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1 Introduction
A convex body in an n-dimensional Euclidean space R

n is a compact convex set that has
nonempty interior. The cone-volume measure VK of a convex body K is a Borel measure
on the unit sphere Sn–1 defined for a Borel ω ∈ Sn–1 by

VK (ω) =
1
n

∫
x∈g–1

K (ω)
x · gK dHn–1(x),

where gK : ∂K → Sn–1 is the Gauss map of K , defined on ∂K , the set of boundary points
of K that have a unique outer unit normal, and Hn–1 is an (n – 1)-dimensional Hausdorff
measure, see, e.g., [5, 20, 24, 28]. The cone-volume measure of a convex body has clear
geometric significance. Böröczky et al. in [4] posed the subspace concentration condition
and completely solved the even Minkowski problem. The problem asks: What are the nec-
essary and sufficient conditions on a finite Borel measure μ on Sn–1 such that μ is the cone-
volume measure of a convex body in R

n? In [30], Zhu solved the case of discrete measures
whose supports are in general position. Uniqueness for the logarithmic Minkowski prob-
lem was completely settled for even measures in R

2 in [3]. Recently, Stancu [23] proved the
logarithmic Minkowski inequality for nonsymmetric convex bodies. Wang, Xu, and Zhou
[25] gave the Lp version of Stancu’s results. For more results, see, e.g., [2, 4, 21, 25, 26, 30].

In his celebrated paper [17], Jerison solved the Minkowski problem for the capacitary
measure, the measure that is the variational functional arising from the electrostatic ca-
pacity. Colesanti et al. in [9] extended Jerison’s work on electrostatic capacity to p-capacity.
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Naturally, the Minkowski problem for p-capacity was posed [9]: Given a finite Borel mea-
sure μ on Sn–1, what are the necessary and sufficient conditions on μ so that μ is the p-
capacitary measure μp(K , ·) of convex body K in R

n? The authors in [9] proved the unique-
ness of the solution when 1 < p < n and existence and regularity when 1 < p < 2, the exis-
tence for 2 < p < n was solved by Akman et al. [1]. Inspired by the Lp Minkowski problem
for volume, Zou and Xiong [31] initiated the research into the Lq Minkowski problem for
p-capacitary measure. For more results, see, e.g., [6–8, 15–17, 19, 27, 29].

1.1 Main results
In this paper, we study the even logarithmic Minkowski problem and logarithmic Min-
kowski inequality for p-capacity. Our first result is to solve the existence part of the even
logarithmic Minkowski problem for p-capacity. The problem asks: What are the neces-
sary and sufficient conditions on a finite Borel measure μ on Sn–1 such that μ is the L0 p-
capacitary measure of an origin-symmetric convex body in R

n? Our proof is based on the
techniques in [4, 9, 23]. In order to solve the existence of the even logarithmic Minkowski
problem, we use the definition of subspace concentration inequality in [4].

Definition 1.1 ([4]) A finite Borel measure μ on Sn–1 is said to satisfy the subspace con-
centration inequality if, for every subspace ξ of Rn such that 0 < dim ξ < n,

μ
(
ξ ∩ Sn–1) ≤ 1

n
μ

(
Sn–1)dim ξ . (1.1)

The measure is said to satisfy the subspace concentration condition if, in addition to sat-
isfying the subspace concentration inequality (1.1), whenever

μ
(
ξ ∩ Sn–1) =

1
n

μ
(
Sn–1)dim ξ ,

for some subspace ξ , then there exists a subspace ξ ′, which is complementary to ξ in R
n,

so that

μ
(
ξ ′ ∩ Sn–1) =

1
n

μ
(
Sn–1)dim ξ ′.

Theorem 1.1 Let μ be a nonzero finite even Borel measure on Sn–1 and 1 < p < 2. Sup-
pose that μ satisfies the strict subspace concentration inequality and μ({–u}) = 0 whenever
μ({u}) > 0 for u ∈ Sn–1. Then the measure μ is the L0 p-capacitary measure of an origin-
symmetric convex body in R

n.

