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Abstract
In this paper, we consider the pricing problem of options with counterparty default
risks. We study the asymptotic behavior of vulnerable option prices in the worst case
scenario under an uncertain volatility model which contains both corporate assets
and underlying assets. We propose a method to estimate the price of vulnerable
options when the volatility of the underlying assets is within a small interval. By
imposing additional conditions on the boundary condition and cutting the obtained
Black–Scholes–Barenblatt equation into two Black–Scholes-like equations, we obtain
an approximate method for solving the fully nonlinear partial differential equation
satisfied by the price of vulnerable options under the uncertain volatility model.
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1 Introduction
With the continuous opening and development of China’s financial market in recent years,
the domestic option market has made a major breakthrough in practical terms. With the
footsteps of the 2015 New Year, the Shanghai Stock Exchange’s 50 ETF options are regis-
tered with the Shanghai Stock Exchange. This means that the mainland China stock mar-
ket has ushered in the “option era” since its establishment 24 years ago. After that, some
other kinds of options will enter the financial market one after another, and the scale of the
transaction will also expand, and then comes the over-the-counter (OTC for short) mar-
ket. When an option is traded in an OTC market, the absence of a supervisory body such
as a clearing house to supervise the short side of options obligations at maturity will result
in the bearer of the option simultaneously bearing market and credit risk, which will in-
evitably lead to defaults in the transaction process. Up to now, the theoretical research on
market credit default risk has been relatively mature, but the research on market pricing
with default risk is relatively scarce, and the conditions taken into account are few, which
can not describe the change of option price well. At present, there is not much literature
on vulnerable options. Johnson et al. [1] first introduced default risk into option pricing
and proposed the definition of vulnerable option. Hull et al. [2] not only gave the pricing
formula of vulnerable options, but also compared the pricing methods of standard Euro-
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pean options, American options, and European vulnerable options by numerical meth-
ods. Jarrow et al. [3] studied the pricing and hedging of derivatives with credit risk using
no-arbitrage pricing method. Don [4] studied the pricing of European vulnerable options
considering default time and uncertain recovery value. Klein [5] assumed that default oc-
curred when the assets of the company with open options were lower than a fixed default
boundary. The pricing formula of vulnerable options was obtained by martingale method.
Ammann [6] extended Klein’s model using structured method. Under the assumption of
random interest rate and random default boundary, the explicit solution of vulnerable op-
tions was obtained. Further research on vulnerable options can be found in [7–11].

In the previous literature, most of the models assume that the volatility of underlying
assets is constant, but it is not constant in the real world. However, it is widely believed
that continued volatility does not explain the observed market price of an option. After the
work of Black, Scholes, and Merton, some scholars studied the stochastic volatility option
pricing model. In a series of papers, several stochastic volatility models were introduced,
such as Hull–White stochastic volatility model [12] and Heston stochastic volatility model
[13]. Compared with the simple model, the stochastic volatility model has more state vari-
ables, which makes it more difficult to give the analytic solution of option price. The un-
certain volatility model just overcomes this shortcoming. Thus, we study the uncertain
volatility model in this paper.

The uncertain volatility model was independently developed by Lyons [14] and Avel-
laneda et al. [15]. Under these circumstances, volatility is assumed to lie within a range of
values. Therefore, the price obtained under no-arbitrage analysis is no longer unique. All
that can be calculated are the best case scenario prices and the worst case scenario prices.
We can see some related results about uncertain volatility in [14–18]. The option pricing
under uncertain volatility model by nonlinear partial differential equation (PDE for short)
has been studied in their papers. In Avellaneda et al. [15] and Pooley [19], some numerical
methods have been proposed.

In 2014, Fouque [20] studied the worst case scenario prices of European derivatives un-
der the uncertain volatility model. They provided an approximate method of derivative
pricing based on wavelet fluctuation intervals. In addition, they also argue that when it
comes to simple options with convex gains, the solution can be attributed to a constant
volatility problem.

In this paper, the pricing problem of vulnerable options is studied. We assume that the
volatility of underlying assets is in a small interval, and the volatility of the counterparty’s
asset value is deterministic. In the process of finding the estimation of the worst case sce-
nario vulnerable option prices, the first difficulty that we encountered was to obtain the
Hamilton–Jacobi–Bellman (HJB for short) equation of the prices. The HJB equation is
called Black–Scholes–Barenblatt (BSB for short) equation in the financial mathematics.
We can get the BSB equation by the stochastic control theory. The next problem is to
prove the convergence of the estimation. That is to say, we have to control the error term.
When analyzing the error term, we obtain its expectation by the Dynkin formula and find
the conditions we should impose on the payoff function. Finally, we obtain the approxi-
mation procedure for the vulnerable option prices. Compared with Fouque’s paper [20],
our paper adds an equation about counterparty’s assets in the stochastic control system,
which can also be reflected in the BSB equation. Since the underlying asset has nothing to
do with the value of the counterparty’s assets, our analysis will be a little simpler.
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This paper is organized as follows: in Sect. 2, the vulnerable options under the uncer-
tain volatility model are briefly introduced, and the BSB equations of the option prices
are given. In Sect. 3, we divide the estimation of vulnerable option prices which are in
the worst case scenario into two Black–Scholes-like PDEs, thus, we obtain the estimation
of vulnerable option prices. Then, the main results of this paper are given, and the ratio-
nality of the estimation is illustrated. In Sect. 4, we give the proof of the main results. By
applying conditions to the payoff function, the convergence of the error term is obtained.
Through the analysis of the error term, the expected form of the error term is obtained
and decomposed into three parts. These three parts of control are given by the stochastic
control theory and the character of the worst-case vulnerable option price process. Finally,
the conclusions of this paper are given.

