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Abstract
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1 Introduction
The form of the established classical discrete Hilbert-type inequality is given as follows
[1]:

If an, bn ≥ 0, 0 <
∑∞

n=1 a2
n < ∞, and 0 <

∑∞
n=1 b2

n < ∞, then we have

∞∑

n=1

∞∑

m=1

ambn

m + n
≤ π

sin(π/p)

( ∞∑

m=1

ap
m

)1/p( ∞∑

n=1

bq
n

)1/q

. (1)

The integral analogue of inequality (1) is given by

∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dx dy ≤ π

sin(π/p)

(∫ ∞

0
f p(x) dx

)1/p(∫ ∞

0
gp∗

(x) dx
)1/p∗

, (2)

unless f ≡ 0 or g ≡ 0, where p > 1, p∗ = p/(p – 1). The constant π cosec(π/p) in (1) and (2)
is optimal, see [1].

Inequalities (1) and (2) have many generalizations, see for instance [2–4] and the ref-
erences therein, these refinements and ameliorations of the original inequality lead to an
important development and improvement of many advanced mathematical branches, see
for example [5–7].

In [8] the author gave inequalities that can be considered as an extension to inequality
(1), containing a series of positive terms as follows.

Theorem 1 Let q ≥ 1, p ≥ 1, and let (an) and (bm) be two positive sequences of real num-
bers defined for n = 1, 2, . . . , k and m = 1, 2, . . . , r, where k, r ∈ N, and define An =

∑n
s=1 as,
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Bm =
∑m

t=1 bt . Then

k∑

n=1

r∑

m=1

Ap
nBq

m

n + m
≤ C(p, q, k, r)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

] 1
2

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

] 1
2

, (3)

unless (an) or (bm) is null, where C(p, q, k, r) = 1
2 pq

√
kr.

In [7], the author gave an improvement of the inequality given in Theorem 1 as follows.

Theorem 2 Let q ≥ 1, p ≥ 1, and let (an) and (bm) be two positive sequences of real num-
bers defined for n = 1, 2, . . . , k and m = 1, 2, . . . , r, where k, r ∈ N, and define An =

∑n
s=1 as,

Bm =
∑m

t=1 bt . Then, for α > 0,

k∑

n=1

r∑

m=1

Ap
nBq

m

(nα + mα)1/α ≤ C(p, q, k, r;α)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

] 1
2

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

] 1
2

, (4)

unless (an) or (bm) is null, where C(p, q, k, r;α) = ( 1
2 )1/αpq

√
kr.

In this paper, through Fenchel–Legendre transform and by utilizing Jensen’s and
Schwarz’s inequalities, we give some improvements of the inequalities given in Theo-
rems 1 and 2. In addition, some new Hilbert-type inequalities are obtained alongside some
applications.

2 Preliminaries
In this section we introduce the Fenchel–Legendre transform, which will have an impor-
tant role in later sections. For more details, we refer, for instance, to [9–11].

Definition 1 Let h : Rn −→R∪ {+∞} be a function such that h �≡ +∞, i.e., dom(h) = {x ∈
R

n|h(x) < +∞} �= ∅. Then the Fenchel–Legendre transform is defined as follows:

h∗ : Rn −→R∪ {+∞}
y −→ h∗(y) = sup

{〈y, x〉 – h(x), x ∈ dom(h)
}

,
(5)

where 〈·, ·〉 denotes the scalar product on R
n. The mapping h −→ h∗ will often be called

the conjugate operation.

In addition, the domain of h∗, i.e., dom(h∗) is the set of slopes of all the affine functions
minorizing the function h over Rn.

With more hypotheses on h we can give, in the next corollary, an equivalent formula for
(5) called Legendre transform.
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Corollary 1 Let h : Rn −→ R be strictly convex, differentiable, and 1-coercive function.
Then

h∗(y) =
〈
y, (∇h)–1(y)

〉
– h

(
(∇h)–1(y)

)

for all y ∈ dom(h∗), where 〈·, ·〉 denotes the scalar product on R
n.