Next, we prove the modified logarithmic Minkowski inequality for p-capacity.

Theorem 1.2 Suppose K , L ∈Kn
o and 1 < p < n. Then

∫
Sn–1

ln

(
hK (u)
hL(u)

)
dC∗

p(L, K , u) ≥ ln

(
Cp(L, K)

Cp(L)

)
≥ 1

n – p
ln

(
Cp(K)
Cp(L)

)
.

Equality holds if and only if K and L are homothetic.
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Write ( hK
hL

)average :=
∫

Sn–1
hK (u)
hL(u) dCp(L,u)∫

Sn–1 dCp(L,u) = Cp(L,K )
Cp(L) , ( hK

hL
)max := maxu∈supp Cp(L,·) hK (u)

hL(u) , and

( hK
hL

)min := minu∈supp Cp(K ,·) hK (u)
hL(u) . We obtain the third result.

Theorem 1.3 Suppose K , L ∈Kn
o with L ⊆ K and 1 < p < n, then

∫
Sn–1

ln

(
hK (u)
hL(u)

)
dC∗

p(L, u) ≥ ( hK
hL

)average

( hK (u)
hL(u) )max

1
n – p

ln

(
Cp(K)
Cp(L)

)
.

Equality holds if and only if K = L.
In general, we have

∫
Sn–1

ln

(
hK (u)
hL(u)

)
dC∗

p(L, u) ≥ ( hK
hL

)average

( hK (u)
hL(u) )max

1
n – p

ln

(
Cp(K)
Cp(L)

)

+ ln

((
hK

hL

)
min

)(
1 –

( hK
hL

)average

( hK
hL

)max

)
.

This paper is organized as follows. In Sect. 2, we give a minimization problem for p-
capacity. In Sect. 3, we give the proof of Theorem 1.1. In Sect. 4, we prove Theorem 1.2
and its application.

1.2 Preliminaries
For quick reference, we collect some basic facts on the theory of convex bodies. Good
references are the books by Schneider [22].

Denote by Kn the set of convex bodes in R
n and by Kn

o the set of convex bodies with
the origin o in its interiors. Let hK and hL be the support functions (hK (u) = h(K , u) :=
maxu∈Sn–1{x · u : x ∈ K}, where x · u denotes the inner product of u and x) of K . Let I ⊂
R be an interval containing 0, C+(Sn–1) be a class of continuous and positive functions
on Sn–1, C+

e (Sn–1) means the subsets of C+(Sn–1) are the even functions, and assume that
ht(u) = h(t, u) : I × Sn–1 → (0, +∞) is continuous. Put

Ωt =
⋂

u∈Sn–1

{
x ∈R

n : x · u ≤ ht(u)
}

.

The convex body Ωt is called the Aleksandrov body associated with ht . Via the support
function, Böröczky et al. in [3] defined the log Minkowski combination (1 – λ) · K +0 λ · L,
that is,

(1 – λ) · K +0 λ · L =
⋂

u∈Sn–1

{
x ∈R

n : x · u ≤ hK (u)1–λhL(u)λ
}

. (1.2)

The surface area measure SK of a convex body K is a Borel measure on the unit sphere
Sn–1 defined for a Borel ω ∈ Sn–1 by

SK (ω) =
∫

x∈g–1
K (ω)

dHn–1(x). (1.3)
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Let Ω be a bounded convex domain in R
n, n ≥ 3, Ω be its closure. The equilibrium po-

tential u = uΩ is the unique solution to the boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

�pu = 0 in R
n\Ω ,

u = 1 on ∂Ω ,

lim|x|→∞ u(x) = 0,

(1.4)

where �p is the p-Laplace operator and 1 < p < n. Due to Dahlbeg [12], we can see that
∇u has non-tangential limits almost everywhere on ∂Ω and |∇u| ∈ Lp(∂Ω ,Hn–1). The
p-capacity was defined by