2 Pricing vulnerable options under uncertain volatility model
In this section, we introduce the vulnerable options under uncertain volatility model. Then
we give the BSB equation for the price of the vulnerable option. Suppose thatX is a vulner-
able option with maturity T and payoff ϕ(·, ·). The results of this paper cover generalized
vulnerable options.

Assumption 2.1 Let X denote the market value of the asset underlying the option. The
dynamics of X are given by the following process:

dXt = rXt dt + σtXt dW x
t , (2.1)

where r is the constant risk-free interest rate, W x
t is a standard Brownian motion on the

probability space (�,F ,P), and the volatility process σt ∈ A[σ ,σ ] for each t ∈ [0, T] is a
family of progressively measurable and [σ ,σ ]-valued processes. According to the above
definition, we know that the volatility in an uncertain volatility model is not a stochastic
process with a probability distribution, but a family of stochastic processes with unknown
prior information. Thus, what we can use to distinguish the difference between uncertain
volatility model is the model ambiguity.

Assumption 2.2 Let Y denote the total value of the firm’s assets. The dynamics of Y are
given by the following process:

dYt = μ2Yt dt + σ2Yt dW y
t , (2.2)

where μ2 represents the expected rate of return on the asset value of the counterparty
company, σ2 represents the volatility of the asset value, and both μ2 and σ2 are constants
(σ2 is constant because only insiders can understand the value of the counterparty’s assets).
W y

t represents the standard Brownian motion. We have

Cov
(
dW x

t , dW y
t
)

= ρXY dt.

For computational convenience, we suppose that

ρXY = 0. (2.3)
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Assumption 2.3 Markets are perfect and frictionless. There are no transaction costs or
taxes and securities are continuously traded.

Suppose that the payoff function of the vulnerable option is given by ϕ(XT , YT ). Then
we get the vulnerable option prices in the worst case scenario at time t < T as follows:

F(t, Xt , Yt) = e–r(T–t) esssup
σ∈A[σ ,σ ]

E
[
ϕ(XT , YT )|Ft

]
, (2.4)

where esssup is essential supremum. By the ambiguity of the uncertain volatility model, we
obtain the definition of price as equation (2.4). It is related to the consistency risk measure,
which quantifies the model risk caused by volatility uncertainty (see [21]). In addition, the
problem of model ambiguity in financial mathematics has also attracted many people’s
attention. Therefore, we should pay attention to the importance of price in the worst case.

Through the stochastic control theory (see [22]), we know that F(t, Xt , Yt) satisfies the
BSB equation.

Lemma 2.1 F(t, Xt , Yt) satisfies the following BSB equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂tF + r(x∂xF – F) + μ2y∂yF + supσ∈A[σ ,σ ]
1
2σ 2x2∂2

xxF + 1
2σ 2

2 y2∂2
yyF = 0,

0 ≤ t ≤ T , x ≥ 0, y ≥ 0,

F(T , x, y) = ϕ(x, y), x ≥ 0, y ≥ 0.

(2.5)

Proof Notice that the stochastic control system is

⎧
⎨

⎩
dXt = rXt dt + σtXt dW x

t , σt ∈A[σ ,σ ],

dYt = μ2Yt dt + σ2Yt dW y
t .

Then, for all (s, x, y) ∈ [0, T] ×R
+ ×R

+, we establish the dynamic program frame first

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dXt = rXt dt + σtXt dW x
t , σt ∈A[σ ,σ ],

dYt = μ2Yt dt + σ2Yt dW y
t ,

Xs = x,

Ys = y.

(2.6)

The cost function is

J(s, x, y;σ ) = Es
[
e–r(T–s)ϕ(XT , YT )

]
,

where Es[·] = E[·|Fs]. The value function is

F(s, x, y) = esssup
σ∈A[σ ,σ ]

J(s, x, y;σ ).
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For all 0 ≤ s ≤ ŝ ≤ T , σ ∈A[σ ,σ ], we have

F(s, x, y) ≥ Es
[
e–r(T–s)ϕ(XT , YT )

]

= Es

[∫ ŝ

s
–re–r(T–t)ϕ(XT , YT ) dt + e–r(T–ŝ)ϕ(XT , YT )

]
.

For convenience, we use ϕ to denote ϕ(XT , YT ). Then we obtain

0 ≥ Es

[∫ ŝ

s
–re–r(T–t)ϕ dt

]
+ F(ŝ, x, y) – F(s, x, y).

Dividing two sides of the above inequality by ŝ – s, we have that

0 ≥ Es

[∫ ŝ
s –re–r(T–t)ϕ dt

ŝ – s

]
+

F(ŝ, x, y) – F(s, x, y)
ŝ – s

.