Lemma 1 (Fenchel–Young inequality [11]) Let h be a function and h∗ be its Fenchel–
Legendre transform, then

〈x, y〉 ≤ h(x) + h∗(y) (6)

for all x ∈ dom(h) and y ∈ dom(h∗).

Corollary 2 (Jensen’s inequality [12, 13]) Let Φ : U ⊆ R −→ R be a convex function on a
convex set U , with xi ∈ U , i = 1, 2, . . . , n, and Pn =

∑n
i=1 pi > 0 for pi ≥ 0, then

Φ

(
1

Pn

n∑

i=1

pixi

)

≤ 1
Pn

n∑

i=1

piΦ(xi). (7)

Definition 2 A function Φ is called a submultiplicative function on [0,∞) if

Φ(xy) ≤ Φ(x)Φ(y) for all x, y ≥ 0.

3 Main results
We begin this section by proving the following simple and useful lemma.

Lemma 2 For x and y ∈R. Assume that x + y ≥ 1, then

∀α ≥ β ≥ 1
2

:
(|x| 1

2β + |y| 1
2β

)α ≥ (x + y)
1
2 . (8)

Proof First, we use x + y ≥ 1 and α
β

≥ 1 to write (x + y) 1
2 ≤ (x + y)

α
2β . Then the well-known

inequality ∀n ≥ 1, (|x| + |y|) 1
n ≤ |x| 1

n + |y| 1
n gives the result for α ≥ β ≥ 1

2 . �

Theorem 3 Let q ≥ 1, p ≥ 1, α ≥ β ≥ 1
2 and (an)1≤n≤k , (bm)1≤m≤r be two positive sequences

of real numbers where k, r ∈ N. Define An =
∑n

s=1 as, Bm =
∑m

t=1 bt . Then the following in-
equalities hold:

k∑

n=1

r∑

m=1

A2p
n B2q

m

h(n) + h∗(m)
≤ C1(p, q)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

]

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

n bm
)2

]

(9)
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and

k∑

n=1

r∑

m=1

Ap
nBq

m

(|h(n)| 1
2β + |h∗(m)| 1

2β )α
≤

k∑

n=1

r∑

m=1

Ap
nBq

m√
h(n) + h∗(m)

≤ C2(p, q, k, r)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

] 1
2

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

] 1
2

, (10)

unless (an) or (bm) is null, where

C1(p, q) = p2q2, C2(p, q, k, r) = pq
√

kr.

Proof By exploiting the following inequality [14, 15]

( n∑

i=1

zi

)γ

≤ γ

n∑

i=1

zi

( i∑

j=1

zj

)γ –1

,

where zi ≥ 0 and γ ≥ 1 is a constant, we have

Ap
n ≤ p

( n∑

s=1

as

)

Ap–1
s , n = 1, 2, . . . , k, (11)

Bq
m ≤ q

( m∑

t=1

bt

)

Bq–1
t , m = 1, 2, . . . , k. (12)

Using (11), (12), and the Schwarz inequality, we observe that

Ap
nBq

m ≤ pq
n∑

s=1

asAp–1
s

m∑

t=1

btB
q–1
t

≤ pq(nm)
1
2

[ n∑

s=1

(
asAp–1

s
)2

] 1
2
[ m∑

t=1

(
btB

q–1
t

)2
] 1

2

, (13)

squaring both sides of inequality (13) gives

A2p
n B2q

m ≤ p2q2mn

[ n∑

s=1

(
asAp–1

s
)2

][ m∑

t=1

(
btB

q–1
t

)2
]

. (14)

Using (6) (for nonnegative real numbers x and y) in (13) and (14) produces

Ap
nBq

m ≤ pq
(
h(n) + h∗(m)

) 1
2

[ n∑

s=1

(
asAp–1

s
)2

] 1
2
[ m∑

t=1

(
btB

q–1
t

)2
] 1

2

, (15)

A2p
n B2q

m ≤ p2q2(h(n) + h∗(m)
)
[ n∑

s=1

(
asAp–1

s
)2

][ m∑

t=1

(
btB

q–1
t

)2
]