Cp(Ω) = inf

{∫
Rn

|∇uΩ |p dx : u ∈ C∞
c

(
R

n), u ≥ 1 on Ω

}
,

where C∞
c (Rn) is the set of C∞ functions in R

n with compact support. In [9], the authors
proved the following Hadamard variational formula for p-capacity. Let K , L ∈ Kn

o and 1 <
p < n,

d
dt

Cp(K + tL)|t=0+ = (p – 1)
∫

Sn–1
h(L, u) dμp(K , u),

where the p-capacitary measure μp(K , E) is defined by

μp(K , E) =
∫

g–1
K (E)

|∇uK |p dHn–1,

and the Poincaré p-capacity formula

Cp(K) =
p – 1
n – p

∫
Sn–1

h(K , u) dμp(K , u) =
p – 1
n – p

∫
∂K

|∇u|p(x · gK ) dHn–1(x). (1.5)

2 A minimization problem
In this section, we study a minimization problem, its solution also solves the logarithmic
Minkowski problem for p-capacity. The following lemma will be needed.

Lemma 2.1 ([9]) Let h(t, u) : I × Sn–1 → (0, +∞) be continuous and {Kt}t∈I be the family
of Aleksandrov domain associated with ht . If

h′
+(0, u) = lim

t→0+

h(t, u) – h(0, u)
t

is uniform on Sn–1, then

lim
t→0+

Cp(Kt) – Cp(K0)
t

= (p – 1)
∫

Sn–1
h′

+(0, u) dμp(K0, u).

With Lemma 2.1 in hand, we use the definition of log Minkowski combination to prove
the following result.
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Lemma 2.2 Let K ∈Kn
o and f ∈ C+(Sn–1) be nonnegative. If 1 < p < n, then

lim
t→0+

Cp(K +0 t · f ) – Cp(K)
t

= (p – 1)
∫

Sn–1
h(K , u) ln f dμp(K , u).

Proof Let 0 < t0 < +∞, consider the interval [0, t0]. We have

h′
+(0, u) = lim

t→0+

h(t, u) – h(0, u)
t

= h(K , u) ln f for all u ∈ Sn–1.

Then, by Lemma 2.1, we obtain

lim
t→0+

Cp(K +0 t · f ) – Cp(K)
t

= (p – 1)
∫

Sn–1
h(K , u) ln f dμp(K , u). �

Corollary 2.1 Suppose K , L ∈Kn
o and 1 < p < n, then

lim
t→0+

Cp(K +0 t · L) – Cp(K)
t

= (p – 1)
∫

Sn–1
h(K , u) ln h(L, u) dμp(K , u).

In view of the above result, we give the following definitions.

Definition 2.1 Let 1 < p < n and K ∈Kn
o , then the Borel measure μp,0(K , ·) on Sn–1, defined

by

μp,0(K ,ω) =
∫

ω

h(K , u) dμp(K , u)

for ω ⊂ Sn–1, is called the L0 p-capacitary measure of K .

Definition 2.2 Let 1 < p < n and K , L ∈Kn
o , then L0 mixed p-capacity of K and L is defined

by

Cp,0(K , L) =
p – 1
n – p

∫
Sn–1

h(K , u) ln h(L, u) dμp(K , u).

The next lemma shows that Cp,0(K , L) is continuous in (K , L).

Lemma 2.3 Let Ki, Li, K , L ∈ Kn
o and 1 < p < n. Assume that (Ki, Li) → (K , L) as i → ∞,

then Cp,0(Ki, Li) → Cp,0(K , L).

Proof By the assumption (Ki, Li) → (K , L), we have hKi → hK , hLi → hL uniformly on Sn–1,
and μp(Ki, ·) → μp(K , ·) weakly. It follows that hKi ln hLi → hK ln hL uniformly on Sn–1. By
Definition 2.2, the desired limit is obtained. �

The weak convergence of p-capacitary measure implies the weak convergence of μp,0 as
follows.

