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Abstract
In this article, we consider the problem of finding a source term of a Rayleigh–Stokes
equation. Our problem is not well-posed in the sense of Hadamard. The sought
solution does not depend continuously on the given data. Using the truncation
method and some new techniques on trigonometric estimators, we give the
regularized solution. Moreover, the mean square error and convergence rates are
established.
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1 Introduction
In the future, there will be a large number of applications of fractional diffusion equations,
especially in physics, environment, and some other areas [1–5]. Not only do these applica-
tions appear in fluid flow and heat conduction, but they are also appropriate to other topics
in mathematics. There are many authors who have studied fractional partial differential
equations and ordinary differential equations. Now, we can describe some interesting pa-
pers as follows. In [6], the authors considered a class of time-fractional reaction-diffusion
equations with nonlocal boundary condition. In 2018, Yong et al. [7] studied Duhamel’s
formula for time-fractional Schrödinger equations. The existence and Hölder continuity
of solutions for time-fractional Navier–Stokes equations have been studied by Zhou, Peng,
and Huang [8]. In this paper, we study the following Rayleigh–Stokes problem:

⎧
⎪⎨

⎪⎩

∂tu – (1 + d∂
γ
t )�u = F(t, x), (t, x) ∈ (0,T0) × Ω ,

u(t, x) = 0, x ∈ ∂Ω ,
u(0, x) = 0, x ∈ Ω .

(1)

Here, Ω ⊂R
d (d = 1, 2, 3) is a smooth domain with the boundary ∂Ω , and T0 > 0 is a given

time. u(t, x) is the velocity and d is constant with respect to x and t, where x is the distance,
t is the time, and ∂

γ
t denotes the Riemann–Liouville derivative of order γ ∈ (0, 1) [3, 9].
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Our main goal is identifying the source term F if we know the following final value data:

u(T0, x) = h(x), x ∈ Ω , (2)

where the source function F = F(t, x) = Q(t)f (x), and Q(t) is known in advance. It is clear
that our problem as above is ill-posed by the meaning of Hadamard; in other words, there
is not always the existence of a solution. In case the problem has a solution, then a small
noise of an exact measurement can imply that the sought solution has large error. Hence,
numerical computation is troublesome. So it is essential to have a regularization.

The Rayleigh–Stokes equation (1) is a principal part in the description of dynamic flu-
ids [10]. More applications for such an equation can be found in [10, 11]. The initial and
boundary value problems for the Rayleigh–Stokes problem, called direct problems, have
already been researched in [10]. In some previous papers, Dehghan et al. [12–15] consid-
ered some numeral solutions of the Rayleigh–Stokes problem. The initial value problem
for the Rayleigh–Stokes equation has been studied by applying plenty of numeral methods
such as the finite element method, etc. [10, 16].

If the errors coming from unmanageable causes such as wind, rain, humidity, etc. ap-
pear, then the model will be considered to be random. The random situations can not
directly use the approaches applying for deterministic cases. Sometimes, it is difficult to
understand in calculating owing to the random noise. In some real cases, empirical mea-
surements result in function h(x), which can be examined with many errors. When the
function h(x) is measured at fixed points xk ∈ Ω , we can collect a set of G(xk), where
G(xk) ≈ h(xk). The errors regularly appear in observing practical measurements. Hence

G(xk) = h(xk) + εk, k = 1, . . . ,M, (3)

where εk, k = 1, . . . ,M, are unknown independent random errors.
The points xk, k = 1,M, which are non-random, are called design points. We choose

xk =
2k – 1

2M
, k = 1, . . . ,M,

and D = (G(x1), G(x2), . . . , G(xM)), which is the measure of

(
h(x1), h(x2), . . . , h(xM)

)
.

Let us consider the random model as follows:

G(xk) = h(xk) + σkεk.

Let us assume that εk ∼ N (0, 1) is normally random variables, and the unknown errors
σk, k = 1, . . . ,M, are unknown independent noises. As we know, these unknown errors
can come from many troubles as measuring environment or instrument, where σk ≤ Rmax,
k = 1, . . . ,M, with Rmax being the greatest possible error bound when measuring.

To determine the source value f (x), we get the following assumptions:



Binh et al. Journal of Inequalities and Applications        (2019) 2019:308 Page 3 of 16

(a) f (x) ∈ L2(Ω) and h(x) ∈ L2(Ω).
(b) P is a positive constant which is the a priori bound of function f (x)

‖f ‖Hβ (Ω) ≤ P, β > 0. (4)

(c) The measured data G(xk) and the function h(x) have a relation

G(xk) = h(xk) + σkεk.

