
Alansari et al. Journal of Inequalities and Applications         (2020) 2020:42 
https://doi.org/10.1186/s13660-020-02313-z

R E S E A R C H Open Access

Strong convergence of an inertial iterative
algorithm for variational inequality problem,
generalized equilibrium problem, and fixed
point problem in a Banach space
Monairah Alansari1, Rehan Ali2 and Mohammad Farid3*

*Correspondence:
mohdfrd55@gmail.com
3Deanship of Educational Services,
Qassim University, Buraidah,
Kingdom of Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
We propose and analyze an inertial iterative algorithm to approximate a common
solution of generalized equilibrium problem, variational inequality problem, and fixed
point problem in the framework of a 2-uniformly convex and uniformly smooth real
Banach space. Further, we study the convergence analysis of our proposed iterative
method. Finally, we give application and a numerical example to illustrate the
applicability of the main algorithm.
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1 Introduction
Let C be a nonempty closed convex subset of a real Banach space X and X∗ be the dual
space of X; let the pairing between X and X∗ be denoted by 〈·, ·〉. A mapping J : X → 2X∗

such that

J(x) =
{

x∗ ∈ X∗ :
〈
x∗, x

〉
= ‖x‖2 =

∥∥x∗∥∥2}, ∀x ∈ X, (1.1)

is called normalized duality mapping.
Let g, b : C × C → R be bifunctions, where R is the set of real numbers. We study the

generalized equilibrium problem (in short, GEP) which was to find x ∈ C such that

g(x, y) + b(x, y) – b(x, x) ≥ 0, ∀y ∈ C. (1.2)

The solution of (1.2) is denoted by Sol(GEP(1.2)). If we consider b(x, y) = 0, ∀x, y ∈ C, (1.2)
reduces to the equilibrium problem (in short, EP): Find x ∈ C such that

g(x, y) ≥ 0, ∀y ∈ C, (1.3)

which was studied by Blum and Oettli [1]. The solution of (1.3) is denoted by Sol(EP(1.3)).
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In the development of various fields of science and engineering, the equilibrium prob-
lem has a great importance. It provides various mathematical problems as special cases,
like variational inclusion problem, variational inequality problem, mathematical program-
ming problem, saddle point problem, complementary problem, Nash equilibrium prob-
lem in noncooperative games, minimization problem, minimax inequality problem, and
fixed point problem (see [1–3]). If we consider g(x, y) = h(y) – h(x), where h : C → R is a
nonlinear function, then (1.3) becomes the optimization problem: Find x ∈ C such that

h(x) ≤ h(y), ∀y ∈ C. (1.4)

If we consider g(x, y) = 〈y – x, Dx〉, ∀x, y ∈ C, where D : C → X∗ is a nonlinear mapping,
then (1.3) becomes the variational inequality problem (in short, VIP): Find x ∈ C such that

〈y – x, Dx〉 ≥ 0, ∀y ∈ C, (1.5)

which was studied by Hartmann and Stampacchia [4]. The set of solutions of (1.5) is de-
noted by Sol(VIP(1.5)).

In 2006, using the extragradient iterative method for VIP(1.5) given in [5], Nadezkhina
and Takahashi [6] introduced and studied the following extragradient method and proved
a strong convergence as follows:

x0 ∈ C ⊆ H ,
un = PC(xn – rnDxn),
yn = αnxn + (1 – αn)TPC(xn – rnDun),
Cn = {z ∈ C : ‖yn – z‖2 ≤ ‖xn – z‖2},
Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ 0},
xn+1 = PCn∩Qn x0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.6)

For further generalizations of iterative method (1.6), see [7–10].
One drawback of algorithm (1.6) is the computation of values of mapping D at two dif-

ferent points and the necessity of two projections on the admissible set C to pass to the
next iteration. To overcome this drawback partially, recently, by adopting the idea of Popov
[11], Malitsky and Semenov [12] showed that with some other choice of Cn it is possible
to drop from (1.6) the step of extrapolation, which consists in un = PC(xn – rnDxn), and
introduced the following iteration without extrapolating step and proved a strong conver-
gence:

x0, z0 ∈ C ⊆ H ,
zn+1 = PC(xn – λDzn),
Cn = {z ∈ H : ‖zn+1 – z‖2 ≤ ‖xn – z‖2 + k‖xn – xn–1‖2

– (1 – 1
k – λL)‖zn+1 – zn‖2 + λL‖xn – xn–1‖2},

Qn = {z ∈ H : 〈xn – z, x – xn〉 ≥ 0},
xn+1 = PCn∩Qn x0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.7)

where L is a Lipschitz constant and λ > 0, k > 0 are parameters. We note that algorithm
(1.7) on every iteration needs only one computation of projection and one value of D.
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The iterative method given in [12] extended the methods given in [5, 6]. Further, Dong
and Lu [13] extended (1.7) and showed that the algorithm given by them could be faster
than algorithm (1.6) by a numerical example. Very recently, Kazmi et al. [14] extended
(1.7) for the mixed equilibrium problem.

In 2009, Takahashi et al. [15] introduced and studied the following iterative method
and studied strong convergence for a relatively nonexpansive mapping to approximate the
common solution of a fixed point problem and an equilibrium problem in Banach space:

x0 ∈ C,
un = J–1(αnJxn + (1 – αn)JTxn),
zn ∈ C such that g(zn, y) + 1

rn
〈y – zn, Jzn – Jun〉 ≥ 0, ∀y ∈ C,

Cn = {z ∈ C : φ(z, zn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn x0, ∀n ≥ 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.8)

where ΠC : X → C is the generalized projection. For further extension of [13, 15], see[16–
18].

On the other hand, Mainge [19] extended and unified the Krasnosel’skǐı–Mann algo-
rithm as follows:

wn = xn + θn(xn – xn–1),
xn+1 = (1 – αn)wn + αnTwn,

}

(1.9)

for each n ≥ 1 and proved a weak convergence for a nonexpansive mapping T under some
conditions.