Lemma 2.4 Let Ki, K ∈ Kn
o and 1 < p < n. If Ki → K as i → ∞, then μp,0(Ki) → μp,0(K)

weakly.
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We now consider the minimization problem

inf
{
Φμ(K) : Cp(K) = |μ| and K ∈Kn

e
}

,

where Kn
e is an origin-symmetric convex body with nonempty interior, μ is a finite even

Borel measure on Sn–1 with total mass |μ| > 0, and the logarithmic functional Φμ : Kn
e →R

is defined by

Φμ(K) =
∫

Sn–1
ln hK dμ.

The following theorem shows a solution to the logarithmic Minkowski type problem for
the measure μ is a solution to minimization problem for the function Φμ.

Theorem 2.1 Let μ be a finite even Borel measure on Sn–1 with |μ| > 0 and 1 < p < n. If K
is an origin-symmetric convex body such that Cp(K) = |μ| and

Φμ(K) = inf
{
Φμ(Q) : Cp(Q) = |μ|, Q ∈Kn

e
}

,

then the measure μ is the L0 p-capacitary measure of K .

Proof Clearly, we may assume that μ is a probability measure. Next, we consider the min-
imization problem

inf
f ∈C+

e (Sn–1)
F(f ),

where the continuous functional F : C+
e (Sn–1) → (0, +∞) by

F(f ) =
exp

∫
Sn–1 ln f dμ

Cp(Kf )
1

n–p
,

here Kf denotes the Wulff shape of f ∈ C+
e (Sn–1). Notice that F is homogeneous of degree

0, i.e., F(sf ) = F(f ) for s > 0. By the properties of Aleksandrov body, we have hKf ≤ f . Ac-
cording to Lemma 2.1 in [31], we have Cp(f ) = Cp(Kf ); in addition, Cp(Kf ) = Cp(hKf ), which
yields F(Kf ) ≤ F(f ). Therefore, we shall search for the infimum of F among the support
functions of origin-symmetric convex bodies. It follows that the infimum of F

inf
f ∈C+

e (Sn–1)
F(f ) = inf

{
exp

(
Φμ(Q)

)
: Cp(Q) = 1, Q ∈Kn

e
}

.

Obviously, the right infimum is attained at K ∈Kn
e . Thus, the support function hK > 0 is a

solution of minimization problem, i.e.,

inf
f ∈C+

e (Sn–1)
F(f ) = F(hK ).

Given the function ht = h(·, t) : Sn–1 ×R→ (0,∞) is defined by

ht = h(·, t) = hK exp(tf ),
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by the function F(ht) has a minimum at t = 0, this implies that

d
dt

F(ht) = 0.

On the other hand,

lim
t→0

ht – h0

t
= fhK , uniformly on Sn–1,

it follows from Cp(K) = 1 that

[
–

p – 1
n – p

∫
Sn–1

f (u)hK (u) dμp(K , u) +
∫

Sn–1
f (u) dμ(u)

]
exp

(∫
Sn–1

ln hK (u) dμ(u)
)

= 0,

which yields

p – 1
n – p

∫
Sn–1

f (u) dμp,0(K , u) =
∫

Sn–1
f (u) dμ(u).

Since f ∈ C+
e (Sn–1) is arbitrary, we conclude that

dμ(·) =
p – 1
n – p

dμp,0(K , ·),

this completes the proof of the theorem. �

3 Logarithmic Minkowski problem
In the previous section, we have proved the existence of a solution to the logarithmic
Minkowski problem by using the variational argument. In this section, we show the proof
of the main result.

Lemma 3.1 Let μ be an even finite Borel measure on Sn–1 satisfying the strict subspace
concentration inequality. If 1 < p < n and μ({–u}) = 0 whenever μ({u}) > 0, then there exists
an origin-symmetric convex body K so that

inf
{
Φμ(Q) : Cp(Q) = |μ|, Q ∈Kn

e
}

=
∫

Sn–1
ln hK dμ.

Proof Without loss of generality, we assume that |μ| = 1. Let Ql be the minimizing se-
quence of origin-symmetric convex bodies, that is, Ql satisfies the Cp(Ql) = 1 and

lim
l→∞

Φμ(Ql) = inf
Q∈Kn

e

{
Φμ(Q) : Cp(Q) = 1, Q ∈Kn

e
}

.

