δ̃.
Since {xn} → x uniformly on I and y ∈ (x(t0) – ε, x(t0)), we can find j, N ∈N big enough so
that

x(t0) –
j – 1

j
ε < y – δ̃ < y < x(t0) –

ε

j
and x(t) –

ε

2j
< xN (t) < x(t) +

ε

2j
, ∀t ∈ I.

The function s(t) = xN (t) – xN (t0) + q for some q ∈ (y – δ̃, y) ∩Q verifies the statement of
the lemma. Indeed, first s ∈ Sx since conditions 2 and 3 are trivially fulfilled and

s(t) = xN (t) – xN (t0) + q < x(t) +
ε

2j
– x(t0) +

ε

2j
+ y = x(t) – x(t0) +

ε

j
+ y

< x(t) – x(t0) +
ε

j
+ x(t0) –

ε

j
= x(t);

s(t) = xN (t) – xN (t0) + q > x(t) –
ε

2j
– x(t0) –

ε

2j
+ y – δ̃ = x(t) – x(t0) –

ε

j
+ y – δ̃

> x(t) – x(t0) –
ε

j
+ x(t0) –

j – 1
j

ε = x(t) – ε.

Moreover, s(t0) = xN (t0) – xN (t0) + q = q ∈ (y – δ̃, y) ∩Q⊂ (y – δ, y) ∩Q. �

The following theorem gives a sufficient condition for Jn,m being measurable, and there-
fore, a useful result to turn uinf into a solution.

Theorem 4.5 Let N ⊂ I be a g-null measure set, and let f : I ×R → R be a function such
that f (·, q) is g-measurable for each q ∈Q. If, for all t ∈ I \ N and all x ∈R, we have

max
{

lim inf
y→x– f (t, y), lim inf

y→x+
f (t, y)

}
≥ f (t, x),

then, for all x ∈ACg(I) and all ε > 0, the mapping

t ∈ I �→ sup
{

f (t, y) : x(t) – ε < y < x(t)
}

is g-measurable.
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Proof Fix x ∈ ACg(I) and ε > 0. Define Sx as before. Then Sx is a countable family of
functions. Indeed, since D is countable, the set Dm is countable for each m ∈ N. For each
ω = (ω1, . . . ,ωm) ∈ Dm, let us denote by Sω a set of step functions of Sx that are constant
on the intervals whose extreme points are consecutive numbers of ω. It is easy to see that
each Sω is countable, and so Sx is countable as it can be written as

Sx =
⋃

m∈N

( ⋃

ω∈Dm

Sω

)
.

Hence, given that f (·, s(·)) is g-measurable on (0, 1) for s ∈ S , it is enough to show that
σ = σ0, where

σ (t) := sup
y∈(x(t)–ε,x(t))

f (t, y), σ0(t) := sup
s∈S

f
(
t, s(t)

)
.

It is obvious that σ (t) ≥ σ0(t) on (0, 1). To prove that σ0 ≥ σ on (0, 1) \ N , fix t0 ∈ (0, 1) \
N and take a sequence {yn}n∈N ⊂ (x(t0) – ε, x(t0)) such that limn→∞ f (t0, yn) = σ (t0). Our
assumptions guarantee that, for each n, we have that either lim infy→y–

n f (t0, y) ≥ f (t0, yn) or
lim infy→y+

n f (t0, y) ≥ f (t0, yn). Assume that the first case holds as the other one is analogous.
By definition, we have

f (t0, yn) ≤ lim inf
y→y–

n
f (t0, y) = lim

r→0+

(
inf

yn–r<z<yn
f (t0, z)

)
.

Then there exists δ > 0 such that infyn–δ<z<yn f (t0, z) ≥ f (t0, yn) – 1/n. Hence, for each n ∈N,
by Lemma 4.4, there exists sn ∈ Sx such that yn – δ < sn(t0) < yn, and so

f
(
t0, sn(t0)

) ≥ inf
yn–δ<z<yn

f (t0, z) ≥ f (t0, yn) –
1
n

.

Therefore, σ0 := sups∈S f (t0, s(t0)) ≥ f (t0, sn(t0)) ≥ f (t0, yn) – 1/n. Since this holds for each
n ∈N,

σ0(t0) ≥ lim
n→∞

(
f (t0, yn) –

1
n

)
= lim

n→∞ f (t0, yn) = σ (t0),

and so σ = σ0 on (0, 1) \ N . �

5 Existence of extremal solutions
One can verify that analogous arguments work for the set of admissible lower solutions:

L =
{

l ∈ACg(I) : l(0) ≤ 0, l′g(t) ≤ f
(
t, l(t)

)
g-a.e. on I,

∣∣l′g
∣∣ ≤ M g-a.e. on I

}
,

and lsup(t) = sup{l(t) : l ∈ L} for all t ∈ I , obtaining analogous results. Hence, combining
Theorems 4.2 and 4.5 and their analogues for lsup, one can obtain the following result.