. (16)
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Let us divide both sides of (15) by (h(n) + h∗(m)) 1
2 , take the sum over n from 1 to k after-

wards and the sum over m from 1 to r subsequently. Besides, we use the Schwarz inequal-
ity, and then we interchange the order of the summations (see[14, 15]). We obtain

r∑

m=1

k∑

n=1

Ap
nBq

m

(h(n) + h∗(m)) 1
2

≤ pq

[ k∑

n=1

[ n∑

s=1

(
asAp–1

s
)2

] 1
2
][ r∑

m=1

[ m∑

t=1

(
btB

q–1
t

)2
] 1

2
]

≤ pq
√

kr

[ k∑

n=1

n∑

s=1

(
asAp–1

s
)2

] 1
2
[ r∑

m=1

m∑

t=1

(
btB

q–1
t

)2
] 1

2

≤ pq
√

kr

[ k∑

s=1

(
asAp–1

s
)2

( k∑

n=s
1

)] 1
2
[ r∑

t=1

(
btB

q–1
t

)2
( r∑

m=t
1

)] 1
2

≤ pq
√

kr

[ k∑

s=1

(
asAp–1

s
)2(k – s + 1)

] 1
2
[ r∑

t=1

(
btB

q–1
t

)2(r – t + 1)

] 1
2

.

Thus,

r∑

m=1

k∑

n=1

Ap
nBq

m

(h(n) + h∗(m)) 1
2

≤ pq
√

kr

[ k∑

n=1

(
anAp–1

n
)2(k – n + 1)

] 1
2
[ r∑

m=1

(
bmBq–1

m
)2(r – m + 1)

] 1
2

. (17)

Now apply Lemma 2 on L.H.S. of (17) to obtain (10). To prove (9), divide both sides of (16)
by h(n) + h∗(m), take the sum over n from 1 to k afterwards, then the sum over m from 1
to r, and then interchange the order of the summations to obtain

r∑

m=1

k∑

n=1

A2p
n B2q

m

h(n) + h∗(m)

≤ p2q2

[ k∑

n=1

n∑

s=1

(
asAp–1

s
)2

][ r∑

m=1

m∑

t=1

(
btB

q–1
t

)2
]

≤ p2q2

[ n∑

s=1

(
asAp–1

s
)2

( k∑

n=s
1

)][ r∑

t=1

(
btB

q–1
t

)2
( r∑

m=t
1

)]

≤ p2q2

[ n∑

s=1

(
asAp–1

s
)2(k – s + 1)

][ r∑

t=1

(
btB

q–1
t

)2(r – t + 1)

]

. (18)

Therefore,

r∑

m=1

k∑

n=1

A2p
n B2q

m

h(n) + h∗(m)
≤ p2q2

[ n∑

n=1

(
anAp–1

n
)2(k – n + 1)

][ r∑

m=1

(
bmBq–1

m
)2(r – m + 1)

]

,

which is (9). This completes the proof. �
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Theorem 4 Under the hypotheses of Theorem 3, for
√

n ∈ dom(h),
√

m ∈ dom(h∗), the
following inequality holds:

k∑

n=1

r∑

m=1

Ap
nBq

m

h(
√

n) + h∗(
√

m)
≤ C2(p, q, k, r)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

] 1
2

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

] 1
2

, (19)

unless (an) or (bm) is null, where

C2(p, q, k, r) = pq
√

kr.

Proof By the hypothesis that
√

n ∈ dom(h),
√

m ∈ dom(h∗), inequality (6) gives

√
mn ≤ h(

√
n) + h∗(

√
m).

Complete the proof as we did to obtain inequality (10) in Theorem 3 with appropriate
changes. �

Corollary 3 Let (an), (bm), An, and Bm be as defined in Theorem 3. Then the inequalities

r∑

m=1

k∑

n=1

A2
nB2

m
h(n) + h∗(m)

≤
[ n∑

n=1

(an)2(k – n + 1)

][ r∑

m=1

(bm)2(r – m + 1)

]

(20)

and

r∑

m=1

k∑

n=1

AnBm

(h(n) + h∗(m)) 1
2

≤ √
kr

[ k∑

n=1

(an)2(k – n + 1)

] 1
2

×
[ r∑

m=1

(bm)2(r – m + 1)

] 1
2

(21)

hold.