Taking L = γ
– 1

n–p Bn, γ = ( p–1
n–p )1–pωn, here Bn is a unit ball. Then Cp(L) = 1, it follows that

lim
l→∞

Φμ(Ql) ≤ –
1

n – p
lnγ . (3.1)
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By John’s theorem [18] associated with Ql , there exists an origin-symmetric ellipsoid El so
that

El ⊆ Ql ⊆ √
nEl.

Note that, for every origin-symmetric ellipsoid El , there is a cross-polytope Pl denoted by
Pl = [±a1lu1l, . . . ,±anlunl] such that Pl ⊆ El ⊆ √

nPl . Hence, Pl ⊆ Ql ⊆ nPl . It follows from
Cp(Ql) = 1 that Cp(Pl) ≥ n– 1

n–p . We next claim that suppose K is a convex body containing
the origin and satisfying V (K) = 0, then Cp(K) = 0. In fact, since

0 = V (K) =
1
n

∫
Sn–1

hK (u) dS(K , u)

=
1
n

∫
{hK >0}

hK (u) dS(K , u) +
1
n

∫
{hK =0}

hK (u) dS(K , u)

=
1
n

∫
{hK >0}

hK (u) dS(K , u).

It follows that S(K , {hK > 0}) = 0, which implies Hn–1(g–1
K ({hK > 0})) = 0. Together with the

fact that |∇u|p is integrable on ∂K , we have

μp
(
K , {hK > 0}) =

∫
g–1

K ({hK >0})
|∇u|pHn–1(x) = 0.

By (1.5), we have Cp(K) = 0. Thus, there exists a constant c > 0 such that V (K) ≥ cCp(K).
This yields

n∏
i=1

ail =
n!V (Pl)

2n ≥ cn!Cp(Pl)
2n := γ1.

Assume that Ql is not bounded. Then Pl is not bounded, thus there exists anl such that
liml→∞ anl = ∞. Applying Lemma 6.2 in [3] to P′

l = γ
– 1

n
1 Pl implies that Φμ(P′

l) is not
bounded, which gives that Φμ(Ql) is not bounded. This contradicts (3.1). Therefore, the
sequence Ql is bounded. By Blaschke’s selection theorem, Ql has a subsequence that con-
verges to an origin-symmetric convex body K . In the following, we prove K ∈ Kn

o is n-
dimensional. Let dim K ≤ n – 2. Since 1 < p < 2, we have dim K ≤ n – 2 < n – p, so Cp(K) = 0
by [13], p. 179, which contradicts that Cp(K) = 1. Let dim K = n – 1, there exists a unit vec-
tor u ∈ Sn–1 such that K ⊂ u⊥. Then u, –u ∈ suppμ. But μ satisfies μ({–u}) = 0 whenever
μ({u}) > 0 for any u ∈ Sn–1, which is a contradiction. This gives the desired result. �

We get the proof of Theorem 1.1 directly from Theorem 2.1 and Lemma 3.1.

4 Logarithmic Minkowski type inequality
In this section, we set dCp(L, K , ·) = 1

n–p hK dμp(L, ·) and dCp(L, ·) = 1
n–p hL dμp(L, ·). Then

Cp(L, K) =
∫

Sn–1 dCp(L, K , u) and Cp(L) =
∫

Sn–1 dCp(L, u). Clearly,

dC∗
p(L, K , ·) =

1
Cp(L, K)

dCp(L, K , ·)
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and dC∗
p(L, ·) = 1

Cp(L) dCp(L, ·) are their normalization, respectively. Now, we give the proof
of Theorem 1.2.