Theorem 5.1 Let f : [0, 1] × R → R be a mapping satisfying (H1)–(H3). If f (·, q) is g-
measurable for all q ∈Q and for g-a.a. t ∈ I and all x ∈R, it holds that

min
{

lim sup
y→x–

f (t, y), lim sup
y→x+

f (t, y)
}
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≤ f (t, x) ≤ max
{

lim inf
y→x– f (t, y), lim inf

y→x+
f (t, y)

}
,

then uinf is the maximal solution of (1.1) and lsup is the minimal one.

Next we illustrate the applicability of Theorem 5.1 in a family of examples with non-
monotone discontinuities accumulating around the initial condition.

Example 5.2 Let g : R −→ R be an arbitrary nondecreasing and left-continuous function
and φ : [0, 1] −→ R be a nondecreasing g-absolutely continuous function on [0, 1] such
that φ(0) = 0 (take, for instance, φ(t) = λ(g(t) – g(0)), λ > 0).

We shall prove by means of Theorem 5.1 that (1.1) has the minimal and the maximal
solutions for

f (t, x) =

⎧
⎨

⎩
2 + sin

([ 1
x+φ(t)

])
if t ∈ I \ Dg and x > 0,

2 otherwise,

where square brackets mean integer part. We remark that f is discontinuous and non-
monotone with respect to x on every neighbourhood of the initial condition.

First, observe that f (t, x) ∈ (1, 3) for all (t, x) ∈ I ×R, which implies (H1); second, for each
fixed t ∈ I ∩ Dg , we have that f (t, ·) is constantly equal to 2, which implies (H2).

Now for (H3). Since φ(t) ≥ 0 for all t ∈ I , we deduce that discontinuities can only occur
at points (t, x) such that x = 0 or

1
x + φ(t)

= n for some n ∈N.

Therefore, we define γ0(t) = 0 for all t ∈ I and, for each n = 1, 2, . . . ,

γn(t) =
1
n

– φ(t) for all t ∈ [0, I].

Notice that, for each fixed t ∈ [0, 1], the mapping f (t, ·) is continuous on R \ ⋃∞
n=0{γn(t)}

(it might also be continuous at some points x = γn(t) for some n ∈ N, but this is not
important). Therefore, for each fixed t ∈ [0, 1], the mapping f (t, ·) satisfies (4.1) on R \
⋃∞

n=0{γn(t)}. It remains to show that the curves γn, n = 0, 1, . . . , either satisfy the differ-
ential equation, or they satisfy (4.2) and (4.3). Given n = 0, 1, . . . , γn is nonincreasing, the
definition of g-derivative yields

(γn)′g(t) ≤ 0 < 1 ≤ min
{

f
(
t,γn(t)

)
, lim inf

y→(γn(t))+
f (t, y), lim sup

y→(γn(t))–
f (t, y)

}
for g-a.a. t ∈ [0, 1].

Hence, we have that γn, n = 0, 1, . . . , satisfies (4.3). Moreover,

(γn)′g(t) ≥ lim sup
y→(γn(t))–

f (t, y), n = 0, 1, . . .

only occurs for t ∈ A with μg(A) = 0. Therefore, (H3) is satisfied.
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Finally, we check that f (·, q) is g-measurable for all q ∈Q and that, for g-a.a. t ∈ I and all
x ∈R, we have

min
{

lim sup
y→x–

f (t, y), lim sup
y→x+

f (t, y)
}

≤ f (t, x) ≤ max
{

lim inf
y→x– f (t, y), lim inf

y→x+
f (t, y)

}
.

The last part follows from the fact that, for each fixed t ∈ [0, 1], the mapping f (t, ·) is con-
tinuous from the left at every x ∈R. Indeed, this is trivial if t ∈ Dg ; otherwise, observe that
f (t, x) = 2 for all x ≤ 0, f (t, x) = 2 for x > γ1(t) and for n = 1, 2, . . . , we have

f (t, x) = 2 + sin(n) for all x ∈ (
γn+1(t),γn(t)

]
, x > 0.

To deduce that f (·, q) is g-measurable for each q ∈ Q, just note that f (·, q) assumes a
finite number of different values on corresponding Borel-measurable subsets of [0, 1],
hence f (·, q) is a Borel-measurable function, which implies that f (·, q) is g-measurable since
Lebesgue–Stieltjes measures are Borel measures.

5.1 Applications to difference equations
Any difference equation of the form

xn+1 – xn = f (n, xn), n = 0, 1, 2, . . . , N , x0 given (5.1)

can be expressed as a g-differential equation

x′
g(t) = f

(
t, x(t)

)
g-a.a. t ∈ I = [0, N], x(0) = x0, (5.2)

where g(t) = min{n ∈ Z : n ≥ t}. Indeed, given a solution of (5.2) x ∈ ACg(I), and bearing
in mind that Cg = I \Z and Dg = Z, for all n ≥ 1, we have

x′
g(n) =

x(n+) – x(n)
g(n+) – g(n)

= x(n + 1) – x(n), (5.3)

and so xn+1 – xn = x′
g(n) = f (n, x(n)) = f (n, xn). Conversely, if x : I ∩ Z → R is a solution of

(5.1), we define x̃(t) = x(g(t)) for all t ∈ I . First of all, note that x̃ ∈ ACg(I) since x̃′
g exists

g-a.e. I since for n ∈ Dg = I \ Cg ,

x̃′
g(n) =

x(g(n+)) – x(g(n))
g(n+) – g(n)

= x(n + 1) – x(n) ∈R

and, moreover, x̃′
g ∈L1

g (I) as

∫

I

∣
∣x̃′

g
∣
∣dg =

N∑

i=0

∣
∣x̃′

g(i)
∣
∣�g(i) =

N∑

i=0

∣
∣x(i + 1) – x(i)

∣
∣ < ∞.