Here, we assume that ϕ is Lipschitz continuous. Then, according to Itô’s formula and equa-
tions (2.6), we obtain

dF = Ft dt + Fx dXt + Fy dYt +
1
2

Fxx dXt dXt +
1
2

Fyy dYt dYt +
1
2

Fxy dXt dYt

=
(

Ft + rXtFx + μ2YtFy +
1
2
σ 2

t X2
t Fxx +

1
2
σ 2

2 Y 2
t Fyy

)
dt

+ σtXtFx dW x
t + σ2YtFy dW y

t .

Let ŝ → s. For all σ ∈A[σ ,σ ], we have that

0 ≥ –rEs
[
e–r(T–s)ϕ

]
+ Ft + rXsFx + μ2YsFy +

1
2
σ 2

s X2
s Fxx +

1
2
σ 2

2 Y 2
s Fyy

≥ –rF(s, x, y) + Ft(s, x, y) + rxFx(s, x, y) + μ2yFy(s, x, y)

+
1
2
σ 2

s X2
s Fxx(s, x, y) +

1
2
σ 2

2 Y 2
s Fyy(s, x, y),

which is

0 ≥ –rF + Ft + rxFx + μ2yFy + sup
σ∈A[σ ,σ ]

1
2
σ 2x2Fxx +

1
2
σ 2

2 y2Fyy. (2.7)

On the other hand, according to the character of the supremum, for any ε > 0, there is
σ (ε) ∈A[σ ,σ ] such that

F(s, x, y) – ε(ŝ – s) ≤ Es
[
e–r(T–s)ϕ

]

= Es

[∫ ŝ

s
–re–r(T–t)ϕ dt

]
+ Es

[
e–r(T–ŝ)ϕ

]
.

So we have that

–ε ≤ Es

[∫ ŝ
s –re–r(T–t)ϕ dt

ŝ – s

]
+

F(ŝ, x, y) – F(s, x, y)
ŝ – s

.
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Using the similar discussion, we can conclude that

0 ≤ –rF + Ft + rxFx + μ2yFy + sup
σ∈A[σ ,σ ]

1
2
σ 2x2Fxx +

1
2
σ 2

2 y2Fyy. (2.8)

According to (2.7) and (2.8), we can obtain that

0 = –rF + Ft + rxFx + μ2yFy + sup
σ∈A[σ ,σ ]

1
2
σ 2x2Fxx +

1
2
σ 2

2 y2Fyy. �

Remark 2.1 In this case, adding variable Y to the dynamic system will lead to a more
complex stochastic control system, which increases the dimension of the BSB equation.

Remark 2.2 Note that (2.5) is a completely nonlinear PDE, which has no solution like
Black–Scholes equation. Therefore, we decide to solve this problem by simplifying it to
two Black–Scholes-like PDEs.

3 Black–Scholes-like PDEs and the main result
In this section, we first reparameterize the uncertainty volatility model to study the prices
in the worst case scenario. We suppose that the price process Xε

t has a dynamic
⎧
⎨

⎩
dXε

t = rXε
t dt + σtXε

t dW x
t ,

dYt = μ2Yt dt + σ2Yt dW y
t ,

(3.1)

where σt ∈ Aε = {σt|σt is a [σ0,σ0 + ε]-valued progressively measurable process} and σ0 ∈
[σ ,σ ].

The cost function is

J
ε(t, x, y;σ ) = e–r(T–t)

Etxy
[
ϕ
(
Xε

T , YT
)]

,

where Etxy[·] means the conditional expectation taken with respect to Xε
t = x, Yt = y. The

value function is as follows:

Fε(t, x, y;σ ) = esssup
σ∈Aε

[
J

ε(t, x, y;σ )
]
.

By Lemma 2.1, we obtain the following BSB equation for Fε :

⎧
⎪⎪⎨

⎪⎪⎩

∂tFε + r(x∂xFε – Fε) + μ2y∂yFε + supσ∈Aε
1
2σ 2x2∂2

xxFε + 1
2σ 2

2 y2∂2
yyFε = 0,

0 ≤ t ≤ T , x ≥ 0, y ≥ 0,

Fε(T , x, y) = ϕ(x, y), x ≥ 0, y ≥ 0,

(3.2)

which is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

∂tFε + r(x∂xFε – Fε) + μ2y∂yFε + supγ∈A[0,1]
1
2 (σ0 + εγ )2x2∂2

xxFε + 1
2σ 2

2 y2∂2
yyFε

= 0, 0 ≤ t ≤ T , x ≥ 0, y ≥ 0,

Fε(T , x, y) = ϕ(x, y), x ≥ 0, y ≥ 0,

(3.3)

where A[0, 1] = {γt|γt is a [0, 1]-valued progressively measurable process}.
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Obviously, the price in the worst case scenario is larger than any Black–Scholes price
with a constant volatility σ0 ∈ [σ ,σ ]. In the following section, we demonstrate that the
worst case scenario price of vulnerable option converges to its Black–Scholes price with
a constant volatility σ0. In addition, when the volatility interval is reduced to a certain
point, the convergence rate of vulnerable option prices can be obtained. Then, we can get
the estimation of the prices through this result when the interval is small enough.