Proof of Theorem 1.2 Consider the function f : [1, +∞] → R defined by

f (q) =
1

Cp(L, K)

∫
Sn–1

(
hK

hL

) q
q+n

dCp(L, u). (4.1)

According to Lebesgue’s dominated convergence theorem, we obtain: as q → ∞,

∫
Sn–1

(
hK (u)
hL(u)

) q
q+n

dCp(L, u) → Cp(L, K)

and

∫
Sn–1

(
hK (u)
hL(u)

) q
q+n

ln

(
hK (u)
hL(u)

)
dCp(L, u) →

∫
Sn–1

hK (u)
hL(u)

ln

(
hK (u)
hL(u)

)
dCp(L, u).

Using L’Hôpital’s rule, we have

lim
q→∞ ln

(
f (q)

)q+n = lim
q→∞

n
(n+q)2Cp(L,K )

∫
Sn–1 ( hK (u)

hL(u) )
q

q+n ln( hK (u)
hL(u) ) dCp(L, u)

– f (q)
(q+n)2

= –
n

Cp(L, K)

∫
Sn–1

hK (u)
hL(u)

ln

(
hK (u)
hL(u)

)
dCp(L, u)

= –
n

Cp(L, K)

∫
Sn–1

ln

(
hK (u)
hL(u)

)
dCp(L, K , u). (4.2)

By (4.1) and (4.2), we have

exp

[
–n

∫
Sn–1

ln

(
hK (u)
hL(u)

)
dC∗

p(L, K , u)
]

= lim
q→∞

[
1

Cp(L, K)

∫
Sn–1

(
hK (u)
hL(u)

) q
q+n

dCp(L, u)
]n+q

.

The reverse Hölder inequality gives

(∫
Sn–1

(
hK (u)
hL(u)

) q
q+n

dCp(L, u)
) n+q

q
(∫

Sn–1
dCp(L, u)

)– n
q

≤ Cp(L, K).

Equality holds if and only if K is homothetic to L. This gives the first inequality of Theo-
rem 1.2.

Now, we prove the second inequality of Theorem 1.2. Using Minkowski’s inequality for
p-capacity [10], we have

Cp(L, K) ≥ Cp(K)
1

n–p Cp(L)1– 1
n–p .

Equality holds if and only if K is homothetic to L. �
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Similarly, we obtain the reverse form of Theorem 1.2.

Theorem 4.1 Let K , L ∈Kn
o and 1 < p < n. Then

∫
Sn–1

ln
hK (u)
hL(u)

dC∗
p(L, u) ≤ ln

Cp(L, K)
Cp(L)

≤
∫

Sn–1
ln

(
hL(u)
hK (u)

)
dC∗

p(L, K , u),

with equality if and only if K is homothetic to L.

First proof Via the same idea in Theorem 1.2, we have

exp

(
–

1
Cp(L)

∫
Sn–1

ln

(
hK (u)
hL(u)

)
dCp(L, u)

)

= lim
q→∞

[
1

Cp(L)

∫
Sn–1

(
hK (u)
hL(u)

) 1
q+n

dCp(L, u)
]n+q

.

From the reverse Hölder inequality, we have

(∫
Sn–1

(
hK (u)
hL(u)

) 1
q+n

dCp(L, u)
)q+n(∫

Sn–1
dCp(L, u)

)1–q–n

≤ Cp(L, K).

Thus,

1
Cp(L)

∫
Sn–1

ln

(
hK

hL

)
dCp(L) ≤ ln

(
Cp(L, K)

Cp(L)

)
. �

Second proof We will use Gibbs’ inequality [11], i.e., let f and g be the probability density
functions on a measure space (X,ν), then

∫
f ln f dν ≥ ∫

f ln g dν , equality holds if and only
if f = g . On the one hand, let f dν(·) = hL

hK Cp(L) dCp(L, K , ·) and g dν(·) = 1
Cp(L,K ) dCp(L, K , ·).

By Gibbs’ inequality in [11], we have

∫
Sn–1

hL(u)
hK (u)Cp(L)

ln

(
hL(u)

hK (u)Cp(L)

)
dCp(L, K , u)

≥
∫

Sn–1

1
Cp(L, K)

ln

(
1

Cp(L, K)

)
dCp(L, K , u),

which implies that

∫
Sn–1

ln

(
hL(u)
hK (u)

)
dC∗

p(L, u) ≤ ln

(
Cp(L, K)

Cp(L)

)
.

