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Abstract
In this paper, we consider the global existence of strong solutions to the
three-dimensional Boussinesq equations on the smooth bounded domain Ω . Based
on the blow-up criterion and uniform estimates, we prove that the strong solution
exists globally in time if the initial L2-norm of velocity and temperature are small.
Moreover, an exponential decay rate of the strong solution is obtained.
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1 Introduction
In this paper, we consider the following three-dimensional incompressible Boussinesq
equations in the Eulerian coordinates:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – μ�u + u · ∇u + ∇P = θe3,

θt – κ�θ + u · ∇θ = 0,

∇ · u = 0,

u(x, 0) = u0(x), θ (x, 0) = θ0(x),

(1.1)

where u = (u1, u2, u3)(x, t), θ = θ (x, t), P(x, t) are unknown functions denoting fluid veloc-
ity vector field, absolute temperature, and scalar pressure, t ≥ 0 is time, x ∈ Ω is spatial
coordinate. μ is the kinematic viscosity, κ is the thermal diffusivity, and e3 = (0, 0, 1) is the
unit vector in the x3 direction. The given functions u0 and θ0 are the initial velocity and
initial temperature, respectively.

Boussinesq system (1.1) has been widely used in atmospheric sciences and oceanic flu-
ids [9], and there is a huge amount of literature on the well-posedness theory of strong
and week solutions for the three-dimensional Boussinesq equations. In 2004, Sawada and
Taniuchi [12] established the local existence and uniqueness of strong solutions in the
whole space. In 2008, Danchin and Paicu [6] obtained global small solutions in Lorentz
spaces. In 2012, Brandolese and Schonbek [2] showed the polynomial decay rate of week
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and strong solutions, global smooth solution and its stability were given by Liu and Li [8]
in 2014. In 2016, Qin et al. [11] established the global classical solutions for axisymmetric
equations with anisotropic initial data. In 2017, Ye [15] proved global existence of smooth
solution to a modified Boussinesq model without thermal diffusion. In 2018, Wen and Ye
[14] established the regularity and uniqueness of strong solution for the damped Boussi-
nesq equations with zero thermal diffusion. Global well-posedness with fractional partial
dissipation can be found in a recent work [16]. For local and global theories of solutions
in two-dimensional space, we refer to [1, 3–5, 10, 17] and the references therein.

Inspired by the results of full compressible Navier–Stokes equations [13] and nonhomo-
geneous incompressible magnetohydrodynamic equations [7], in this paper we consider
global existence and exponential decay of strong solutions to system (1.1) with the follow-
ing initial-boundary conditions:

(u, θ )(x, t)|t=0 =
(
u0(x), θ0(x)

)
, (1.2)

(u, θ )(x, t)|∂Ω = 0. (1.3)

Now, we state our main results as follows.

Theorem 1.1 (Blow-up criterion) Suppose that the initial data satisfy (u0, θ0) ∈ H1
0 ∩ H2

and div u0 = 0 in Ω . Let (u, θ ) be the strong solution to the initial-boundary value problem
(1.1)–(1.3) on Ω × (0, T] satisfying

⎧
⎨

⎩

(u, θ ) ∈ L∞(0, T ; H1) ∩ L2(0, T ; H2),

(ut , θt) ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1).
(1.4)

If T∗ < +∞ is the maximal time of existence for the strong solution (u, θ ), then

lim
T→T∗ sup

[0,T)
‖∇u‖L∞(0,T ;L2) = +∞. (1.5)

Theorem 1.2 (Global strong solution) For any given Ki > 0 (i = 1, 2), suppose that the ini-
tial data satisfy (u0, θ0) ∈ H1

0 ∩ H2, div u0 = 0 in Ω , and

‖∇u0‖L2 ≤ √
K1, ‖θ0‖L2 ≤ √

K2. (1.6)

Then the initial-boundary value problem (1.1)–(1.3) admits a unique global strong solution
(u, θ ) on Ω × [0, T] for any T > 0, provided that there exists a constant ε0 > 0 such that

‖u0‖2
L2 + ‖θ0‖2

L2 ≤ ε0, (1.7)

where ε0 depends on K1, μ, κ , and some other known constants but is independent of T .