Proof Put p = q = 1 in (9) and (10). This completes the proof. �

The following theorem treats the further generalization of the inequality obtained in
Corollary 3. Furthermore, suppose that Φ and Ψ are nonnegative, convex, and submulti-
plicative functions on [0,∞).

Theorem 5 Let (an), (bm), An, and Bm be as defined in Theorem 3, and (pn)1≤n≤k , (qm)1≤m≤r

be positive sequences. Define Pn =
∑n

s=1 ps, Qm =
∑m

t=1 qt . Then the following inequality
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holds:

k∑

n=1

r∑

m=1

Φ(An)Ψ (Bm)

(|h(n)| 1
2β + |h∗(m)| 1

2β )α
≤

r∑

m=1

k∑

n=1

Φ(An)Ψ (Bm)
(h(n) + h∗(m)) 1

2

≤ M1(k, r)

[ k∑

n=1

[

pnΦ

(
an

pn

)]2

(k – n + 1)

] 1
2

×
[ r∑

m=1

[

qmΨ

(
bm

qm

)]2

(r – m + 1)

] 1
2

, (22)

where

M1(k, t) =

[ k∑

n=1

[

Φ

(
an

Pn

)]2
] 1

2
[ r∑

m=1

[

Ψ

(
bm

Qm

)]2
] 1

2

.

Proof Using the fact that Φ is a submultiplicative function, we have

Φ(An) = Φ

(
Pn

∑n
s=1 psas/ps

∑n
s=1 ps

)

≤ Φ(Pn)Φ
(∑n

s=1 psas/ps
∑n

s=1 ps

)

, (23)

then by Jensen’s and Schwarz’s inequalities we have that

Φ(An) ≤ Φ(Pn)
Pn

n∑

s=1

psΦ

(
as

ps

)

≤ Φ(Pn)
Pn

n
1
2

[ n∑

s=1

[

psΦ

(
as

ps

)]2
] 1

2

; (24)

similarly, we can get

Ψ (Bm) ≤ Ψ (Qm)
Qn

m
1
2

[ m∑

t=1

[

qtΨ

(
bt

qt

)]2
] 1

2

. (25)

From inequalities (24), (25) and the Fenchel–Young inequality (for nonnegative reals x
and y), we have

Φ(An)Ψ (Bm) ≤ (
h(n) + h∗(m)

) 1
2 · Φ(Pn)

Pn

[ n∑

s=1

[

psΦ

(
as

ps

)]2
] 1

2

· Ψ (Qm)
Qm

[ m∑

t=1

[

qtΨ

(
bt

qt

)]2
] 1

2

. (26)

Let us divide both sides of (26) by (h(n) + h∗(m)) 1
2 , take the sum over n from 1 to k after-

wards, then take the sum over m from 1 to r. Additionally, use the Schwarz inequality and
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then interchange the order of the summations to have

r∑

m=1

k∑

n=1

Φ(An)Ψ (Bm)
(h(n) + h∗(m)) 1

2
≤

k∑

n=1

Φ(Pn)
Pn

[ n∑

s=1

[

psΦ

(
as

ps

)]2
] 1

2

·
r∑

m=1

Ψ (Qm)
Qm

[ m∑

t=1

[

qtΨ

(
bt

qt

)]2
] 1

2

≤
[ k∑

n=1

[
Φ(Pn)

Pn

]2
] 1

2
[ k∑

n=1

n∑

s=1

[

psΦ

(
as

ps

)]2
] 1

2

×
[ r∑

m=1

[
Ψ (Qm)

Qm

]2
] 1

2
[ r∑

m=1

m∑

t=1

[

qtΨ

(
bt

qt

)]2
] 1

2

. (27)

Now define M1(k, r) as

M1(k, r) =

[ k∑

n=1

[
Φ(Pn)

Pn

]2
] 1

2
[ r∑

m=1

[
Ψ (Qm)

Qm

]2
] 1

2

.