According to the equality condition, we know that K is homothetic to L.
On the other hand, we set f dν(·) = 1

Cp(L,K ) dCp(L, K , ·) and g dν(·) = hL
hK Cp(L) dCp(L, K , ·),

then
∫

Sn–1

1
Cp(L, K)

ln

(
1

Cp(L, K)

)
dCp(L, K , u)

≥
∫

Sn–1

hL(u)
hK (u)Cp(L)

ln

(
hL(u)

hK (u)Cp(L)

)
dCp(L, K , u),
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which is equivalent to the following inequality:

∫
Sn–1

ln

(
hL(u)
hK (u)

)
dC∗

p(L, K , u) ≥ ln

(
Cp(L, K)

Cp(L)

)
,

with equality if and only if K is homothetic to L. This completes the proof of the theo-
rem. �

Moreover, we show the logarithmic Minkowski type inequality for p-capacity.

Proof of Theorem 1.3 Let q ∈R and 1 < p < n, consider the function

G(q) =
∫

Sn–1

(
hK (u)
hL(u)

)q

ln

(
hK (u)
hL(u)

)
dCp(L, u),

since L ⊆ K , the function G(q) is nonnegative. If ln( hK (u)
hL(u) ) ≡ 0, u ∈ supp Cp(L, ·), then G ≡ 0,

which implies that G(1) ≥ G(0) > 0. If G(1) = G(0), then K = L. So we assume G(1) > G(0).
We now claim that G(q) is a log-convex function. In fact, let t ∈ (0, 1), by Hölder’s in-

equality, we get that

G
(
(1 – t)q1 + tq2

)
=

∫
Sn–1

(
hK (u)
hL(u)

)(1–t)q1+tq2

ln

(
hK (u)
hL(u)

)
dCp(L, u)

≤
(∫

Sn–1

(
hK (u)
hL(u)

)q1

ln

(
hK (u)
hL(u)

)
dCp(L, u)

)1–t

×
(∫

Sn–1

(
hK (u)
hL(u)

)q2

ln

(
hK (u)
hL(u)

)
dCp(L, u)

)t

= G(q1)1–tG(q2)t .

Applying the Hadamard type inequality in [14], we have

G(1) – G(0)
ln G(1) – ln G(0)

≥
∫ 1

0

∫
Sn–1

(
hK (u)
hL(u)

)q

ln

(
hK (u)
hL(u)

)
dCp(L, u) dq. (4.3)

From Fubini–Tonelli’s theorem, we obtain

G(0) ≥ G(1) exp

(
–

G(1) – G(0)∫ 1
0

∫
Sn–1 ( hK (u)

hL(u) )q ln( hK (u)
hL(u) ) dCp(L, u) dq

)

= G(1) exp

(
–

G(1) – G(0)∫
Sn–1 ( hK (u)

hL(u) – 1) dCp(L, u)

)
.

Notice that

G(1) – G(0)∫
Sn–1 ( hK (u)

hL(u) – 1) dCp(L, u)
≤ ln

(
hK

hL

)
max

.
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Thus, by Theorem 1.2, we have

∫
Sn–1

ln

(
hK (u)
hL(u)

)
dC∗

p(L, u)

≥ exp

(
– ln

(
hK

hL

)
max

)
Cp(L, K)

Cp(L)

∫
Sn–1

ln

(
hK (u)
hL(u)

)
dC∗

p(L, K , u)

≥ ( hK
hL

)average

( hK
hL

)max

∫
Sn–1

ln

(
hK (u)
hL(u)

)
dC∗

p(L, K , u)

≥ ( hK
hL

)average

( hK
hL

)max

1
n – p

ln

(
Cp(K)
Cp(L)

)
. (4.4)

Suppose G(q) ≡ 0, then hK (u) = hL(u) for almost all u in L0 p-capacitary measure of L, or
equivalently with respect to the p-capacitary measure of L. This implies that Cp(L, K) =
Cp(L). According to the equality condition of Minkowski inequality for p-capacity and
L ⊆ K , we obtain K = L.