Now, we mention the aim and our methods of this paper. Section 2 and Sect. 3 provide
the results to be used in the sequel. In Sect. 4, we obtain some estimations for regularity.

2 Preliminaries
First, we present the definitions of fractional operators and some notations.

Definition 2.1 For given function f , the following formula

∂
γ
t f (t) =

∂

∂t

∫ t

0
ω1–γ (t – s)f (s) ds, ωγ (t) =

tγ –1

Γ (γ )
,

is called the Riemann–Liouville integral of order γ > 0. Here, Γ (·) stands for the gamma
function.

Next we remind the L2(Ω) space. The Neumann–Laplacian operator is defined by

Af (x) := –�f (x) = –
∂2f (x)
∂x2 ·

By the spectral theory of the positive elliptic operator, the eigenvalues of A are λn = n2.
We denote the corresponding eigenfunctions by φn(x) =

√
2
π

sin(nx). Thus the eigenpairs
(λn,φn), n ∈ Z

+, satisfy

{
Aφn(x) = –λnφn(x), x ∈ Ω ,
φn(x) = 0, x ∈ ∂Ω .

(5)

The sequence {φn}n∈Z+ is an orthonormal basis of L2(Ω).
It admits the eigenvalues

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · ,

with λn → ∞ as n → ∞ (see [12]). The corresponding eigenfunctions φn ∈ H1
0 (Ω).

For any p ≥ 0, denote the space

Hp(Ω) =

{

v ∈ L2(Ω);
∞∑

n=1

λp
n

∣
∣〈v,φn〉

∣
∣2 < +∞

}

.
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We recall that H(Ω) is a Banach space with the following norm:

‖v‖Hp(Ω) =

( ∞∑

n=1

λp
n

∣
∣〈v,φn〉

∣
∣2
) 1

2

.

Now, we get the following lemmas.

Lemma 2.1 Let n = 1, . . . ,M – 1, with xk = π 2k–1
2M and φn(xk) =

√
2
π

sin(nxk), then for all
m = 1, 2, . . . , we have

Rn,m =
M–1∑

k=1

φn(xk)φm(xk) =

⎧
⎪⎨

⎪⎩

M

π
, m± n = 2lM (l even),

–M

π
, m± n = 2lM (l odd),

0, otherwise.
(6)

If m = 1, . . . ,M – 1, we obtain

Rn,m =

{
M

π
, m = n,

0, m = n,
(7)

and

M∑

i=1

φn(xk) =

{
(–1)lM

√
2
π

, n = 2lM,
0, n = 2lM.

(8)

Lemma 2.2 Let n,M ∈ Z
+ such that n = 1, . . . ,M – 1. Assume that h is piecewise C1(Ω)

xk = π 2k–1
2M and φn(xk) =

√
2
π

sin(nxk), then

hn =
π

M

M∑

k=1

h(xk)φn(xk) – Gn,M,

where

Gn,M =
∞∑

l=1

(–1)l[〈h(x),φn+2lM(x)
〉
+
〈
h(x),φ–n+2lM(x)

〉]
.

Proof We will construct the discretization form of the Fourier coefficients. The function
h can be written as follows:

h(xk) =
∞∑

m=1

hmφm(xk),

where hm = 〈h(x),φm(x)〉. This implies that

1
M

M∑

k=1

h(xk)φn(xk) =
1
M

M∑

k=1

[ ∞∑

m=1

〈
h(x),φm(x)

〉
φm(x)

]

φn(xk).
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Using Lemma 2.1, we get

1
M

M∑

k=1

h(xk)φn(xk)

=
1
M

M∑

k=1

[
M∑

m=1

hmφm(xk)

]

φn(xk) +
1
M

M∑

k=1

[ ∞∑

m=M+1

hmφm(xk)

]

φn(xk)

=
1
M

M∑

k=1

hm

M∑

m=1

φm(xk)φn(xk) +
1
M

M∑

k=1

hm

∞∑

m=M+1

φm(xk)φn(xk)

=
1
π

hn +
1
π

∞∑

l=1

(–1)l[〈h(x),φn+2lM(x)
〉
+
〈
h(x),φ–n+2lM(x)

〉]

=
1
π

hn +
1
π
Gn,M.