Remark 1.1 When θ = 0, system (1.1) reduces to Navier–Stokes equations. Then Theo-
rem 1.2 implies that Navier–Stokes equations admit a unique global strong solution on
Ω × [0, T] for any T > 0, provided that there exists a constant ε0 > 0 such that

‖u0‖2
L2 ≤ ε0, (1.8)

where ε0 depends on K1, μ and some other known constants but is independent of T .
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Theorem 1.3 (Asymptotic behavior) Under the conditions of Theorem 1.2, it holds that

∫

Ω

(
θ2 + |∇u|2) ≤ C1 exp{–C2t} (1.9)

for any t ∈ [0, +∞), provided that there exists a constant ε0 > 0 such that

‖u0‖2
L2 + ‖θ0‖2

L2 ≤ ε0, (1.10)

where positive constants C1, C2, ε0 depend on K1, K2, μ, κ , and some other known constants
but are independent of t.

Remark 1.2 In Theorem 1.3, we obtain exponential decay rate (1.9) in a bounded domain,
which refines the polynomial decay in [2] and [8].

For the fixed viscosity and heat conduction, we need the “smallness” of initial velocity
and temperature. But the velocity and temperature can be large. From the proof of Theo-
rem 1.2 and Theorem 1.3, we have the following corollary.

Corollary 1.4 For any given Ki > 0 (i = 1, 2), suppose that the initial data satisfy (u0, θ0) ∈
H1

0 ∩ H2, div u0 = 0 in Ω , and

‖∇u0‖L2 ≤ √
K1, ‖θ0‖L2 ≤ √

K2. (1.11)

Then the initial-boundary value problem (1.1)–(1.3) admits a unique global strong solution
(u, θ ) on Ω × [0, T] for any T > 0, provided that there exists a constant μ∗ > 0 such that

μ ≥ μ∗.

Furthermore, when μ and κ are large enough, the global strong solution satisfies the follow-
ing exponential decay rate:

∫

Ω

(
θ2 + |∇u|2) ≤ C1 exp{–C2t} (1.12)

for any t ∈ [0, +∞), where positive constants C1, C2, μ∗ depend on K1, K2, μ, κ , and some
other known constants but are independent of t.

Notations In the following paragraph, positive generic constants are denoted by C, which
may change in different places.

The rest of the paper is organized as follows. In Sect. 2, under the assumption of (1.5)
is false, we prove that the maximal time of existence for the strong solution is T∗ = +∞,
where the standard energy estimate is used and it holds uniform in time. In Sect. 3, we
show that ‖∇u‖L∞(0,T ;L2) will never blow up in finite time, which combines the blow-up
criterion in Theorem 1.1, global existence of strong solution is proved in Theorem 1.2
provided the initial data of velocity and temperature are suitably small under the L2-norm.
Finally, in Sect. 4, exponential decay rate of the strong solution is obtained.
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2 Blow-up criterion
Now, we state some uniform a priori estimates to prove Theorem 1.1.

Lemma 2.1 Under the conditions of Theorem 1.1, it holds that

sup
0≤t≤T

∥
∥θ (t)

∥
∥2

L2 +
∫ T

0
κ
∥
∥∇θ (s)

∥
∥2

L2 ds = ‖θ0‖2
L2 ≤ K2, (2.1)

sup
0≤t≤T

∥
∥u(t)

∥
∥2

L2 +
∫ T

0
μ

∥
∥∇u(s)

∥
∥2

L2 ds ≤ ‖u0‖2
L2 +

4
μκ

‖θ0‖2
L2 ≤ K1 +

4K2

μκ
. (2.2)