The term θn(xn – xn–1) given in (1.9) is called the inertial term. It plays a crucial role in
speeding up the convergence properties of iterative method (1.9); for details see [19–27]. It
is worth to mention that, if we consider θn = 0, then iterative method (1.9) becomes Kras-
nosel’skǐı–Mann type iterative methods; for details, see [28–30]. Due to this importance,
a number of researchers have been working on inertial type methods; see for details the
following: inertial Douglas–Rachford splitting methods [31], inertial forward-backward
splitting methods [32, 33], inertial forward-backward-forward method [34], and inertial
proximal ADMM [35]. Further it is worth to mention that the study of convergence anal-
ysis of inertial type iterative methods is still unexplored in the setting of Banach space.

Therefore, inspired and motivated by the work given in [12, 15, 19], we introduce and
study a hybrid iterative algorithm for approximating a common solution of GEP(1.2),
VIP(1.5), and a fixed point problem for a relatively nonexpansive mapping. Further, we
prove a strong convergence theorem in a uniformly smooth and 2-uniformly convex Ba-
nach spaces. Finally, we give a numerical example to justify the main theorem and demon-
strate that our proposed inertial iterative algorithm is faster than the algorithms due to
[15, 16].

2 Preliminaries
Suppose that weak and strong convergence are denoted by the symbols ⇀ and →, respec-
tively. Suppose that the unit sphere N is defined as N = {x ∈ X : ‖x‖ = 1} on a Banach space
X. If ‖x+y‖

2 < 1, ∀x, y ∈ N with x = y, then X is said to be strictly convex. If for any ε ∈ (0, 2]
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there exists δ > 0 such that

‖x – y‖ ≥ ε implies
‖x + y‖

2
≤ 1 – δ for any x, y ∈ N , (2.1)

then X is said to be uniformly convex. Notice that X is reflexive and strictly convex if it is a
uniformly convex Banach space and smooth if limt→0

‖x+ty‖–‖x‖
t exists for all x, y ∈ N . If the

limit exists uniformly, then X is uniformly smooth and X is said to enjoy the Kadec–Klee
property if for any {xn} ∈ X and x ∈ X with xn ⇀ x, and ‖xn‖ → ‖x‖, then ‖xn – x‖ → 0 as
n → ∞. Notice that X enjoys the Kadec–Klee property if X is a uniformly convex Banach
space. Also J is single-valued if X is smooth, J is uniformly norm-to-norm continuous
on bounded subsets of X if X is uniformly smooth, and X is strictly convex if J is strictly
monotone.

The function φ : X × X →R is said to be Lyapunov function and is defined by

φ(x, y) = ‖x‖2 – 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ X. (2.2)

It is obvious that

(‖x‖ – ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2, ∀x, y ∈ X, (2.3)

φ
(
x, J–1(λJy + (1 – λ)Jz

)) ≤ λφ(x, y) + (1 – λ)φ(x, z), ∀x, y ∈ X,λ ∈ [0, 1], (2.4)

and

φ(x, y) = ‖x‖‖Jx – Jy‖ + ‖y‖‖x – y‖, ∀x, y ∈ X. (2.5)

Remark 2.1 If X is a reflexive, strictly convex, and smooth Banach space, then ∀x, y ∈ X,
φ(x, y) = 0 ⇔ x = y.

Lemma 2.2 ([36]) Let X be a 2-uniformly convex Banach space, then for all x, y ∈ X the
following inequality holds:

‖x – y‖ ≤ 2
c
‖Jx – Jy‖,

where c is a 2-uniformly convex constant and c ∈ (0, 1].

Lemma 2.3 ([37]) Let X be a smooth and uniformly convex Banach space, and let {xn} and
{yn} be two sequences in X such that either {xn} or {yn} is bounded. If limn→∞ φ(xn, yn) = 0,
then limn→∞ ‖xn – yn‖ = 0.

Remark 2.4 If {xn} and {yn} are bounded, then by using (2.5) it is obvious that the converse
of Lemma 2.3 is also true.

Definition 2.1 Let T : C → C be a mapping. Then:
(i) Fix(T) = {x ∈ C : Tx = x} is the collection of all fixed points of T ;

(ii) A point x0 ∈ C is defined as an asymptotic fixed point of T if C contains a sequence
{xn} such that xn ⇀ x0 and limn→∞ ‖Txn – xn‖ = 0. F̂ix(T) denotes the collection of
all asymptotic fixed points of T ;
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(iii) T is said to be relatively nonexpansive if

F̂ix(T) = Fix(T) = ∅ and φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ Fix(T).

Lemma 2.5 ([38]) Let X be a reflexive, strictly convex, and smooth Banach space. Let C be
a nonempty closed convex subset of X. Let T : C → C be a relatively nonexpansive mapping.
Then Fix(T) is a closed convex subset of C.

Lemma 2.6 ([39]) Let C be a nonempty closed convex subset of X and D be a monotone
and hemicontinuous mapping of C into X∗. Then VIP(C, D) is closed and convex.

Lemma 2.7 ([37]) Let C be a nonempty closed convex subset of a real reflexive, strictly
convex, and smooth Banach space X, and let x ∈ X. Then there exists a unique element
x0 ∈ C such that φ(x0, x) = infy∈C φ(y, x).

Definition 2.2 ([40]) A mapping ΠC : X → C is said to be a generalized projection if,
for any point x ∈ X, ΠCx = x̄, where x̄ is a solution of the minimization problem φ(x̄, x) =
infy∈C φ(y, x).

Lemma 2.8 ([40]) Let X be a reflexive, strictly convex, and smooth Banach space, and let
C be a nonempty closed convex subset of X. Then

φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀x ∈ C and y ∈ X.

Lemma 2.9 ([40]) Let X be reflexive, strictly convex, and let C be a nonempty closed convex
subset of a smooth Banach space X, let x ∈ X and z ∈ C. Then

z = ΠCx ⇐⇒ 〈z – y, Jx – Jz〉 ≥ 0, ∀y ∈ C.