So the conclusion is completed. �

3 Mild solution of backward in time problem for Rayleigh–Stokes problem
In this part, we establish a representation for the solution of problem (1). The solution u
is given by Fourier series as follows:

u(t, x) =
∞∑

n=1

〈
u(t, x),φn

〉
φn(x),

where

{

φn(x) =
√

2
π

sin(nx),
(
n ∈ Z

+)
}

. (9)

The reference [1] implies that

〈
u(t, x),φn(x)

〉
= Sn(t,γ )

〈
u(0, x),φn(x)

〉
+
∫ t

0
Sn(t – s,γ )

〈
F(s, ·),φn(·)〉ds, (10)

where Sn(t,γ ) is as follows:

L
(
Sn(t,γ )

)
=

1
t + dλntγ + λn

, (11)

where L is the function with Laplace transform.
This implies that

u(t, x) =
∞∑

n=1

[

Sn(t,γ )
〈
u(0, x),φn(x)

〉
+
∫ t

0
Sn(t – s,γ )

〈
F(s, x),φn(x)

〉
ds
]

φn(x). (12)

Lemma 3.1 The function Sn(t,γ ), n = 1, 2, . . . , is equal to

Sn(t,γ ) =
∫ ∞

0
e–ytK(n, y,γ ) dy,
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where

K(n, y,γ ) =
d
π

λn sin(γπ )yγ

(–y + λndyγ cos(γπ ) + λn)2 + (λndyγ sin(γπ ))2 .

Proof See the proof in [17]. �

From Lemma 3.1, we derive some estimates.

Lemma 3.2 Assume that γ ∈ (0, 1). For all t ∈ [0,T0], the following estimates hold:
• There exists B1(d,T0,γ ) > 0 such that

Sn(T0,γ ) ≥ B1(d,T0,γ )
λn

. (13)

• There exists B2(d,γ ) > 0 such that

Sn(t,γ ) ≤ B2(d,γ )
1 + λnt1–γ

, 0 ≤ t ≤ T0, (14)

where

B1(d,T0,γ ) =
d sin(γπ )e–T0

3π (γ + 1)(d2 + 1 + 1
λ2

1
)
, B2(d,γ ) =

Γ (1 – γ )
dπ sin(γπ )

+ 1. (15)

Proof Using the inequality (a1 + a2 + a3)2 ≤ 3(a2
1 + a2

2 + a2
3) for any real numbers a1, a2, a3,

we obtain

(
–y + λndyγ cosγπ + λn

)2 +
(
λndyγ sinγπ

)2 ≤ 3
(
λ2
nd2y2γ + λ2

n + y2). (16)

Hence

Sn(T0,γ ) ≥ d
π

sin(γπ )
∫ +∞

0

e–yT0λnyγ dy
3(λ2

nd2y2γ + λ2
n + y2)

=
d sin(γπ )

3πλn

∫ +∞

0

e–yT0 yγ dy

d2y2γ + 1 + y2

λ2
1

. (17)

Furthermore, we get

∫ +∞

0

e–yT0 yγ dy

d2y2γ + 1 + y2

λ2
1

≥
∫ 1

0

e–yT0 yγ dy

d2y2γ + 1 + y2

λ2
1

≥ 1
d2 + 1 + 1

λ2
1

∫ 1

0
e–yT0 yγ dy

≥ e–T0

d2 + 1 + 1
λ2

1

1
γ + 1

.
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This gives that

Sn(T0,γ ) ≥ d sin(γπ )
3πλn

e–T0

d2 + 1 + 1
λ2

1

1
γ + 1

≥ B1(d,T0,γ )
λn

. (18)

Note that

K(n, y,γ ) =
d
π

λn sin(γπ )yγ

(–y + λndyγ cos(γπ ) + λn)2 + (λndyγ sin(γπ ))2

≤ d
π

λn sin(απ )yα

(λnkyα sin(γπ ))2 =
1

kπ sin(γπ )λn

y–γ . (19)

This implies that, for t > 0,

Sn(t,γ ) ≤ 1
dπ sin(γπ )λn

∫ ∞

0
e–yty–γ dy

=
1

dπ sin(γπ )t1–γ λn

∫ ∞

0
e–yt(yt)–γ d(yt)

≤ 1
dπ sin(γπ )t1–γ λn

∫ ∞

0
e–ξ ξ γ dξ =

Γ (1 – γ )
dπ sin(γπ )t1–γ λn

, (20)

where ξ = yt, and we have the fact that

∫ ∞

0
e–ξ ξ γ dξ = Γ (1 – γ ).