Let F0 be the Black–Scholes price, F0 = Fε|ε=0, F1 = ∂εFε|ε=0. Now, we assume that Fε is
continuous with respect to ε. Then, according to the continuity of Fε and equation (2.4),
we have F0 = F0 = Fε|ε=0. As we all know, F0 satisfies the following PDE:

⎧
⎪⎪⎨

⎪⎪⎩

∂tF0 + r(x∂xF0 – F0) + μ2y∂yF0 + 1
2σ 2

0 x2∂2
xxF0 + 1

2σ 2
2 y2∂2

yyF0 = 0,

0 ≤ t ≤ T , x ≥ 0, y ≥ 0,

F0(T , x, y) = ϕ(x, y), x ≥ 0, y ≥ 0.

(3.4)

Then we analyze the equation of F1. We have F1 = ∂εFε|ε=0, which is the rate of conver-
gence of the vulnerable option prices as ε closes to 0. F1 is the first order derivative of Fε

with respect to ε, and let ε = 0, then we obtain the equation of F1 as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂tF1 + r(x∂xF1 – F1) + μ2y∂yF1 + 1
2σ 2

0 x2∂2
xxF1 + supγ∈A[0,1] γ σ0x2∂2

xxF0

+ 1
2σ 2

2 y2∂2
yyF1 = 0, 0 ≤ t ≤ T , x ≥ 0, y ≥ 0,

F1(T , x, y) = ϕ(x, y), x ≥ 0, y ≥ 0.

(3.5)

Now, we have two Black–Scholes-like PDEs as above. We tend to find the connection
between Fε and F0, F1. Then we try to prove whether we can impose additional conditions
on the payoff function to make the term Fε – (F0 + εF1) be of order o(ε). That is to say, with
the disappearance of model fuzziness, the worst case estimates of vulnerable option prices
will approach the real value. It will also show us a way to estimate the price of a vulnerable
option in the worst case scenario. Through our deduction in the next section, we get the
following main results of this paper.

Theorem 3.1 Assume that the payoff function ϕ(x, y) is Lipschitz continuous, and the
second-order partial derivatives of ϕ(x, y) are continuous. In addition, we also assume that
its second-order partial derivatives have polynomial growth. Then

lim
ε↓0

Fε – (F0 + εF1)
ε

= 0. (3.6)

Remark 3.2 It is difficult to prove Theorem 3.1. The first problem is how to convert the
error term into an estimable form. In the next section, we get the expectation of the error
term and divide it into three parts. The second problem is how to estimate these three
parts. We can use stochastic control theory, the zero set’s characteristics of equation (4.1),
the characteristics of the sublinear expectation in [23], and the characteristics of vulnera-
ble option price process in the worst case scenario.

Remark 3.3 According to Theorem 3.1, we can compute vulnerable option price Fε(t, Xε
t ,

Yt) with its approximate value, F0(t, Xε
t , Yt) + εF1(t, Xε

t , Yt), where F0(t, Xε
t , Yt) is the Black–
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Scholes price of vulnerable option and F1(t, Xε
t , Yt) can be computed by a simple difference

scheme in terms of (3.5) (see [19]).

Remark 3.4 We notice that (3.4) and (3.5) are independent of ε. So when we calculate Fε

with different ε for all small values of ε, we just need to compute F0 and F1 only once by
Theorem 3.1.

4 The proof of the main result
In this section, the processes and details of our thinking are presented. We attempt to con-
trol the error term to prove that we can use its estimate F0 + εF1 to calculate Fε . Under the
conditions imposed on ϕ, which were mentioned in Theorem 3.1, we have the following
proof.

4.1 The Lipschitz continuity of payoff function
From Sect. 3 we know that only with the continuity of Fε can we obtain the PDEs of F0 (=
Fε|ε=0) and F1 (= ∂εFε|ε=0). In order to get the continuity of Fε , we assume that ϕ(x, y) is
Lipschitz continuous. Then there exists a constant K1 such that

∣∣ϕ(x, t) – ϕ(y, t)
∣∣ ≤ K1|x – y| for all x �= y, x, y ∈R

+. (4.1)

Thus, we have the following lemma.

Lemma 4.1 We suppose that ϕ(x, y) is Lipschitz continuous. Then Fε is continuous with
respect to ε.

Proof Let 0 ≤ ε0 ≤ ε < 1. Notice that

Fε(t, x, y;σ ) = esssup
σ∈Aε

{
e–r(T–t)

Etxy
[
ϕ
(
Xε

T , YT
)]}

.

We can conclude that

e–r(T–t)Fε0 (t, x, y;σ ) = esssup
σ∈Aε0

Etxy
[
ϕ
(
Xε0

T (σ ), YT
)]

= esssup
σ∈Aε

Etxy
[
ϕ
(
Xε

T
(
σ ∧ (σ0 + ε0)

)
, YT

)]
.