Assumption 2.1 Let g : C × C −→R be a bifunction satisfying the following:
(i) g(x, x) = 0, ∀x ∈ C;

(ii) g is monotone, that is, g(x, y) + g(y, x) ≤ 0, ∀x ∈ C;
(iii) lim supt→0 g(tz + (1 – t)x, y) ≤ g(x, y), ∀x, y, z ∈ C;
(iv) For each x ∈ C, y → g(x, y) is convex and lower semicontinuous.

Assumption 2.2 Let b : C × C → R be a bifunction satisfying the following:
(i) b is skew-symmetric, i.e., b(x, x) – b(x, y) – b(y, x) + b(y, y) ≥ 0, ∀x, y ∈ C;

(ii) b is convex in the second argument;
(iii) b is continuous.

Lemma 2.10 ([41]) Let C be a closed convex subset of a uniformly smooth, strictly convex,
and reflexive Banach space X, and let g : C × C −→ R be a bifunction satisfying Assump-
tion 2.1 and b : C × C → R satisfying Assumption 2.2. For all r > 0 and x ∈ X, define a
mapping Tr : X → C as follows:

Trx =
{

z ∈ C : g(z, y) +
1
r
〈y – z, Jz – Jx〉 + b(z, y) – b(z, z) ≥ 0,∀y ∈ C

}
, ∀x ∈ X. (2.6)

Then the following hold:
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(a) Trx is single-valued;
(b) Trx is a firmly nonexpansive type mapping, i.e., for all x, y ∈ X ,

〈Trx – Try, JTrx – JTry〉 ≤ 〈Trx – Try, Jx – Jy〉;

(c) Fix(Tr) = Sol(GEP(1.2)) is closed and convex;
(d) Trx is quasi-φ-nonexpansive;
(e) φ(q, Trx) + φ(Trx, x) ≤ φ(q, x), ∀q ∈ F(Tr).

In the sequel, we make use of the function Φ : X × X∗ →R, defined by

Φ
(
x, x∗) = ‖x‖2 –

〈
x, x∗〉 +

∥∥x∗∥∥2.

Observe that Φ(x, x∗) = φ(x, J–1x∗).

Lemma 2.11 ([40]) Let X be a smooth, strictly convex, and reflexive Banach space with X∗

as its dual. Then

Φ
(
x, x∗) + 2

〈
J–1x∗ – x, y∗〉 ≤ Φ

(
x, x∗ + y∗), ∀x ∈ X and all x∗, y∗ ∈ X∗.

3 Main result
In this section, we prove a strong convergence theorem for the inertial hybrid iterative
algorithm to approximate a common solution of GEP(1.2), VIP(1.5), and fixed point prob-
lem for a relatively-nonexpansive mapping in uniformly smooth and 2-uniformly convex
real Banach spaces.

Iterative Algorithm 3.1 Let the sequences {xn} and {zn} be generated by the iterative
algorithm:

x0 = x–1, z0 ∈ C, C0 := C,
wn = xn + θn(xn – xn–1),
yn = ΠCJ–1(Jwn – μnDwn),
un = J–1(αnJzn + (1 – αn)JTyn),
zn+1 = Trn un,
Cn = {z ∈ C : φ(z, zn+1) ≤ αnφ(z, zn) + (1 – αn)φ(z, wn)},
Qn = {z ∈ C : 〈xn – z, Jxn – Jx0〉 ≤ 0},
xn+1 = ΠCn∩Qn x0, ∀n ≥ 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where {αn} ∈ [0, 1], rn ∈ [a,∞) for some a > 0, {θn} ∈ (0, 1) and {μn} ∈ (0,∞).

Theorem 3.2 Let C be a nonempty, closed, and convex subset of a 2-uniformly convex and
uniformly smooth real Banach space X, and let X∗ be the dual of X. Let D : X → X∗ be a γ -
inverse strongly monotone mapping with constant γ ∈ (0, 1); g : C × C →R be a bifunction
satisfying Assumption 2.1, and b : C × C → R satisfy Assumption 2.2. Let T : C → C be a
relatively nonexpansive mapping such that Γ := Sol(GEP(1.2)) ∩ Sol(VIP(1.5)) ∩ Fix(T) =
∅. Let the sequences {xn} and {zn} be generated by iterative algorithm (3.1) and the control
sequences {αn} ∈ [0, 1] such that limn→∞ αn = 0, rn ∈ [a,∞) for some a > 0, {θn} ∈ (0, 1),
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and {μn} ∈ (0,∞) satisfying the condition 0 < lim infn→∞ μn ≤ lim supn→∞ μn < c2γ

2 , where
c is the 2-uniformly convex constant of X . Then {xn} converges strongly to x̂ ∈ Γ , where
x̂ = ΠΓ x0 and ΠΓ x0 is the generalized projection of X onto Γ .

Now, we give some lemmas for the main result in this paper as follows.

Lemma 3.3 For each n ≥ 0, Γ and Cn ∩ Qn are closed and convex.

Proof It follows from Lemmas 2.5–2.6 and Lemma 2.10 that Γ is a nonempty closed and
convex set, and hence ΠΓ x0 is well defined. Evidently, C0 = C is closed and convex. Further,
the closedness of Cn is also obvious. We only prove the convexity of Cn. For q1, q2 ∈ Cn,
we have q1, q2 ∈ C, tq1 + (1 – t)q2 ∈ C, where t ∈ (0, 1), and

φ(q1, zn+1) ≤ αnφ(q1, zn) + (1 – αn)φ(q1, wn) (3.2)

and

φ(q2, zn+1) ≤ αnφ(q2, zn) + (1 – αn)φ(q2, wn). (3.3)

The above two inequalities are equivalent to

2αn〈q1, Jzn〉 + 2(1 – αn)〈q1, Jwn〉 – 2〈q1, Jzn+1〉
≤ αn‖zn‖2 + (1 – αn)‖wn‖2 – ‖zn+1‖2 (3.4)

and

2αn〈q2, Jzn〉 + 2(1 – αn)〈q2, Jwn〉 – 2〈q2, Jzn+1〉
≤ αn‖zn‖2 + (1 – αn)‖wn‖2 – ‖zn+1‖2. (3.5)