Proof Multiplying temperature equation (1.1)2 by θ integration by part and using diver-
gence free property, we get

1
2

d
dt

∥
∥θ (t)

∥
∥2

L2 + κ
∥
∥∇θ (s)

∥
∥2

L2 = 0, (2.3)

integrating (2.3) over (0, t), (2.1) is proved.
Multiplying momentum equation (1.1)1 by u and using the Poicaré inequality, we obtain

1
2

d
dt

∥
∥u(t)

∥
∥2

L2 + μ‖∇u‖2
L2 ≤ ‖u‖L2‖θ‖L2 ≤ μ

2
‖∇u‖2

L2 +
2
μ

‖∇θ‖2
L2 .

Then we have

d
dt

∥
∥u(t)

∥
∥2

L2 + μ‖∇u‖2
L2 ≤ 4

μ
‖∇θ‖2

L2 . (2.4)

Integrating the above inequality over time (0, t) and combining (2.1), one can get (2.2). �

Lemma 2.2 Under the conditions of Theorem 1.1, and suppose (1.5) is false. Then it holds
that

sup
0≤t≤T

(∥
∥∇u(t)

∥
∥2

L2 +
∥
∥∇θ (t)

∥
∥2

L2
)

+
∫ T

0

(∥
∥ut(s)

∥
∥2

L2 +
∥
∥∇2θ (s)

∥
∥2

L2
)

ds ≤ C, (2.5)

where constant C depends on the initial data, μ, κ , and some other known constants but is
independent of T .

Proof Multiplying momentum equation (1.1)1 by ut and integrating by parts, we have

μ

2
d
dt

∥
∥∇u(t)

∥
∥2

L2 + ‖ut‖2
L2 = –

∫

(u · ∇u) · ut dx +
∫

θe3 · ut dx

≤ ‖u‖L6‖∇u‖L3‖ut‖L2 + ‖θ‖L2‖ut‖L2

≤ C
(‖∇u‖ 3

2
L2‖u‖ 1

2
H2‖ut‖L2 + ‖θ‖L2‖ut‖L2

)
. (2.6)

On the other hand, (1.1)1 can be rewritten as

–μ�u + ∇P = –ut – u · ∇u + θe3.
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By the H2-theory of Stokes system, we derive that

μ‖u‖H2 ≤ C‖ – ut – u · ∇u + θe3‖L2 ≤ C
(‖ut‖L2 + ‖∇u‖ 3

2
L2‖u‖ 1

2
H2 + ‖θ‖L2

)
,

and thus

‖u‖H2 ≤ C
μ

(‖ut‖L2 + ‖∇u‖3
L2 + ‖θ‖L2

)
. (2.7)

Inserting (2.7) into (2.6), we obtain

μ

2
d
dt

∥
∥∇u(t)

∥
∥2

L2 + ‖ut‖2
L2

≤ C
μ

(‖∇u‖ 3
2
L2‖ut‖

3
2
L2 + ‖∇u‖3

L2‖ut‖L2 + ‖∇u‖ 3
2
L2‖θ‖ 1

2
L2‖ut‖L2

)
+ C‖θ‖L2‖ut‖L2

≤ 1
2
‖ut‖2

L2 + C
(

1
μ4 ‖∇u‖6

L2 +
1
μ2 ‖∇u‖6

L2 +
1
μ2 ‖∇u‖3

L2‖θ‖L2 + ‖θ‖2
L2

)

≤ 1
2
‖ut‖2

L2 + C
(

1
μ4 ‖∇u‖2

L2 +
1
μ2 ‖∇u‖2

L2 + ‖∇θ‖2
L2

)

. (2.8)

Then, integrating (2.8) over (0, t), we have

μ
∥
∥∇u(t)

∥
∥2

L2 +
∫ t

0

∥
∥ut(s)

∥
∥2

L2 ds ≤ C
(

1 +
1
μ5 +

1
μ3 +

1
κ

)