Assume that K , L ∈Kn
o are arbitrary and L is not included in K , then there exists 0 < t < 1

such that tL ⊆ K . By (4.4), we have

∫
Sn–1

ln

(
hK (u)
thL(u)

)
dC∗

p(tL, u) ≥ ( hK
thL

)average

( hK
thL

)max

1
n – p

ln

(
Cp(K)
Cp(tL)

)
,

which is equivalent to the following inequality:

∫
Sn–1

ln

(
hK (u)
hL(u)

)
dC∗

p(L, u)

≥ ( hK
hL

)average

( hK
hL

)max

1
n – p

ln

(
Cp(K)
Cp(L)

)
+ ln t

(
1 –

( hK
hL

)average

( hK
hL

)max

)
.

Taking t = minu∈supp Cp(K ,·) hK (u)
hL(u) , we obtain the second inequality, with equality if and only

if K and L are homothetic. �

Obviously, Theorem 1.3 implies the following corollary.

Corollary 4.1 Let K , L ∈Kn
o and 1 < p < n. If there exists a constant t > 0 such that tL ⊆ K

with hK (u) = htL(u) for u in L0 p-capacitary measure of L, then

∫
Sn–1

ln

(
hK (u)
hL(u)

)
dC∗

p(L, u) ≥ 1
n – p

ln

(
Cp(K)
Cp(L)

)
.

Equality holds if and only if K = tL.

Finally, we shall give an application of Theorem 1.2. Let Fn be the set of all convex bodies
with positive continuous curvature functions and L be a convex body in Fn with a curva-
ture function fL. To simplify the notation, we write K∗ = {x ∈R

n : x · y ≤ 1, y ∈ K} to be the
polar body of K and Φp(L) =

∫
Sn–1 f

n
n+1

L |∇uL| np
n+1 dS(u).
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Theorem 4.2 If K ∈Kn
o , 1 < p < n, and L ∈Kn

o ∩Fn, then

V (K)V
(
K∗) ≥ 1

n(n – p)n
Φp(L)n+1

Cp(L)n
V (K)

c(p, K , L)
,

where c(p, K , L) := (exp(
∫

Sn–1 ln( hK (u)
hL(u) )) dC∗

p(L, K , u))n.

Proof Let K and L be distinct, by Theorem 1.2, we have

exp

(∫
Sn–1

ln

(
hK (u)
hL(u)

))
dC∗

p(L, K , u) ≥ Cp(L, K)
Cp(L)

=
1

(n – p)Cp(L)

∫
Sn–1

hK (u)fL|∇uL|p dS(u).

Using the reverse Hölder inequality, we obtain

∫
Sn–1

hK fL|∇uL|p dS(u) ≥
(∫

Sn–1
h–n

K dS(u)
)– 1

n
(∫

Sn–1
f

n
n+1

L |∇uL| np
n+1 dS(u)

) n+1
n

=
(
nV

(
K∗))– 1

n Φp(L)
n+1

n .

Thus

exp

(∫
Sn–1

ln

(
hK (u)
hL(u)

))
dC∗

p(L, K , u) ≥ 1
(n – p)Cp(L)

(
nV

(
K∗))– 1

n Φp(L)
n+1

n ,

which implies that

(
exp

(∫
Sn–1

ln

(
hK (u)
hL(u)

))
dC∗

p(L, K , u)
)n

≥ 1
n(n – p)nCp(L)nV (K∗)

Φp(L)n+1.

This gives the desired inequality.
For the case K = L ∈ Kn

o ∩Fn, according to the above proof, we also obtain the desired
inequality. �

Taking K = L, we obtain the following result.

Corollary 4.2 If K ∈Kn
o ∩Fn and 1 < p < n, then

V (K)V
(
K∗) ≥ 1

n(n – p)n
V (K)Φp(K)n+1

Cp(K)n .
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