It follows from (3.4) and (3.5) that

2αn
〈
tq1 + (1 – t)q2, Jzn

〉
+ 2(1 – αn)

〈
tq1 + (1 – t)q2, Jwn

〉
– 2

〈
tq1 + (1 – t)q2, Jzn+1

〉

≤ αn‖zn‖2 + (1 – αn)‖wn‖2 – ‖zn+1‖2. (3.6)

Hence, we have

φ
(
tq1 + (1 – t)q2, zn+1

) ≤ αnφ
(
tq1 + (1 – t)q2, zn

)
+ (1 – αn)φ

(
tq1 + (1 – t)q2, wn

)
, (3.7)

which implies that tq1 + (1 – t)q2 ∈ Cn, hence Cn is closed and convex for all n ≥ 0. By using
the definition of Qn, it is obvious that Qn is closed and convex. This implies that Cn ∩ Qn,
∀n ≥ 0 is closed and convex. �

Lemma 3.4 For each n ≥ 0, Γ ⊂ Cn ∩ Qn, and the sequence {xn} is well defined.
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Proof Let p ∈ Γ , we have

φ(p, zn+1) = φ(p, Trn un)

≤ φ(p, un)

≤ φ
(
p, J–1(αnJzn + (1 – αn)JTyn

))

≤ αnφ(p, zn) + (1 – αn)φ(p, Tyn)

≤ αnφ(p, zn) + (1 – αn)φ(p, yn). (3.8)

Additionally, by Lemmas 2.2 and 2.11, we obtain

φ(p, yn) = φ
(
p,ΠCJ–1(Jwn – μnDwn)

)

≤ φ
(
p, J–1(Jwn – μnDwn)

)

= Φ(p, Jwn – μnDwn)

≤ Φ
(
p, (Jwn – μnDwn) + μnDwn

)
– 2

〈
J–1(Jwn – μnDwn) – p,μnDwn

〉

= Φ(p, Jwn) – 2μn
〈
J–1(Jwn – μnDwn) – p, Dwn

〉

= φ(p, wn) – 2〈wn – p, Dwn〉 – 2μn
〈
J–1(Jwn – μnDwn) – wn, Dwn

〉

= φ(p, wn) – 2〈wn – p, Dwn – Dp〉 – 2μn
〈
J–1(Jwn – μnDwn) – wn, Dwn

〉

≤ φ(p, wn) – 2μnγ ‖Dwn‖2 + 2μn
∥∥J–1(Jwn – Dwn) – J–1Jwn

∥∥‖Dwn‖2

≤ φ(p, wn) – 2μnγ ‖Dwn‖2 +
4μ2

n
c2 ‖Dwn‖2

= φ(p, wn) – 2μn

(
γ –

2μn

c2

)
‖Dwn‖2, (3.9)

which, combined with μn < c2γ

2 , leads to

φ(p, yn) ≤ φ(p, wn). (3.10)

By (3.8) and (3.10), we have

φ(p, zn+1) ≤ αnφ(p, zn) + (1 – αn)φ(p, wn), (3.11)

which implies that p ∈ Cn. Thus, Γ ⊂ Cn, ∀n ≥ 0. Next, we show by induction that Γ ⊂
Cn ∩ Qn, ∀n ≥ 0. Since Q0 = C, we have Γ ⊂ C0 ∩ Q0. Let Γ ⊂ Ck ∩ Qk for some k > 0.
Then there exists xk+1 ∈ Ck ∩ Qk such that xk+1 = ΠCk∩Qk x0. From the definition of xk+1,
we have, for all z ∈ Ck ∩ Qk , that 〈xk+1 – z, Jx0 – Jxk+1〉 ≥ 0. Since Γ ⊂ Ck ∩ Qk , we have

〈xk+1 – p, Jx0 – Jxk+1〉 ≥ 0, ∀p ∈ Γ , (3.12)

and hence p ∈ Qk+1. Thus, we obtain Γ ⊂ Ck+1 ∩ Qk+1 as Γ ⊂ Cn for all n. Therefore,
Γ ⊂ Cn ∩ Qn, ∀n ≥ 0, and hence xn+1 = ΠCn∩Qn x0 is well defined ∀n ≥ 0. Thus, {xn} is well
defined. �
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Lemma 3.5 The sequences {xn}, {yn}, {zn}, {wn}, and {un} generated by iterative algorithm
(3.1) are bounded.

Proof By the definition of Qn, xn = ΠQn x0. Using xn = ΠQn x0 and Lemma 2.8, we obtain

φ(xn, x0) = φ(ΠQn x0, x0)

≤ φ(u, x0) – φ(u,ΠQn x0) ≤ φ(u, x0), ∀u ∈ Γ ⊂ Qn.

This shows that {φ(xn, x0)} is bounded and hence from (2.3) that {xn} is bounded. Further,

φ(p, xn) = φ(p,ΠCn–1∩Qn–1 x0)

= φ(p, x0) – φ(xn, x0)

implies that {φ(p, xn)} is bounded and by the fact φ(p, Txn) ≤ φ(p, xn), ∀p ∈ Γ that
{Txn} is also bounded. Therefore, {wn} and {yn} are also bounded. Now, setting M =
max{φ(p, z0), supn φ(p, wn)}. Then obviously φ(p, z0) ≤ M. Let φ(p, zn) ≤ M for some n,
then from (3.11)

φ(p, zn+1) ≤ αnM + (1 – αn)M ≤ M.

Thus, {φ(p, zn+1)} is bounded and hence {zn} is also bounded. �

Lemma 3.6 The sequences xn → x̂, un → x̂, and zn+1 → x̂ as n → ∞, where x̂ is some point
in C.

Proof Since xn+1 = ΠCn∩Qn x0 ∈ Qn and xn ∈ ΠQn x0, we get

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0.