By the Lipschitz continuity of ϕ(x, y) and equation (4.1), we conclude that there is a con-
stant K1 such that

e–r(T–t)∣∣Fε(t, x, y;σ ) – Fε0 (t, x, y;σ )
∣
∣

≤ esssup
σ∈Aε

∣
∣Etxy

[
ϕ
(
Xε

T (σ ), YT
)]

– Etxy
[
ϕ
(
Xε

T
(
σ ∧ (σ0 + ε0)

)
, YT

)]∣∣

≤ K1 esssup
σ∈Aε

(
Etxy

∣∣Xε
T (σ ) – Xε

T
(
σ ∧ (σ0 + ε0)

)∣∣2) 1
2 .

With the estimates of the moments of solutions of stochastic differential equations (The-
orem 9 of Sect. 2.9 and Corollary 12 of Sect. 2.5 in [24]), there are constants N = N(q, r,σ0),
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N ′ = N ′(q, r,σ0) and C = max{NN ′, N + N ′} such that

Etxy
[
sups≤t

∣∣Xε
s (σ ) – Xε

s
(
σ ∧ (σ0 + ε0)

)∣∣2q]

≤ Ntq–1eNt
Etxy

[∫ t

0

∣∣Xε
s (σ )

∣∣2q · ∣∣σs – σs ∧ (σs + ε0)
∣∣2q ds

]

≤ Ntq–1eNtN ′eN ′tt
(
1 + x2q)|ε – ε0|2q

= CtqeCt(1 + x2q)|ε – ε0|2q.

So we can obtain that

e–r(T–t)∣∣Fε(t, x, y) – Fε0 (t, x, y)
∣
∣ ≤ K1 esssup

σ∈Aε

(
Etxy

∣
∣Xε

T (σ ) – Xε
T
(
σ ∧ (σ0 + ε0)

)∣∣2) 1
2

≤ K1 esssup
σ∈Aε

(
CteCt(1 + x2)|ε – ε0|2

) 1
2

≤ K ′
1
(
1 + x2) 1

2 |ε – ε0|,

where K ′
1 = K ′

1(K1, C, T).
Let ε → ε0. We have that |Fε(t, x, y) – Fε0 (t, x, y)| → 0.
So, when ε ≤ ε0, the continuity of Fε with respect to ε can be proved similarly. �

4.2 Expectation form of the error term
Before proving the convergence of F0 + εF1, we analyze the error term and give its expec-
tation form.

Let σ̂t be volatility process in the worst case scenario and X̂ε
t be risky asset process in

the worst case scenario. Then equations (3.1) can be rewritten as follows:

⎧
⎨

⎩
dX̂ε

t = rX̂ε
t dt + σ̂tX̂ε

t dW x
t ,

dYt = μ2Yt dt + σ2Yt dW y
t .

We can get the representation of σ̂ by equations (3.3) and σ̂ (ε) = σ0 + εγ̂ , where

γ̂ (t, x, y; ε) =

⎧
⎨

⎩
1, ∂2

xxFε(t, x, y) ≥ 0,

0, ∂2
xxFε(t, x, y) < 0.

(4.2)

Similarly, by solving equation (3.5) of F1, we have the volatility process: σ̄ (ε) = σ0 + εγ̄ ,
where

γ̄ (t, x, y) =

⎧
⎨

⎩
1, ∂2

xxF0(t, x, y) ≥ 0,

0, ∂2
xxF0(t, x, y) < 0.

(4.3)

Here, we use short symbols γ̂t and γ̄t to denote γ̂ (t, x, y; ε) and γ̄ (t, x, y).
Let Zε = Fε – (F0 + εF1). In order to estimate the error term Zε , we define a kind of

operator L(σ ) = ∂t + rx∂x – r + μ2y∂y + 1
2σ 2x2∂2

xx + 1
2σ 2

2 y2∂2
yy. According to PDEs (3.2), (3.4),
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and (3.5), we can conclude that

L(σ̂t)Zε = L(σ̂t)
(
Fε – (F0 + εF1)

)

= 0 – L(σ̂t)(F0 + εF1)

= –
(
L(σ̂t) – L(σ0)

)
F0 – L(σ0)F0 – ε

(
L(σ̂t) – L(σ0)

)
F1 – εL(σ0)F1

= ε(γ̄t – γ̂t)σ0x2∂2
xxF0 –

ε2

2
(
(γ̂t)2x2∂2

xxF0 + 2σ0γ̂tx2∂2
xxF1

)
–

ε3

2
(γ̂t)2x2∂2

xxF1

= –f ε(t, x, y),

with the boundary condition Zε(T) = Fε(T) – F0(T) – εF1(T) = 0. The last equality means
that we let the above formula equal –f ε(t, x, y).