, (2.9)

where we have used Lemma 2.1 and constant C depending on K1 and K2.
Next, applying the operator ∇ on both sides of temperature equation (1.1)2 and multi-

plying by ∇θ , integrating the resulting equation over Ω , we get

1
2

d
dt

∥
∥∇θ (t)

∥
∥2

L2 + κ
∥
∥∇2θ

∥
∥2

L2 = –
∫

∇(u · ∇θ ) · ∇θ dx

≤ ‖∇u‖L3‖∇θ‖L6‖∇θ‖L2

≤ C‖u‖H2
∥
∥∇2θ

∥
∥

L2‖∇θ‖L2

≤ κ

2
∥
∥∇2θ

∥
∥2

L2 +
C
κ

‖u‖2
H2‖∇θ‖2

L2 , (2.10)

integrating (2.10) over time (0, t) and using Gronwall’s inequality, which completes the
proof of Lemma 2.2. �

Lemma 2.3 Under the conditions of Theorem 1.1, and suppose (1.5) is false. Then it holds
that

sup
0≤t≤T

(∥
∥ut(t)

∥
∥2

L2 +
∥
∥θt(t)

∥
∥2

L2
)

+
∫ T

0

(∥
∥∇ut(s)

∥
∥2

L2 +
∥
∥∇θt(s)

∥
∥2

L2
)

ds ≤ C, (2.11)

where constant C depends on the initial data, μ, κ , and some other known constants but is
independent of T .
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Proof Taking the operator ∂t to (1.1)1, multiplying the resulting equation by ut and inte-
grating by parts, we have

1
2

d
dt

∥
∥ut(t)

∥
∥2

L2 + μ‖∇ut‖2
L2 = –

∫

(ut · ∇u) · ut dx +
∫

θte3 · ut dx

≤ ‖∇u‖L3‖ut‖L6‖ut‖L2 + ‖θt‖L2‖ut‖L2

≤ C
(‖u‖H2‖∇ut‖L2‖ut‖L2 + ‖θt‖L2‖ut‖L2

)

≤ μ

2
‖∇ut‖2

L2 +
C
μ

(‖u‖2
H2‖ut‖2

L2 + ‖θt‖2
L2

)
. (2.12)

On the other hand, multiplying (1.1)2 by θt and integrating the resulting equation over Ω ,
we obtain

κ

2
d
dt

∥
∥∇θ (t)

∥
∥2

L2 + ‖θt‖2
L2 = –

∫

(u · ∇θ )θt dx ≤ ‖u‖L∞‖∇θ‖L2‖θt‖L2

≤ 1
2
‖θt‖2

L2 + C‖u‖2
H2‖∇θ‖2

L2 . (2.13)

Then, integrating (2.12), (2.13) over (0, t) and using Gronwall’s inequality, we have

μ‖ut‖2
L2 + κ‖∇θ‖2

L2 +
∫ t

0

(
μ2∥∥∇ut(s)

∥
∥2

L2 +
∥
∥θt(s)

∥
∥2

L2
)

ds ≤ C. (2.14)

Next, applying the operator ∂t on both sides of temperature equation (1.1)2 and multi-
plying by θt , we get

1
2

d
dt

∥
∥θt(t)

∥
∥2

L2 + κ‖∇θt‖2
L2 = –

∫

(ut · ∇θ + u · ∇θt)θt dx

≤ ‖ut‖L3‖∇θ‖L6‖θt‖L2

≤ ‖ut‖2
H1 + C

∥
∥∇2θ

∥
∥2

L2‖θt‖2
L2 , (2.15)

integrating (2.15) over time (0, t), using Gronwall’s inequality, and taking (2.5), (2.14) into
consideration, we obtain

∥
∥θt(t)

∥
∥2

L2 +
∫ t

0

∥
∥∇θt(s)

∥
∥2

L2 ds ≤ C, (2.16)

which completes the proof of Lemma 2.3. �

From Lemmas 2.1–2.3, we can see that Theorem 1.1 is proved.