This shows that {φ(xn, x0)} is nondecreasing and hence from boundedness of {φ(xn, x0)},
limn→∞ φ(xn, x0) exists. Further,

φ(xn+1, xn) = φ(xn+1,ΠQn x0)

≤ φ(xn+1, x0) – φ(ΠQn x0, x0)

= φ(xn+1, x0) – φ(xn, x0), ∀n ≥ 0,

and hence

lim
n→∞φ(xn+1, xn) = 0. (3.13)

Since X is uniformly convex and smooth, by Lemma 2.3, we have

lim
n→∞‖xn+1 – xn‖ = 0. (3.14)

Since X is reflexive and {xn} is bounded, there exists a subsequence {xnk } of {xn} such that
xnk ⇀ x̂. Since Cn ∩Qn is closed and convex, x̂ ∈ Cn ∩Qn. Using weak lower semicontinuity
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of ‖ · ‖2, we obtain

φ(x̂, x0) = ‖x̂‖2 – 2〈x̂, Jx0〉 + ‖x0‖2

≤ lim inf
k→∞

(‖xnk ‖2 – 2〈xnk , Jx0〉 + ‖x0‖2)

= lim inf
k→∞

φ(xnk , x0)

≤ lim sup
k→∞

φ(xnk , x0)

≤ φ(x̂, x0),

which implies that limk→∞ φ(xnk , x0) = φ(x̂, x0), and hence we have limk→∞ ‖xnk ‖ = ‖x̂‖.
Further, from the Kadec–Klee property of X, xnk → x̂ as k → ∞. Since limn→∞ φ(xn, x0)
exists, limn→∞ φ(xn, x0) = φ(x̂, x0). If there exists some subsequence {xnj} of {xn} such that
xnj → x̃ as j → ∞, then

φ(x̂, x̃) = lim
k,j→∞

φ(xnk , xnj )

= lim
k,j→∞

φ(xnk ,ΠQnj
x0)

≤ lim
k,j→∞

{
φ(xnk , x0) – φ(xnj , x0)

}
= 0,

which shows x̂ = x̃ and thus xn → x̂ as n → ∞.
From the definition of wn, we have ‖wn – xn‖ = ‖θn(xn – xn–1)‖ ≤ ‖xn – xn–1‖, which

implies by (3.14) that

lim
n→∞‖wn – xn‖ = 0. (3.15)

Since {wn} is bounded and by Remark 2.4, we get

lim
n→∞φ(xn, wn) = 0. (3.16)

By (3.14) and (3.15), we have

lim
n→∞‖xn+1 – wn‖ = 0, (3.17)

using Remark 2.4

lim
n→∞φ(xn+1, wn) = 0. (3.18)

As xn+1 = ΠCn∩Qn x0 ∈ Cn, therefore

φ(xn+1, zn+1) ≤ αnφ(xn+1, zn) + (1 – αn)φ(xn+1, wn). (3.19)

By (3.16), (3.19), and assumption limn→∞ αn = 0,

φ(xn+1, zn+1) = 0.
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Using (2.3), we get

lim
n→∞

(‖xn+1‖ – ‖zn+1‖
)

= 0,

and using limn→∞ ‖xn‖ = ‖x̂‖, we have

lim
n→∞‖zn+1‖ = ‖x̂‖. (3.20)

Hence, we have

lim
n→∞‖Jzn+1‖ = lim

n→∞‖zn+1‖ = ‖x̂‖ = ‖Jx̂‖. (3.21)

This shows that {‖Jzn+1‖} is bounded. Since X and X∗ are reflexive, we may assume that
Jzn+1 ⇀ x∗ ∈ X∗. By reflexivity of X, we see that J(X) = X∗, that is, there exists x ∈ X such
that Jx = x∗. Since

φ(xn+1, zn+1) = ‖xn+1‖2 – 2〈xn+1, Jzn+1〉 + ‖zn+1‖2,

φ(xn+1, zn+1) = ‖xn+1‖2 – 2〈xn+1, Jzn+1〉 + ‖Jzn+1‖2.

By using lim infn→∞ in the above equality, we have

0 ≥ ‖x̂‖2 – 2
〈
x̂, x∗〉 +

∥∥x∗∥∥2

= ‖x̂‖2 – 2〈x̂, Jx〉 + ‖Jx‖2

= ‖x̂‖2 – 2〈x̂, Jx〉 + ‖x‖2

= φ(x̂, x),

i.e., x̂ = x, and hence x∗ = Jx̂. This implies that Jzn+1 ⇀ Jx̂ ∈ X∗. Since X∗ and (3.21) satisfy
the Kadec–Klee property, then

lim
n→∞‖Jzn+1 – Jx̂‖ = 0.

As J–1 : X∗ → X is demicontinuous, therefore zn+1 ⇀ x̂. Using (3.20) and the Kadec–Klee
property of X

lim
n→∞ zn+1 = x̂. (3.22)

Next, by using the weak lower semicontinuity of ‖ · ‖2, we arrive at

φ(p, x̂) = ‖p‖2 – 2〈p, Jx̂〉 + ‖x̂‖2

≤ lim inf
n→∞

(‖p‖2 – 2〈p, Jzn+1〉 + ‖zn+1‖2)

= lim inf
n→∞ φ(p, zn+1)

≤ lim sup
n→∞

φ(p, zn+1)
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= lim sup
n→∞

(‖p‖2 – 2〈p, Jzn+1〉 + ‖zn+1‖2)

≤ φ(p, x̂),

and hence

lim
n→∞φ(p, zn+1) = φ(p, x̂). (3.23)

Since xn → x̂, n → ∞, and (3.22), we have

lim
n→∞‖xn – zn+1‖ = 0. (3.24)

Since J is uniformly continuous, we get

lim
n→∞‖Jxn – Jzn+1‖ = 0. (3.25)

By using the definition of Lyapunov function, we have, ∀p ∈ Γ ,

φ(p, xn) – φ(p, zn+1) = ‖xn‖2 – ‖zn+1‖2 – 2〈p, Jxn – Jzn+1〉
≤ ‖xn – zn+1‖

(‖xn‖ + ‖zn+1‖
)

+ 2‖p‖‖Jxn – Jzn+1‖.