Hence

Sn(t,γ )t1–γ λn ≤ Γ (1 – γ )
dπ sin(γπ )

. (21)

Since 0 < Sn(t,γ ) ≤ 1 (see Theorem 2.2, [17]), so we imply from that

Sn(t,γ )
(
1 + t1–γ λn

)≤ Γ (1 – γ )
dπ sin(γπ )

+ 1. (22)

Therefore

Sn(t,γ ) ≤ B2(d,γ )
1 + λnt1–γ

, 0 ≤ t ≤ T . (23)
�

Lemma 3.3 Let Q : [T0, 0] → R be a positive continuous function. Then we have, for all
n ∈N,

Q0
B1(d,T0,γ )

n2 ≤
∫ T0

0
Sn(T – s,γ )Q(s) ds ≤ ‖Q‖∞

B2(d,γ )
n2

T γ
0
γ

,

where inft∈[0,T0] |Q(t)| = Q0 > 0. Set ‖Q‖∞ = supt∈[0,T0] |Q(t)|.
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Proof As in the proof of Lemma 3.2, we obtain

∫ T0

0
Sn(T0 – s,γ ) ds ≤

∫ T0

0

B2(d,γ )
1 + λn(T0 – s)1–γ

ds

≤
∫ T0

0

(T0 – s)γ –1B2(d,γ )
λn

ds

≤ B2(d,γ )
λn

∫ T0

0
s
γ –1 ds

≤ B2(d,γ )
λn

T0
γ

γ
.

This implies that

∫ T0

0
Sn(T0 – s,γ )Q(s) ds ≤ sup

t∈[0,T0]

∣
∣Q(t)

∣
∣
∫ T0

0
Sn(T0 – s,γ ) ds

≤ ‖Q‖∞
B2(d,γ )

λn

T γ
0
γ

,

and

∫ T0

0
Sn(T0 – s,γ )Q(s) ds ≥ inf

t∈[0,T0]

∣
∣Q(t)

∣
∣
∫ T0

0
Sn(T0 – s,γ ) ds

≥Q0
B1(d,T0,γ )

λn

.

The proof is completed. �

4 Main results
The first result is given as follows.

Lemma 4.1 Assume 0 < N < M, with N ∈ N. Let h hold in Lemma 2.2. Under the condi-
tions stated above, we have

f (x) =
N∑

n=1

π
M

∑M

k=1 h(xk)φn(xk) – Gn,M
∫ T0

0 Sn(t – s,γ )Q(s) ds
φn(x) +

∞∑

n=N+1

〈h(x),φn(x)〉
∫ T0

0 Sn(t – s,γ )Q(s) ds
φn(x).

Proof First, we have the following equality.
Substituting t by T0 into equation (12), by the supplementary condition u(T0, x) = h(x)

and u(0, x) = 0, we have

〈
h(x),φn(x)

〉
=
〈
f (x),φn(x)

〉
∫ T0

0
Sn(T0 – s,γ )Q(s) ds, (24)

where 〈F(s, x),φn(x)〉 = 〈Q(s)f (x),φn(x)〉 = Q(s)〈f (x),φn(x)〉.
The source function f is given by

f (x) =
∞∑

n=1

〈
f (x),φn(x)

〉
=

∞∑

n=1

〈h(x),φn(x)〉
∫ T0

0 Sn(T0 – s,γ )Q(s) ds
φn(x). (25)
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Using Lemma 3.2, we have

∞∑

n=1

〈h(x),φn(x)〉φn(x)
∫ T0

0 Sn(T0 – s,γ )Q(s) ds

=
N∑

n=1

〈h(x),φn(x)〉φn(x)
∫ T0

0 Sn(T0 – s,γ )Q(s) ds
+

∞∑

n=N+1

〈h(x),φn(x)〉φn(x)
∫ T0

0 Sn(T0 – s,γ )Q(s) ds

=
N∑

n=1

( π
M

∑M

k=1 h(xk)φn(xk) – Gn,M)φn(x)
∫ T0

0 Sn(T – s,γ )Q(s) ds

+
∞∑

n=N+1

〈h(x),φn(x)〉φn(x)
∫ T0

0 Sn(T0 – s,γ )Q(s) ds
.

The proof is completed. �

4.1 The ill-posedness of the problem
In order to illustrate the ill-posedness of the backward problem through an example, let
h = 0 and h(xk) = 0. This implies f = 0, and define function uM(T0, xk) = 1√

M
εk. First, we

have

uM(T0, x) =
M–1∑

n=1

(
π

M

M∑

k=1

uM(T0, xk)φn(xk)

)

φn(x). (26)

Let fM be the source function of the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tuM – (1 + d∂
γ
t )�uM = Q(t)fM(x),

uM(t, x) = 0,
uM(0, x) = 0,
uM(T0, x) =

∑M–1
n=1 ( π

M

∑M

k=1 uM(T0, xk)φn(xk))φn(x).