According to the Dynkin formula, we can get the expectation form of Zε as follows:

Zε = Etxy

[∫ T

t
f ε(s, x, y) ds

]

= εEtxy

[∫ T

t
(γ̂s – γ̄s) · σ0 · (X̂ε

s
)2

∂2
xxF0

(
s, X̂ε

s , Ys
)

ds
]

+ ε2
Etxy

[∫ T

t

{
1
2

(γ̂s)2(X̂ε
s
)2

∂2
xxF0

(
s, X̂ε

s , Ys
)

+ σ0γ̂s
(
X̂ε

s
)2

∂2
xxF1

(
s, X̂ε

s , Ys
)
}

ds
]

+ ε3
Etxy

[∫ T

t

1
2

(γ̂s)2(X̂ε
s
)2

∂2
xxF1

(
s, X̂ε

s , Ys
)

ds
]

= εI1 + ε2I2 + ε3I3,

where

I1 = Etxy

[∫ T

t
(γ̂s – γ̄s) · σ0 · (X̂ε

s
)2

∂2
xxF0

(
s, X̂ε

s , Ys
)

ds
]

, (4.4)

I2 = Etxy

[∫ T

t

{
1
2

(γ̂s)2(X̂ε
s
)2

∂2
xxF0

(
s, X̂ε

s , Ys
)

+ σ0γ̂s
(
X̂ε

s
)2

∂2
xxF1

(
s, X̂ε

s , Ys
)}

ds
]

, (4.5)

I3 = Etxy

[∫ T

t

1
2

(γ̂s)2(X̂ε
s
)2

∂2
xxF1

(
s, X̂ε

s , Ys
)

ds
]

. (4.6)

Thus, we can conclude that

∣∣Zε
∣∣ ≤ ε|I1| + ε2|I2| + ε3|I3|. (4.7)

By controlling |I1|, |I2| and |I3|, we can estimate Fε .

4.3 The polynomial growth condition of payoff function
In this part, we need to analyze the three parts of |Z|ε to control the error term. By (4.7),
we have that

|Z|ε
ε

≤ |I1| + ε
(|I2| + ε|I3|

)
.
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Therefore, it is sufficient to prove

lim
ε↓0

|I1| + ε
(|I2| + ε|I3|

)
= 0.

Obviously, it is necessary to control I2 and I3. Because |I1| is somewhat complex, let us
first consider how to control |I2| and |I3|.

By observing the expressions of I2 and I3, we can see that partial derivatives of F0 and
F1 are involved. Therefore, we should consider how to estimate them before giving the
controls of I2 and I3.

Then, we can get the expectation form of F0 and F1 by the classical results. When ε = 0,
we have

X(T) = x exp

{(
r –

σ 2
0

2

)
(T – t) + σ0(WT – Wt)

}
.

Thus,

F0(t, x, y) = e–r(T–t)
Etxy

[
ϕ(XT , YT )

]

= e–r(T–t)
Etxy

[
ϕ(x · H , YT )

]
, (4.8)

where H(= exp{(r – σ 2
0
2 )(T – t) + σ0(WT – W x

t )}) is a random variable for fixed t ∈ [0, T].
Similarly, there is

Fε(t, x, y) = e–r(T–t) esssup
σ∈Aε

{
Etxy

[
ϕ
(
Xε

T , YT
)]}

= e–r(T–t)
Etxy

[
ϕ(x · G, YT )

]
, (4.9)

where G (= exp{(r – σ̂ 2
T
2 )(T – t) + σ̂T (WT – W x

t )}) is a random variable for fixed t ∈ [0, T].
By equations (4.8) and (4.9), we know that it is necessary to impose polynomial growth

conditions on ϕ(x, y) to control ∂2
xxF0 and ∂2

xxFε . Then we give the estimates of ϕ(x, y) to
control ∂2

xxF0(t, x, y) and ∂2
xxFε(t, x, y) in the following lemma.

Lemma 4.2 Suppose that the second-order partial derivatives of payoff function satisfy
the polynomial growth condition, i.e., there are constants K2 and m such that ∂2

xxϕ(x, y) ≤
K2(1 + |x|m + |y|m). Then, we have constant K3 such that

∣∣∂2
xxF0(t, x, y)

∣∣ ≤ K3
(
1 + |x|m + |y|m)

, (4.10)

where K3 depends on T , t, Etxy[|H|2], Etxy[|H|m+2] and K2.
Furthermore, there is a constant K4 such that

∣
∣∂2

xxFε(t, x, y)
∣
∣ ≤ K4

(
1 + |x|m + |y|m)

. (4.11)

where K4 depends on T , t, Etxy[|G|2], Etxy[|G|m+2] and K2.
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Proof According to Lemma 4.2, we can conclude that

∣
∣∂2

xxF0(t, x, y)
∣
∣ = e–r(T–t)

Etxy
[
ϕ′′(xH , YT )H2]

≤ e–r(T–t)
Etxy

[
K2

(
1 + |xH|m + |YT |m)

H2]

≤ K3
(
1 + |x|m + |y|m)

. (4.12)

Here, K3 depends on T , t, Etxy[|H|2], Etxy[|H|m+2] and K2.
Indeed, for a constant m > 0, we have that

EHm = E

(
exp

{(
r –

σ 2
0

2

)
(T – t) + σ0

(
WT – W x

t
)
})m

= em(r–σ 2
0 /2)(T–t)

E
[
eσ0(WT –Wt )]m < +∞.

On the other hand, we get the control of ∂2
xxFε similarly. Then there is a constant K4

which depends on T , t, Etxy[|G|2], Etxy[|G|m+2] and K2 such that

∣∣∂2
xxFε(t, x, y)

∣∣ ≤ K4
(
1 + |x|m + |y|m)

. (4.13)
�

Then, we give a proposition that needs to be used to get the controls of I2 and I3.