From (3.24) and (3.25)

lim
n→∞

{
φ(p, xn) – φ(p, zn+1)

}
= 0. (3.26)

From (3.23) and (3.26)

lim
n→∞φ(p, xn) = φ(p, x̂). (3.27)

Again, by using weak lower semicontinuity of ‖ · ‖2, we obtain

φ(p, x̂) = ‖p‖2 – 2〈p, Jx̂〉 + ‖x̂‖2

≤ lim inf
n→∞

(‖p‖2 – 2〈p, Jwn〉 + ‖wn‖2)

= lim inf
n→∞ φ(p, wn)

≤ lim sup
n→∞

φ(p, wn)

= lim sup
n→∞

(‖p‖2 – 2〈p, Jwn〉 + ‖wn‖2)

≤ φ(p, x̂),

which implies

lim
n→∞φ(p, wn) = φ(p, x̂). (3.28)
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Thus, for any p ∈ Γ ⊂ Cn and by (3.8) and (3.10),

φ(p, un) ≤ φ
(
p, J–1(αnzn + (1 – αn)JTyn

))

≤ αnφ(p, zn) + (1 – αn)φ(p, yn)

≤ αnφ(p, zn) + (1 – αn)φ(p, wn). (3.29)

From (3.23), (3.28), (3.29), and limn→∞ αn = 0,

lim
n→∞φ(p, un) = φ(p, x̂). (3.30)

From Lemma 2.10(e), we obtain, for any p ∈ Γ and zn+1 = Trn un,

φ(zn+1, un) = φ(Trn un, un)

≤ φ(p, un) – φ(p, Trn un)

= φ(p, un) – φ(p, zn+1). (3.31)

It follows from (3.23), (3.30), and (3.31) that

lim
n→∞φ(zn+1, un) = 0,

and hence from (2.3) we have

lim
n→∞

(‖zn+1‖ – ‖un‖
)

= 0.

From (3.20)

lim
n→∞‖un‖ = ‖x̂‖, (3.32)

and hence

lim
n→∞‖Jun‖ = ‖Jx̂‖, (3.33)

i.e., {‖Jun‖} is bounded in X∗. Since X∗ is reflexive, we can assume that Jun ⇀ u∗ ∈ X∗ as
n → ∞. Since J(X) = X∗, there exists u ∈ X such that Ju = u∗. Since

φ(zn+1, un) = ‖zn+1‖2 – 2〈zn+1, Jun〉 + ‖un‖2

= ‖zn+1‖2 – 2〈zn+1, Jun〉 + ‖Jun‖2.

By using lim infn→∞ in the above equality, we have

0 ≥ ‖x̂‖2 – 2
〈
x̂, u∗〉 +

∥∥u∗∥∥2

= ‖x̂‖2 – 2〈x̂, Ju〉 + ‖Ju‖2

= ‖x̂‖2 – 2〈x̂, Ju〉 + ‖u‖2

= φ(x̂, u).
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Using Remark 2.1, we have x̂ = u, i.e., u∗ = Jx̂. Therefore Jun ⇀ Jx̂ ∈ X∗. From the Kadec–
Klee property of X∗ and (3.33), we obtain

lim
n→∞‖Jun – Jx̂‖ = 0. (3.34)

As J–1 is demicontinuous and (3.34), therefore un ⇀ x̂. From the Kadec–Klee property of
X and (3.32), we obtain

lim
n→∞ un = x̂. �

Proof of Theorem 3.2 By (3.8) and (3.9), we have

φ(p, un) ≤ αnφ(p, zn) + (1 – αn)φ(p, yn)

≤ αnφ(p, zn) + (1 – αn)φ(p, wn) + 2(1 – αn)μn

(
2μn

c2 – γ

)
‖Dwn‖2,

which implies that

2(1 – αn)μn

(
γ –

2μn

c2

)
‖Dwn‖2 ≤ φ(p, wn) – φ(p, un)

+ αn
[
φ(p, wn) – φ(p, un)

]
, (3.35)

and hence from (3.28),(3.30), (3.35), and limn→∞ αn = 0, μn(γ – 2μn
c2 ) > 0,

lim
n→∞‖Dwn‖ = 0. (3.36)

Since D is γ -inverse strongly monotone, it is 1
γ

-Lipschitz continuous. It follows from
limn→∞ wn = x̂ and (3.36) that x̂ ∈ D–1(0). Hence x̂ ∈ Sol(VIP(1.5)).

Furthermore, (3.1) combined with (3.36) yields that

lim
n→∞‖yn – x̂‖ = lim

n→∞
∥∥ΠCJ–1(Jwn – μnDwn) – ΠCx̂

∥∥

≤ lim
n→∞

∥∥J–1(Jwn – μnDwn) – x̂
∥∥

= 0. (3.37)

Using Lemmas 2.2 and 2.11, we estimate

φ(wn, yn) = φ
(
wn,ΠCJ–1(Jwn – μnDwn)

)

≤ φ
(
wn, J–1(Jwn – μnDwn)

)

≤ Φ
(
wn, (Jwn – μnDwn)

)

≤ Φ
(
wn, (Jwn – μnDwn) + μnDwn

)
– 2

〈
J–1(Jwn – μnDwn) – wn,μnDwn

〉

= φ(wn, wn) + 2
〈
J–1(Jwn – μnDwn) – wn, –μnDwn

〉

= 2μn
〈
J–1(Jwn – μnDwn) – wn, –Dwn

〉
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≤ ∥∥J–1(Jwn – μnDwn) – J–1Jwn
∥∥

≤ 4
c2 μ2

n‖Dwn‖2, (3.38)

then using (3.36) we have

lim
n→∞φ(wn, yn) = 0, (3.39)

which implies by Lemma 2.3 that

lim
n→∞‖wn – yn‖ = 0. (3.40)

As limn→∞ φ(zn+1, un) = 0, hence from Lemma 2.3 we have

lim
n→∞‖zn+1 – un‖ = 0. (3.41)

By the uniform continuity of J ,

lim
n→∞‖Jzn+1 – Jun‖ = 0. (3.42)

Since rn ≥ a and using (3.42), we get

lim
n→∞

‖Jzn+1 – Jun‖
rn

= 0. (3.43)

By zn+1 = Trn un, we have

g(zn+1, y) +
1
rn

〈y – zn+1, Jzn+1 – Jun〉 + b(y, zn+1) – b(zn+1, zn+1) ≥ 0, ∀y ∈ C.