(27)

Moreover, by the Parseval equality, we have

‖uM‖2
L2(Ω) =

M–1∑

n=1

(
π

M

M∑

k=1

uM(T0, xk)φn(xk)

)2

. (28)

Using E(εjεl) = 0 (j = l), E(εj) = 0 (j = 1, 2, . . . ,n), and Lemma 2.1, we can deduce that

E‖uM‖2
L2(Ω) =

M–1∑

n=1

(
π

M

M∑

k=1

1√
M

Eεkφn(xk)

)2

(29)

=
M–1∑

n=1

(
π2

M2

M∑

k=1

1√
M

φn(xk)

)2

=
π

M
. (30)

Then

lim
M→∞

E‖uM‖2
L2(Ω) = 0. (31)
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We have

fM(x) =
M–1∑

n=1

π
M

∑M

k=1 uM(T0, xk)φn(xk) – G̃n,M
∫ T0

0 Sn(t – s,γ )Q(s) ds
φn(x)

+
∞∑

n=M+1

〈uM(T0, x),φn(x)〉
∫ T0

0 Sn(t – s,γ )Q(s) ds
φn(x),

where

G̃n,M =
∞∑

l=1

(–1)l[〈uM(T0, x),φn+2lM(x)
〉
+
〈
uM(T0, x),φ–n+2lM(x)

〉]
.

We get that G̃n,M = 0 for n > M. Applying Lemma 2.1, we obtain

fM(x) =
M–1∑

n=1

π
M

∑M

k=1 uM(T0, xk)φn(xk)
∫ T0

0 Sn(t – s,γ )Q(s) ds
φn(x).

By the Parseval equality, we obtain

‖fM‖2
L2(Ω) =

[
M–1∑

n=1

π
M

∑M

k=1 uM(T0, xk)φn(xk)
∫ T0

0 Sn(t – s,γ )Q(s) ds

]2

.

Applying E(εjεl) = 0 (j = l), E(εj) = 0 (j = 1, 2, . . . ,n) with Lemma 2.1, we have

E‖fM‖2
L2(Ω) =

[
M–1∑

n=1

π
M

∑M

k=1
1√
M
Eεkφn(xk)

∫ T0
0 Sn(t – s,γ )Q(s) ds

]2

=
M–1∑

n=1

π

M2

[∫ T0

0
Sn(t – s,γ )Q(s) ds

]–2

.

Using Lemma 3.3, we get

E‖fM‖2
L2(Ω) ≥

M–1∑

n=1

π

M2
n4γ 2

‖Q‖2∞B2
2(d,γ )T 2γ

0
≥ π

M2
(M – 1)4γ 2

‖Q‖2∞B2
2(d,γ )T 2γ

0
.

Then

lim
M→∞

E‖fM‖2
L2(Ω) = 0. (32)

From the above argument, we can deduce that problem (1) is not well-posed. Hence, a
regularization method is necessary.

4.2 Regularization and convergence rate under a priori bounded condition
We impose the following a priori bound on the exact solution f (x).
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Theorem 4.1 Suppose f ∈Hβ (Ω) and there exists P > 0 such that

‖f ‖Hβ (Ω) ≤ P, β > 0, (33)

then we have

‖f ‖L2(Ω) ≤
P

1
β+1 ‖h‖

β
β+1
L2(Ω)

Q
β

β+1
0 B

β
β+1
1 (d,T0,γ )

, β > 0. (34)