Proposition 4.1 Assume that ϕ(x, y) satisfies the Lipschitz continuity condition. Then
there exist constants C1 and p1 such that I2, I3 in equations (4.5) and (4.6) satisfy

|I2| + |I3| ≤ C1
(
1 + |x|p1 + |x|p1 |y|p1

)
.

Proof By Lemma 4.2, we have the following inequality from (3.3) and (4.11):

∣
∣∣
∣∂tFε + r

(
x∂xFε – Fε

)
+ μ2y∂yFε +

1
2
σ 2

2 y2∂2
yyFε

∣
∣∣
∣

≤
∣∣
∣∣
1
2

(σ0 + ε)2x2∂2
xxFε

∣∣
∣∣

≤ K4

2
(σ0 + ε)2(|x|2 + |x|m+2 + |x|2|y|m)

.

By the expression of F1, we have that

∣∣∣
∣∂tF1 + r(x∂xF1 – F1) + μ2y∂yF1 +

1
2
σ 2

2 y2∂2
yyF1

∣∣∣
∣ ≤ ∣∣K4σ0

(|x|2 + |x|m+2 + |x|2|y|m)∣∣.

By equations (3.5) and (4.10), we get the control of x2∂2
xxF1

∣
∣x2∂2

xxF1
∣
∣ =

∣∣
∣∣∂tF1 + r(x∂xF1 – F1) + μ2y∂yF1 +

1
2
σ 2

2 y2∂2
yyF1 + sup

γ∈A[0,1]
γ σ0x2∂2

xxF0

∣∣
∣∣

(
2
σ 2

0

)

≤
(∣∣

∣∣∂tF1 + r(x∂xF1 – F1) + μ2y∂yF1 +
1
2
σ 2

2 y2∂2
yyF1

∣∣
∣∣ +

∣
∣σ0x2∂2

xxF0
∣
∣
)(

2
σ 2

0

)
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≤ [∣∣K4σ0
(|x|2 + |x|m+2 + |y|m|x|2)∣∣ + σ0x2K3

(
1 + |x|m + |y|m)]( 2

σ 2
0

)

≤ M1
(|x|2 + |x|m+2 + |x|2|y|m)

, (4.14)

where M1 depends on K3, K4 and σ0.
We can obtain the existence and uniqueness of X̂ε

t from Theorem 5.2.1 in [25]. Then,
according to Corollary 12 of Sect. 2.5 in [24], as for the moment estimates of solutions of
stochastic differential equations, there is a constant N1(q) for fixed q > 0 such that

Etxy

[
sup

s∈[t,T]

∣
∣X̂ε

s
∣
∣q

]
≤ N1(q)eN1(q)(T–t)(1 + |x|q). (4.15)

Obviously, we can get

Etxy

[
sup

s∈[t,T]

∣
∣X̂ε

s
∣
∣q

]
Etxy

[
sup

s∈[t,T]
|Ys|p

]

≤ N1(q)eN1(q)(T–t)(1 + |x|q)N1(p)eN1(p)(T–t)(1 + |y|p). (4.16)

By (4.6), (4.14), (4.15) and (4.16), we have the following inequality:

|I3| =
∣
∣∣
∣Etxy

[∫ T

t

1
2

(γ̂s)2(X̂ε
s
)2

∂2
xxF1

(
s, X̂ε

s , Ys
)

ds
]∣
∣∣
∣

≤ M1

2
Etxy

[∫ T

t

(∣∣X̂ε
s
∣
∣2 +

∣
∣X̂ε

s
∣
∣m+2 + |Ys|m

∣
∣X̂ε

s
∣
∣2)ds

]

≤ M′
1
(
1 + |x|m+2 + |x|2|y|m)

, (4.17)

where M′
1 depends on M1, T , t, N1(2), N1(m) and N1(m + 2).

By (4.5), (4.10), (4.14), (4.15) and (4.16), we can get the control of |I2|:

|I2| =
∣
∣∣
∣Etxy

[∫ T

t

{
1
2

(γ̂s)2(X̂ε
s
)2

∂2
xxF0

(
s, X̂ε

s , Ys
)

+ σ0γ̂s
(
X̂ε

s
)2

∂2
xxF1

(
s, X̂ε

s , Ys
)
}

ds
]∣
∣∣
∣

≤
(

K3

2
+ M1

)
Etxy

[∫ T

t

(∣∣X̂ε
s
∣
∣2 +

∣
∣X̂ε

s
∣
∣m+2 + |Ys|m

∣
∣X̂ε

s
∣
∣2)ds

]

≤ M2
(
1 + |x|p1 + |x|p1 |y|p1

)
, (4.18)

where M2 depends on T , t, M1, K3, N1(2), N1(m), N1(m + 2), and p1 ≥ m + 2.
Combining (4.17) and (4.18), we can conclude that there is a constant C1 such that

|I2| + |I3| ≤ C1
(
1 + |x|p1 + |x|p1 |y|p1

)
. �

4.4 Convergence of the term I1

In Proposition 4.1, we give the controls of I2 and I3. Then, for a fixed point (t, x, y) ∈ [0, T]×
R

+ ×R
+, it is sufficient to prove that

lim
ε↓0

|I1| = 0.
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Let Kρ = [–ρ,ρ] and hε(t, x, y) = γ̂ (t, x, y; ε) – γ̄ (t, x, y). By (4.2) and (4.3), we can conclude
that

∣∣hε(t, x, y)
∣∣ =

⎧
⎨

⎩
1, ∂2

xxFε(t, x, y)∂2
xxF0(t, x, y) < 0,

0, ∂2
xxFε(t, x, y)∂2

xxF0(t, x, y) ≥ 0.