It follows from Assumption 2.1(ii) that

1
rn

〈y – zn+1, Jzn+1 – Jun〉 ≥ –g(zn+1, y) – b(y, zn+1) + b(zn+1, zn+1)

≥ g(y, zn+1) – b(y, zn+1) + b(zn+1, zn+1).

Setting n → ∞, by (3.43) and the lower semicontinuity of y → f (y, ·), we have

g(y, x̂) – b(y, x̂) + b(x̂, x̂) ≤ 0, ∀y ∈ C.

Setting yt := ty + (1 – t)x̂, ∀t ∈ (0, 1], and y ∈ C, then yt ∈ C, and thus

g(yt , x̂) – b(yt , x̂) + b(x̂, x̂) ≤ 0.
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It follows from Assumption 2.1(i)–(iv) that

0 = g(yt , yt)

≤ tg(yt , y) + (1 – t)g(yt , x̂)

≤ tg(yt , y) + (1 – t)
[
b(yt , x̂) – b(x̂, x̂)

]

≤ tg(yt , y) + (1 – t)
[
b(y, x̂) – b(x̂, x̂)

]
.

Letting t > 0, we have from Assumption 2.1(iii)

g(x̂, y) + b(y, x̂) – b(x̂, x̂) ≥ 0, ∀y ∈ C.

Therefore x̂ ∈ Sol(GEP(1.2)).
Next, we show that x̂ ∈ Fix(T). In view of un = J–1(αnJzn + (1 – αn)JTyn), we have

Jzn+1 – Jun = αn(Jzn+1 – Jzn) + (1 – αn)(Jzn+1 – JTyn).

Hence, we have

(1 – αn)‖Jzn+1 – JTyn‖ ≤ ‖Jzn+1 – Jun‖ + αn‖Jzn+1 – Jzn‖. (3.44)

From assumption limn→∞ αn = 0, (3.42), and (3.44), we obtain

lim
n→∞‖Jzn+1 – JTyn‖ = 0, (3.45)

lim
n→∞‖zn+1 – Tyn‖ = 0. (3.46)

Further, using (3.40) and (3.46), the inequality

‖Tyn – yn‖ ≤ ‖Tyn – zn+1‖ + ‖zn+1 – wn‖ + ‖wn – yn‖

implies

lim
n→∞‖Tyn – yn‖ = 0. (3.47)

From (3.17), (3.40), and (3.41) it follows that {xn}, {yn}, {un}, {wn}, and {zn} all have the
same asymptotic behavior, hence from (3.47) we have

lim
n→∞‖Txn – xn‖ = 0, (3.48)

which implies that x̂ = Tx̂, i.e., x̂ ∈ Fix(T). Then x̂ ∈ Γ .
Finally, we show x̂ = ΠΓ x0. Taking k → ∞ in (3.12), we have

〈x̂ – p, Jx0 – Jx̂〉 ≥ 0, ∀p ∈ Γ .

Now, by Lemma 2.9, x̂ = ΠΓ x0. This completes the proof. �
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If X is a Hilbert space, then J = I and φ(x, y) = ‖x–y‖2, ∀x, y ∈ C. Then from Theorem 3.2
we get the following corollaries.

Corollary 3.1 Let C be a nonempty, closed, and convex subset of a Hilbert space X.
Let D : X → X∗ be a γ -inverse strongly monotone mapping with constant γ ∈ (0, 1) and
g : C × C →R be a bifunction satisfying Assumption 2.1, and let b : C × C →R satisfy As-
sumption 2.2. Let T : C → C be a nonexpansive mapping such that Γ := Sol(GEP(1.2)) ∩
Sol(VIP(1.5)) ∩ Fix(T) = ∅. Let the sequences {xn} and {zn} be generated by the iterative
algorithm:

x0 = x–1, z0 ∈ C, C0 := C,
wn = xn + θn(xn – xn–1),
yn = PC(wn – μnDwn),
un = αnzn + (1 – αn)Tyn,
zn+1 = Trn un,
Cn = {z ∈ C : ‖zn+1 – z‖2 ≤ αn‖zn – z‖2 + (1 – αn)‖wn – z‖2},
Qn = {z ∈ C : 〈xn – z, xn – x0〉 ≤ 0},
xn+1 = PCn∩Qn x0, ∀n ≥ 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.49)

where {αn} is a sequence in [0, 1] such that limn→∞ αn = 0, rn ∈ [a,∞) for some a > 0, {θn} ∈
(0, 1), and {μn} ∈ (0,∞) satisfying the condition 0 < lim infn→∞ μn ≤ lim supn→∞ μn < c2γ

2 ,
where c is the 2-uniformly convex constant of X . Then {xn} converges strongly to x̂ ∈ Γ ,
where x̂ = ΠΓ x0 and ΠΓ x0 is the generalized projection of X onto Γ .

4 Numerical example
If X = R is a Hilbert space with the norm ‖x‖ = |x|, ∀x ∈ X. Now, we give a numerical
example which justifies Theorem 3.2.

Example 4.1 Let X = R, C = X, where X is a Hilbert space, and let g : C×C → R be defined
by g(x, y) = x(y – x), ∀x, y ∈ C, and b : C × C → R be defined by b(x, y) = xy, ∀x, y ∈ C. Let
the mapping D : R →R be defined by Dx = x

2 ; let T : C → C be defined by Tx = 1
3 x. Setting

{μn} = { 0.9
n }, rn = 1

4 , θn = 0.9, and {αn} = { 1
n3 }, ∀n ≥ 0, let the sequences {xn}, {un}, and {zn}

be generated by hybrid iterative algorithm (3.1) converges to x̂ = {0} ∈ Γ .