Therefore,

r∑

m=1

k∑

n=1

Φ(An)Ψ (Bm)
(h(n) + h∗(m)) 1

2
≤ M1(k, r)

[ k∑

n=1

n∑

s=1

[

psΦ

(
as

ps

)]2
] 1

2

×
[ r∑

m=1

m∑

t=1

[

qtΨ

(
bt

qt

)]2
] 1

2

≤ M1(k, r)

[ k∑

s=1

[

psΦ

(
as

ps

)]2
( k∑

n=s
1

)] 1
2

×
[ r∑

t=1

[

qtΨ

(
bt

qt

)]2
( r∑

m=t
1

)] 1
2

= M1(k, r)

[ k∑

s=1

[

psΦ

(
as

ps

)]2

(k – s + 1)

] 1
2

×
[ r∑

t=1

[

qtΨ

(
bt

qt

)]2

(r – t + 1)

] 1
2

. (28)

Now apply Lemma 2 on the L.H.S. of (28) to obtain (22). This completes the proof. �

Lemma 3 Under the hypotheses of Theorem 5, the following inequality holds:

r∑

m=1

k∑

n=1

Φ(An)2Ψ (Bm)2

h(n) + h∗(m)
≤ M2(k, r)

[ k∑

n=1

[

pnΦ

(
an

pn

)]4

(k – n + 1)

] 1
2

×
[ r∑

m=1

[

qmΨ

(
bm

qm

)]4

(r – m + 1)

] 1
2

, (29)
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where

M2(k, r) =

[ k∑

n=1

[

nΦ

(
an

Pn

)]4
] 1

2
[ r∑

m=1

[

mΨ

(
bm

Qm

)]4
] 1

2

.

Proof From inequalities (24), (25) and the Fenchel–Young inequality (for nonnegative re-
als x and y), we have

Φ
(
A2

n
)
Ψ

(
B2

m
) ≤ Φ(An)2Ψ (Bm)2

≤ (
h(n) + h∗(m)

)
[

Φ(Pn)2

P2
n

n∑

s=1

[

psΦ

(
as

ps

)]2
]

×
[

Ψ (Qm)2

Q2
m

m∑

t=1

[

qtΨ

(
bt

qt

)]2
]

. (30)

Now divide both sides of (30) by h(n) + h∗(m), then take the sum over n from 1 to k first
and the sum over m from 1 to r, then use the Schwarz inequality to obtain

r∑

m=1

k∑

n=1

Φ(An)2Ψ (Bm)2

h(n) + h∗(m)
≤

[ k∑

n=1

Φ(Pn)2

P2
n

n∑

s=1

[

psΦ

(
as

ps

)]2
]

×
[ r∑

m=1

Ψ (Qm)2

Q2
m

m∑

t=1

[

qtΨ

(
bt

qt

)]2
]

≤
k∑

n=1

Φ(Pn)2

P2
n

n
1
2

[ n∑

s=1

[

psΦ

(
as

ps

)]4
] 1

2

×
r∑

m=1

Ψ (Qm)2

Q2
m

m
1
2

[ m∑

t=1

[

qtΨ

(
bt

qt

)]4
] 1

2

≤
[ k∑

n=1

Φ(Pn)4

P4
n

n

] 1
2
[ k∑

n=1

n∑

s=1

[

psΦ

(
as

ps

)]4
] 1

2

×
[ r∑

m=1

Ψ (Qm)4

Q4
m

m

] 1
2
[ r∑

m=1

m∑

t=1

[

qtΨ

(
bt

qt

)]4
] 1

2

≤ M2(k, r)

[ k∑

n=1

n∑

s=1

[

psΦ

(
as

ps

)]4
] 1

2

×
[ r∑

m=1

m∑

t=1

[

qtΨ

(
bt

qt

)]4
] 1

2

, (31)

where

M2(k, r) =

[ k∑

n=1

[

nΦ

(
an

Pn

)]4
] 1

2
[ r∑

m=1

[

mΨ

(
bm

Qm

)]4
] 1

2

.
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Therefore, if we interchange the order of the summations in (31), we obtain (29). This
completes the proof. �

We believe that the inequalities in the next theorem are new to the literature.