3 Global strong solution
In this section, we prove the global existence and uniqueness of the strong solution. As-
sume that T∗ > 0 is the maximal existence time of the strong solution. We prove T∗ = +∞
by using contradiction arguments. If T∗ < +∞, our aim is to prove that (1.5) is not true
under the conditions of Theorem 1.2, which is the desired contradiction.
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We define

M(T) = sup
0≤t≤T

‖∇u‖2
L2 .

Proposition 3.1 Assume that the initial data satisfy the conditions in Theorem 1.2, and
the local strong solution satisfies

M(T) ≤ 2K1, (x, t) ∈ Ω × [0, T], (3.1)

then

M(T) ≤ 3
2

K1, (x, t) ∈ Ω × [0, T], (3.2)

provided that there exists ε0 depending on K1, μ, κ , and some other known constants but
independent of T such that ‖u0‖2

L2 + ‖θ0‖2
L2 ≤ ε0 is suitably small.

Lemma 3.2 Under the condition of Proposition 3.1, there exists C∗ depending on K1, μ, κ ,
and some other known constants but independent of T , it holds that

M(T) ≤ 3
2

K1, (3.3)

provided that ε0 ≤ C∗.

Proof Recalling Lemma 2.2, from (2.8) we can see that

μ

2
d
dt

∥
∥∇u(t)

∥
∥2

L2 + ‖ut‖2
L2

≤ 1
2
‖ut‖2

L2 + C
(

1
μ4 ‖∇u‖6

L2 +
1
μ2 ‖∇u‖6

L2 +
1
μ2 ‖∇u‖3

L2‖θ‖L2 + ‖θ‖2
L2

)

≤ 1
2
‖ut‖2

L2 + C
(

K2
1

μ4 ‖∇u‖2
L2 +

K2
1

μ2 ‖∇u‖2
L2 + ‖∇θ‖2

L2

)

. (3.4)

Then, integrating (3.4) over (0, t), we obtain

∥
∥∇u(t)

∥
∥2

L2 +
1
μ

∫ t

0

∥
∥ut(s)

∥
∥2

L2 ds

≤ ‖∇u0‖2
L2 + C

(
K2

1
μ5 +

K2
1

μ3

)∫ t

0

∥
∥∇u(s)

∥
∥2

L2 ds +
C
μ

∫ t

0

∥
∥∇θ (s)

∥
∥2

L2 ds

≤ ‖∇u0‖2
L2 +

CK2
1

μ3

(
1
μ2 + 1

)(
1
μ

‖u0‖2
L2 +

1
μ2κ

‖θ0‖2
L2

)

+
C
μκ

‖θ0‖2
L2 , (3.5)

where we have used Lemma 2.1. Then we have

∥
∥∇u(t)

∥
∥2

L2

≤ ‖∇u0‖2
L2 +

CK2
1

μ4

(
1
μ2 + 1

)

‖u0‖2
L2 +

CK2
1

μ5κ

(
1
μ2 + 1

)

‖θ0‖2
L2 +

C
μκ

‖θ0‖2
L2
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≤ ‖∇u0‖2
L2 +

CK2
1

μ4

(
1
μ2 + 1

)

‖u0‖2
L2 +

C
μκ

(
K2

1
μ6 +

K2
1

μ4 + 1
)

‖θ0‖2
L2

≤ K1 +
1
2

K1 =
3
2

K1,

provided C∗ ≤ 1
2 K1δ

–1, δ = max
{

CK2
1

μ4

(
1

μ2 + 1
)

, C
μκ

(
K2

1
μ6 + K2

1
μ4 + 1

)}
. This completes the proof

of Lemma 3.2. �

Hence, from Theorem 1.1 and Proposition 3.1, we can see that Theorem 1.2 is proved
provided

‖u0‖2
L2 + ‖θ0‖2

L2 ≤ ε0 ≤ C∗.