Proof Note that for the case C = X, where X is the Hilbert space, the sets Cn and Qn in iter-
ative algorithms (3.1) are half spaces. Therefore, the projection onto the intersection of sets
Cn and Qn can be computed using a similar formula as given in [42]. It is easy to observe
that g and b satisfy Assumption 2.1 and Assumption 2.2, respectively, and Sol(GEP(1.2)) =
{0} = ∅. Further, it easy to observe that D is a 1

2 -inverse strongly monotone mapping and
Sol(VIP(1.5)) = {0} = ∅. Further, it is easy to observe that T is a relatively nonexpansive
mapping with Fix(T) = {0}. Therefore, Γ := Sol(GEP(1.2))∩Sol(VIP(1.5))∩Fix(T) = {0} =
∅. After simplification, hybrid iterative scheme (3.1) is reduced to the following scheme:



Alansari et al. Journal of Inequalities and Applications         (2020) 2020:42 Page 18 of 22

Given initial values x0, x1, z0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + θn(xn – xn–1)

yn = PC(wn – μnDwn) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x < 0,

1, if x > 1,

wn – μn
wn
2 , otherwise,

un = αnzn + (1–αn)
3 yn; zn+1 = 2un

3 ;

Cn = [en,∞), where en := z2
n+1–w2

n+αn(w2
n–z2

n)
2zn+1–2wn+2αn(wn–zn) ;

Qn = [xn,∞);

xn+1 = PCn∩Qn x0, ∀n ≥ 0.

(4.1)

Finally, using software Matlab 7.8.0, we have Figures 1 and 2 and Table 1 which show that
{xn}, {un}, and {zn} converge to x̂ = {0} as n → +∞. �

For D = 0, b(x, y) = 0, we now demonstrate that iterative algorithm (3.1) with conditions
given in Theorem 3.1 approximates a common element of the solution set of EP(1.3) and
the fixed point set of T . Further, we observe that it is faster than iterative algorithm (3.1)
due to [16] and iterative algorithm (1.8) due to [15] for a nonexpansive mapping.

Set D = 0, b(x, y) = 0, in Example 4.1, we have that iterative algorithm (4.1), iterative
algorithm (3.1) due to [16], and iterative algorithm (1.8) due to [15] reduce to the following
iterative algorithms:

Figure 1 Convergence of {xn}, {zn} and {un} when
x0 = 1, x1 = 1, z0 = 3

Figure 2 Convergence of {xn}, {zn} and {un} when
x0 = –1, x1 = –2, z0 = –3
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Table 1 Values of xn , zn and un

No. of iterations xn zn un

x0 = 1, x1 = 2 z0 = 3

1 1.750000 2.000000 3.000000
2 1.603678 0.532101 0.798151
3 1.238166 0.280883 0.421324
4 0.890899 0.179440 0.269159
5 0.619175 0.116978 0.175467
6 0.422455 0.077010 0.115516
7 0.285321 0.051030 0.076545
8 0.191617 0.033954 0.050931
9 0.128288 0.022649 0.033973
10 0.085748 0.015130 0.022695
15 0.011379 0.002027 0.003041
20 0.001514 0.000272 0.000408
25 0.000202 0.000037 0.000055
30 0.000027 0.000005 0.000007
35 0.000004 0.000001 0.000001
38 0.000001 0.000000 0.000000
39 0.000001 0.000000 0.000000
40 0.000000 0.000000 0.000000

Iterative Algorithm 4.2 Given initial values x0, x1, z0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + θn(xn – xn–1)

yn = wn,

un = αnzn + (1–αn)
3 yn; zn+1 = 4un

5 ;

Cn = [en,∞), where en := z2
n+1–w2

n+αn(w2
n–z2

n)
2zn+1–2wn+2αn(wn–zn) ;

Qn = [xn,∞);

xn+1 = PCn∩Qn x0, ∀n ≥ 0;

(4.2)

and

Iterative Algorithm 4.3 Given initial values x0, z0,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = αnzn + (1–αn)
3 yn; zn+1 = 4un

5 ;

Cn = [en,∞), where en := z2
n+1–x2

n+αn(x2
n–z2

n)
2zn+1–2xn+2αn(xn–zn) ;

Qn = [xn,∞);

xn+1 = PCn∩Qn x0, ∀n ≥ 0;

(4.3)

and

Iterative Algorithm 4.4 Given initial values x0,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = αnxn + (1–αn)
3 xn; zn = 4un

5 ;

Cn = [en,∞), where en := zn+xn
2 ;

Qn = [xn,∞);

xn+1 = PCn∩Qn x0, ∀n ≥ 0,

(4.4)

respectively.
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Figure 3 Convergence of {xn} when x0 = 1, x1 = 2,
z0 = 3

Figure 4 Convergence of {xn} when x0 = –1, x1 = –2,
z0 = –3

Hence, the sequence {xn} defined by Iterative Algorithm 4.2, Iterative Algorithm 4.3 as
well as by Iterative Algorithm 4.4 converges strongly to x̂ = 0.

Finally, using software Matlab 7.8, we have the following figures which show that the
sequence {xn} converges to x̂ = 0 ∈ Ω . Figure 3 shows the convergence of {xn} when x0 = 1,
x1 = 2, z0 = 3 for Algorithms 4.2–4.3 and 4.4, while Fig. 4 shows the convergence of {xn}
when x0 = –1, x1 = –2, z0 = –3 for Algorithms 4.2–4.3. It is evident from figures that the
sequence {xn} obtained by Iterative Algorithm 4.2 converges faster than the sequence {xn}
obtained by Iterative Algorithm 4.3 and Iterative Algorithm 4.4.

Concluding remark 4.1 We observe that
(i) Iterative algorithm (3.1) is quite different from algorithm (1.8) given by Takahashi

[15] and (3.1) given by [16].
(ii) Corollary 3.1 is new and different from that of Theorem 3.2 due to Takahashi [15]

and (1.9) given by Mainge [19].
(iii) A numerical example was given to prove the efficiency of the proposed hybrid

inertial iterative algorithm, that is, the proposed algorithms in Theorem 3.2 and
Corollary 3.1 for D = 0 and b(x, y) = 0 converge faster than the algorithm presented
in [16] and [15].
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