Theorem 6 Under the hypotheses of Theorems 3 and 5, the following inequalities hold:

k∑

n=1

r∑

m=1

A2p
n B2q

m

h(n) + h∗(m)
≤ C1(p, q) ×

[

h

( k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

)

+ h∗
( r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

)]

, (32)

k∑

n=1

r∑

m=1

Ap
nBq

m√
h(n) + h∗(m)

≤ C2(p, q, k, r) ×
[

h

( k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

)

+ h∗
( r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

)] 1
2

, (33)

r∑

m=1

k∑

n=1

Φ(An)Ψ (Bm)
(h(n) + h∗(m)) 1

2
≤ M1(k, r) ×

[

h

( k∑

n=1

[

pnΦ

(
an

pn

)]2

(k – n + 1)

)

+ h∗
( r∑

m=1

[

qmΨ

(
bm

qm

)]2

(r – m + 1)

)] 1
2

, (34)

and

r∑

m=1

k∑

n=1

Φ(An)2Ψ (Bm)2

h(n) + h∗(m)
≤ M2(k, r) ×

[

h

( k∑

n=1

[

pnΦ

(
an

pn

)]4

(k – n + 1)

)

+ h∗
( r∑

m=1

[

qmΨ

(
bm

qm

)]4

(r – m + 1)

)] 1
2

. (35)

Proof Using Fenchel–Young inequality (6) in (9), (10), (22), and (29) produces inequalities
(32), (33), (34), and (35) respectively. This completes the proof. �

The following theorem deals with slight changes of the inequality given in Theorem 9.

Theorem 7 Let (an)1≤n≤k , (bm)1≤m≤r , (pn)1≤n≤k , and (qm)1≤m≤r be nonnegative sequences
of real numbers where k, r ∈ N. Suppose that Φ and Ψ are nonnegative, convex, and sub-
multiplicative functions on [0,∞). Let An, Bm be defined as follows:

An =
1

Pn

n∑

s=1

psas, Bm =
1

Qm

m∑

t=1

qtbt ,
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where Pn =
∑n

s=1 ps and Qm =
∑m

t=1 qt . Then

r∑

m=1

k∑

n=1

PnQmΦ(An)Ψ (Bm)
(h(n) + h∗(m)) 1

2
≤ M3(k, r)

[ k∑

n=1

[
pnΦ(an)

]2(k – n + 1)

] 1
2

×
[ r∑

m=1

[
qmΨ (bm)

]2(r – m + 1)

] 1
2

, (36)

where

M3(k, r) =
√

kr

[ k∑

n=1

[
1

Pn

]2
] 1

2
[ r∑

m=1

[
1

Qm

]2
] 1

2

.

Proof Using Jensen’s and Schwarz’s inequalities, we observe that

Φ(An) = Φ

(∑n
s=1 psas

Pn

)

≤ 1
Pn

n∑

s=1

psΦ(as)

≤
√

n
Pn

[ n∑

s=1

(
psΦ(as)

)2
] 1

2

; (37)

similarly,

Φ(Bn) ≤
√

m
Qm

[ m∑

t=1

(
qtΦ(bt)

)2
] 1

2

. (38)

The rest of the proof is similar to the proof of Theorems 3 and 5 with suitable changes. �

Corollary 4 Under the hypotheses of Theorem 7, the following inequality holds:

r∑

m=1

k∑

n=1

nmΦ(An)Ψ (Bm)
(h(n) + h∗(m)) 1

2
≤ π2

√
kr

6

[ k∑

n=1

[
Φ(an)

]2(k – n + 1)

] 1
2

×
[ r∑

m=1

[
Ψ (bm)

]2(r – m + 1)

] 1
2

. (39)