Finally, for t ∈ I fixed, t ∈ [tk , tk+1) for some k = 0, 1, 2, . . . , N ,

x̃(0) +
∫

[0,t)
x̃′

g dg = x(0) +
∑

{i∈I∩Z:i<t}
x̃′

g(i)�g(i) = x(0) +
∑

{i∈I∩Z:i<t}

(
x(i + 1) – x(i)

)



López Pouso and Márquez Albés Journal of Inequalities and Applications         (2020) 2020:47 Page 20 of 21

= x(k) = x̃(t).

Then it follows from (5.3) that x̃ is a solution of (5.2).
Recalling Remark 3.6, f satisfying conditions (H1)–(H2) was enough to guarantee that

(uinf)′g(t) = f (t, uinf(t)) for t ∈ I ∩Dg . Then, if there exists M : I ∩Z →R such that |f (n, x)| ≤
M(n) for all n ∈ I ∩ Z, all x ∈ R and for all n ∈ I ∩ Z the mapping u ∈ R �→ u + f (n, u) is
nondecreasing, we can assure that uinf is the maximal solution of (5.1). Note that this
problem has a unique solution trivially; however, we have proved that such a solution is
the infimum of all the upper solutions of the problem. Analogous arguments work for lsup.

5.2 Applications to impulsive differential equations
It has been shown in [7] that an impulsive problem of the form

⎧
⎨

⎩
x′(t) = f (t, x(t)) for a.a. t ∈ I \ J ,

x(t+) = x(t) + It(x(t)) if t ∈ J ,
(5.4)

where J = {tk ∈ I : k ∈ N}, can be treated as a Stieltjes differential equation of the form
x′

g(t) = F(t, x(t)), where

g(t) = t +
∑

{k∈N:tk <t}
2–k , F(t, x) =

⎧
⎨

⎩
f (t, x) if t ∈ I \ J ,

2kItk (x) if t ∈ J , t = tk .

Then, using Theorem 5.1, one can obtain a result assuring the existence of extremal solu-
tions for impulsive differential equations.

Corollary 5.3 Consider (5.4). Suppose that the following conditions are satisfied:
1. f is L1(I)-bounded and, for each k ∈N, there exists αk ∈R such that |Itk | ≤ αk ;
2. For all k ∈ N, the map u ∈R �→ u + Itk (u) is nondecreasing;
3. Either

lim sup
y→x–

f (t, y) ≤ f (t, x) ≤ lim inf
y→x+

f (t, y), a.a. t ∈ I,∀x ∈R, (5.5)

or there exists a family of functions γn : [an, bn] ⊂ I →R, n ∈N, with the following
properties:

(i) γ ′
n exists for a.a. t ∈ I and γ ′

n ∈L1(I);
(ii) for all k ∈ N, γn(t+

k ) exists and
∑

k∈N |γn(t+
k ) – γn(tk)| < ∞;

(iii) for all t ∈ I ,

γn(t) = γn(0) +
∫

[0,t)
γ ′

n(s) ds +
∑

tk∈[0,t)

(γn
(
t+
k
)

– γn(tk);

(iv) for a.a. t ∈ I and all x ∈R \ ⋃
{n∈N:an≤t≤bn}{γn(t)}, inequality (5.5) holds, while for

each n ∈N and a.a. t ∈ [an, bn], we have either (γn)′(t) = f (t,γn(t)) or

(γn)′(t) ≥ f
(
t,γn(t)

)
whenever (γn)′(t) ≥ lim inf

y→(γn(t))+
f (t, y), (5.6)
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(γn)′(t) ≤ f
(
t,γn(t)

)
whenever (γn)′(t) ≤ lim sup

y→(γn(t))–
f (t, y). (5.7)

4. For all q ∈Q, the map f (·, q) is Borel-measurable;
5. For almost all t ∈ I \ J and all x ∈R,

min
{

lim sup
y→x–

f (t, y), lim sup
y→x+

f (t, y)
}

≤ f (t, x) ≤ max
{

lim inf
y→x– f (t, y), lim inf

y→x+
f (t, y)

}

and for all k ∈N and all x ∈R,

min
{

lim sup
y→x–

Itk (y), lim sup
y→x+

Itk (y)
}

≤ Itk (x) ≤ max
{

lim inf
y→x– Itk (y), lim inf

y→x+
Itk (y)

}
.

Then uinf is the maximal solution of (5.4) and lsup is the minimal one.
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