4 Decay estimates
Finally, in this section, based on the global in time strong solution, we have the following
exponential decay rate.

Lemma 4.1 Under the conditions of Theorem 1.2, we get that

∫

Ω

(
θ2 + |∇u|2) ≤ C1 exp{–C2t} (4.1)

holds for any t ∈ [0, +∞), provided that

ε0 ≤ C∗

for some positive constants C1, C2, and C∗ depending on μ, κ , K1, K2, and some other known
constants but independent of t.

Proof From (2.4) we can see that

d
dt

∥
∥u(t)

∥
∥2

L2 + μ‖∇u‖2
L2 ≤ 4

μ
‖∇θ‖2

L2 . (4.2)

Multiplying 2CK2
1

μ3

(
1

μ2 + 1
)

on both sides of inequality (4.2) and adding the resulting equa-
tion into (3.4), we obtain

d
dt

(
2CK2

1
μ3

(
1
μ2 + 1

)
∥
∥u(t)

∥
∥2

L2 +
μ

2
∥
∥∇u(t)

∥
∥2

L2

)

+
2CK2

1
μ3

(
1
μ2 + 1

)
∥
∥∇u(t)

∥
∥2

L2 +
1
2
‖ut‖2

L2

≤ C
(

8K2
1 (1 + μ2)

μ6 + 1
)

∥
∥∇θ (t)

∥
∥2

L2 . (4.3)
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Next, multiplying 2C
(

8K2
1 (1+μ2)
μ6κ

+ 1
κ

)
on both sides of inequality (2.3) and adding the re-

sulting equation into (4.3), we have

d
dt

(
2CK2

1
μ3

(
1
μ2 + 1

)
∥
∥u(t)

∥
∥2

L2 +
μ

2
∥
∥∇u(t)

∥
∥2

L2 + 2C
(

8K2
1 (1 + μ2)
μ6κ

+
1
κ

)
∥
∥θ (t)

∥
∥2

L2

)

+
2CK2

1
μ3

(
1
μ2 + 1

)
∥
∥∇u(t)

∥
∥2

L2 + C
(

8K2
1 (1 + μ2)
μ6κ

+
1
κ

)
∥
∥∇θ (t)

∥
∥2

L2 ≤ 0. (4.4)

Taking

Y (t) =
2CK2

1
μ3

(
1
μ2 + 1

)
∥
∥u(t)

∥
∥2

L2 +
μ

2
∥
∥∇u(t)

∥
∥2

L2 + 2C
(

8K2
1 (1 + μ2)
μ6κ

+
1
κ

)
∥
∥θ (t)

∥
∥2

L2 ,

it can be estimated as

Y (t) ≤ 2CK2
1

μ3

(
1
μ2 + 1

)
∥
∥∇u(t)

∥
∥2

L2 +
μ

2
∥
∥∇u(t)

∥
∥2

L2 + 2C
(

8K2
1 (1 + μ2)
μ6κ

+
1
κ

)
∥
∥∇θ (t)

∥
∥2

L2

≤
(

2CK2
1 (1 + μ2)
μ5 +

μ

2

)
∥
∥∇u(t)

∥
∥2

L2 + 2C
(

8K2
1 (1 + μ2)
μ6κ

+
1
κ

)
∥
∥∇θ (t)

∥
∥2

L2 , (4.5)

where we have used the Poincaré inequality.
Then there exists a constant M depending on C, K1, μ, κ such that

Y (t) ≤ M
(

2CK2
1

μ3

(
1
μ2 + 1

)
∥
∥∇u(t)

∥
∥2

L2 + C
(

8K2
1 (1 + μ2)
μ6κ

+
1
κ

)
∥
∥∇θ (t)

∥
∥2

L2

)

.

At last, from (4.4), we have

Y ′(t) +
1
M

Y (t) ≤ 0,

which deduces Y (t) ≤ Y (0) exp{– t
M }. This completes the proof of Theorem 1.3. �
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