Proof To prove this result, take ps = qt = 1 for all s ≥ 1, t ≥ 1, then Pn = n, Qm = m and use
the fact that

k∑

n=1

[
1
n

]2

≤ π2

6
,

r∑

m=1

[
1
m

]2

≤ π2

6
. �

4 Some applications
In this section we try to show the beauty behind our results. We achieve this by utilizing in-
equality (10) and inequality (19) through substituting h(x) and h∗(y) by suitable functions.
In what follows recall that α ≥ β ≥ 1

2 .
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Example 1 We can derive inequality (3) from inequality (19). To attain this purpose,
choose h(x) = x2

2 ; then h∗(y) = y2

2 for x, y ∈R (see [10]), then inequality (19) gives

k∑

n=1

r∑

m=1

Ap
nBq

m

h(
√

n) + h∗(
√

m)
= 2

k∑

n=1

r∑

m=1

Ap
nBq

m

n + m

≤ C2(p, q, k, r)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

] 1
2

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

] 1
2

.

Consequently,

k∑

n=1

r∑

m=1

Ap
nBq

m

n + m
≤ 1

2
C2(p, q, k, r)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

] 1
2

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

] 1
2

, (40)

which is inequality (3) as desired.

Example 2 If we take h(x) = xs

s , s > 1, then h∗(y) = yt

t , t > 1, where 1
s + 1

t = 1 and x, y ∈ R+

(see [10]), then inequality (10) gives

k∑

n=1

r∑

m=1

Ap
nBq

m

(|h(n)| 1
2β + |h∗(m)| 1

2β )α
=

(
1
st

) –α
2β

k∑

n=1

r∑

m=1

Ap
nBq

m

((tns)
1

2β + (smt)
1

2β )α

≤ C2(p, q, k, r)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

] 1
2

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

] 1
2

. (41)

Clearly,

k∑

n=1

r∑

m=1

Ap
nBq

m

((tns)
1

2β + (smt)
1

2β )α
≤

(
1
st

) α
2β

C2(p, q, k, r)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

] 1
2

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

] 1
2

. (42)
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When β = 1
2α

, inequality (42) becomes

k∑

n=1

r∑

m=1

Ap
nBq

m

((tns)α + (smt)α)α
≤

(
1
st

)α2

C2(p, q, k, r)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

] 1
2

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

] 1
2

. (43)

It is obvious that, if α = β = 1, inequality (42) yields

k∑

n=1

r∑

m=1

Ap
nBq

m

(tns) 1
2 + (smt) 1

2
≤

(
1
st

) 1
2

C2(p, q, k, r)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

] 1
2

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

] 1
2

. (44)

If in addition s = t = 2, inequality (44) produces

k∑

n=1

r∑

m=1

Ap
nBq

m

n + m
≤ 1√

2
C2(p, q, k, r)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

] 1
2

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

] 1
2

. (45)

Example 3 We put h(x) = ex and h∗(y) = y log(y) – y, see [10], in inequality (10) to get

k∑

n=1

r∑

m=1

Ap
nBq

m

(|en| 1
2β + |m log(m) – m| 1

2β )α
≤ C2(p, q, k, r)

[ k∑

n=1

(k – n + 1)
(
Ap–1

n an
)2

] 1
2

×
[ r∑

m=1

(r – m + 1)
(
Bq–1

m bm
)2

] 1
2

. (46)

5 Conclusion
Using Fenchel–Young inequality (6) helped in obtaining some inequalities that cover a
wide range of Hilbert-type inequalities through choosing the functions h(x) and h∗(x) suit-
ably.

Although the left-hand sides in inequalities (10) and (22) depend on some parameters
(α and β), we obtained upper bounds that are free of those parameters. The effect of these
parameters appears on the right-hand side only if the chosen functions have some constant
component.

Some results proved in this paper are generalizations of previously proved results. For
example, inequality (19) is a generalization of inequality (3).

Integral analogues to all results in this paper can be obtained following the same spirit
of the proofs mentioned here with slight changes. For instance, the integral version of
Theorem 4 has been proved in [16].
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