Intuitively, Fε and its partial derivatives will approach F0 and its corresponding partial
derivatives when ε approaches 0. In order to test this intuitive hypothesis, we decompose
the interval of X̂ε

s into two parts: a compact set Kρ and the tail part, where s ∈ [t, T]. Con-
sequently, we can write I1 as the expectation of a sum of two parts as follows:

i. the compact part (when X̂ε
s drop into the Kρ );

ii. the tail part (when X̂ε
s drop out of the Kρ ). So we have that

I1 = Etxy

[∫ T

t
hε · σ0 · (X̂ε

s
)2

∂2
xxF0

(
s, X̂ε

s , Ys
)
IKρ

(
X̂ε

s
)

ds
]

+ Etxy

[∫ T

t
hε · σ0 · (X̂ε

s
)2

∂2
xxF0

(
s, X̂ε

s , Ys
)
IKc

ρ

(
X̂ε

s
)

ds
]

= Etxy[i] + Etxy[ii]. (4.19)

To prove limε↓0 |I1| = 0, we use localization arguments to deal with Etxy[ii] and the prob-
lem is reduced onto a compact set. On the compact set, according to Lemma 4.1 and
equation (2.4), we can conclude that Fε and its partial derivatives converge to F0 and its
corresponding partial derivatives. Then we get the convergence of Etxy[i], and it converges
to 0.

Then, we analyze the control of the tail part, given ρ > 0. Define a stopping time

τρ = inf
{

s ∈ [t, T] such that
∣∣X̂ε

s
∣∣ ≥ ρ

}
.

As a rule, inf∅ = ∞.
By using the estimates of moments of solutions of stochastic differential equations and

the Chebyshev inequality, we have that

Qtxy(τρ < T) ≤ Qtxy

(
sup

s∈[t,T]

∣
∣X̂ε

s
∣
∣ ≥ ρ

)
≤ NeN(T–t)(1 + |x|)

ρ
. (4.20)

By the Hölder inequality, we conclude that

Etxy[ii] ≤ σ0K3

[
Etxy

∫ T

t

(
X̂ε

s
)4(1 +

∣
∣X̂ε

s
∣
∣m + |Ys|m

)2 ds
]1/2[

Qtxy(τρ < T)
]1/2,

where

Etxy

∫ T

t

(
X̂ε

s
)4(1 +

∣
∣X̂ε

s
∣
∣m + |Ys|m

)2 ds

≤ D1
(
1 + |x|p2 + |y|p2 + |x|p2 |y|p2

)
, (4.21)

where D1 depends on σ0, T , t, M1, K3, N1(4), N1(m), N1(4 + m), N1(4 + 2m), and p2 ≥ 4 + 2m.
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Combining inequalities (4.20) and (4.21), we obtain that

Etxy[ii] ≤
√

D1
(
1 + |x|p2 + |y|p2 + |x|p2 |y|p2

) ·
√

NeN(T–t)(1 + |x|)(T – t)
ρ

≤ D2
(1 + |x|p3 + |y|p3 + |x|p3 |y|p3 )√

ρ
,

where D2 depends on σ0, T , t, M1, K3, N , N1(4), N1(m), N1(4 + m), N1(4 + 2m), and p3 ≥ p2 +
1.

When the compact set Kρ becomes larger, i.e., ρ increases, X̂ε
s will be less likely to deviate

outside of the set Kρ .

4.5 The proof of the main result
Now, as the analysis above, we can give a brief proof of Theorem 3.6.

Proof of the main result By the discussion in Sect. 4.4, we have that

lim
ε↓0

|I1| = 0. (4.22)

Then, by inequality (4.7), we have

∣
∣∣
∣
Fε – (F0 + εF1)

ε

∣
∣∣
∣ ≤ |I1| + ε

(|I2| + ε|I3|
)
.

Thus, by Proposition 4.1 and equation (4.22), we obtain the theorem. �

5 Conclusion
In this paper, we analyze the behavior of vulnerable option prices in the worst case sce-
nario. The model studied in this paper is an uncertain volatility model with a volatility
interval [σ0,σ0 + ε]. As ε is close to 0, the ambiguity of model vanishes. We can also see
that as the interval shrinks, the worst case scenario prices of vulnerable options converge
to their Black–Scholes prices. We present an estimation method for solving a fully nonlin-
ear PDE (3.2) by imposing additional conditions to the boundary conditions and cutting
it into two Black–Scholes-like equations. So, through this research, we have obtained a
method to estimate the price of vulnerable options in the worst case scenario.
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