Proof We have

‖f ‖2
L2(Ω) =

∣
∣
∣
∣
∣

∞∑

n=1

〈h(x),φn(x)〉
∫ T0

0 Sn(T0 – s,γ )Q(s) ds

∣
∣
∣
∣
∣

2

=
∞∑

n=1

|〈h(x),φn(x)〉| 2
β+1 |〈h(x),φn(x)〉| 2β

β+1

| ∫ T0
0 Sn(T0 – s,γ )Q(s) ds|2

=
∞∑

n=1

[ |〈h(x),φn(x)〉|2
| ∫ T0

0 Sn(T0 – s,γ )Q(s) ds|2(β+1)

] 1
β+1 ∣

∣
〈
h(x),φn(x)

〉∣
∣

2β
β+1

=
∞∑

n=1

[ |〈f (x),φn(x)〉|2
| ∫ T0

0 Sn(T0 – s,γ )Q(s) ds|2β

] 1
β+1 ∣

∣
〈
h(x),φn(x)

〉∣
∣

2β
β+1 .

Thanks to Lemma 3.3, we obtain

‖f ‖2
L2(Ω) ≤

∞∑

n=1

[
λ

2β
n |〈f (x),φn(x)〉|2
Q2β

0 B2β
1 (d,T0,γ )

] 1
β+1 ∣

∣
〈
h(x),φn(x)

〉∣
∣

2β
β+1

≤
‖f ‖

2
β+1
Hβ (Ω)‖h‖

2β
β+1
L2(Ω)

Q
2β
β+1
0 B

2β
β+1
1 (d,T0,γ )

≤
P

2
β+1 ‖h‖

2β
β+1
L2(Ω)

Q
2β
β+1
0 B

2β
β+1
1 (d,T0,γ )

.
�

4.2.1 Error estimate in L2(Ω)
Theorem 4.2 Let ε > 0 and εk ∼ N(0, 1) with k = 1, . . . ,M if the function f (x) satisfies the
prior bounded condition (4).

A regularized function f̃M,N is as follows:

f̃M,N (x) =
N∑

n=1

π
M

∑M

k=1 G(xk)φn(xk)
∫ T0

0 Sn(T0 – s,γ )R(s) ds
φn(x),

where M, N are called regularization parameters. Then the error estimate between the
exact source and its regularized source is as follows:

E‖̃fM,N – f ‖2
L2(Ω)

≤
(

π

MQ2
0B2

1(d,T0,γ )
R2

max +
π4

36
B2

2(d,γ )‖Q‖2∞P
2

β+1 ‖h‖
2β
β+1
L2(Ω)T

2γ
0

γ 2M4Q
4β+2
β+1

0 B
4β+2
β+1

1 (d,T0,γ )

)

N5N–2βP2.

(35)
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Let N := NM such that 0 < N := NM < M and

lim
M→+∞

N 5

M
= 0, (36)

then

E‖̃fM,N – f ‖2
L2(Ω) is of order max

(N 5

M
,N –2β

)

. (37)

Remark 4.1 By choosing N := M
1

5+2β and by (37), we can conclude that

E‖̃fM,N – f ‖2
L2(Ω) is of order

(
1
M

) 2β
5+2β

. (38)

Proof of Theorem 4.2 First, we have the following estimate:

f̃M,N (x) – f (x) =
N∑

n=1

π
M

∑M

k=1 σkεkφn(xk) + Gn,M
∫ T0

0 Sn(T0 – s,γ )Q(s) ds
φn(x)

–
∞∑

n=N+1

〈h(x),φn(x)〉
∫ T0

0 Sn(T0 – s,γ )Q(s) ds
φn(x).

This follows from the Parseval identity

∥
∥̃fM,N (·) – f (·)∥∥2

L2(Ω) =
N∑

n=1

[ π
M

∑M

k=1 σkεkφn(xk) – Gn,M
∫ T0

0 Sn(T0 – s,γ )Q(s) ds

]2

+
∞∑

n=N+1

[ 〈h(x),φn(x)〉
∫ T0

0 Sn(T0 – s,γ )Q(s) ds

]2

. (39)

The fact that E(εjεl) = 0 (l = j), and E(εj) = 0 (j = 1,n). So we can deduce that

E
∥
∥̃fM,N (·) – f (·)∥∥2

L2(Ω)

=
∞∑

n=N+1

[ 〈h(x),φn(x)〉
∫ T0

0 Sn(T0 – s,γ )Q(s) ds

]2

+
N∑

n=1

π2

M2
∑M

k=1 σ 2
kEε2

k + G2
n,M

[
∫ T0

0 Sn(T0 – s,γ )Q(s) ds]2

= I1 + I2. (40)

We have

I1 =
∞∑

n=N+1

[ 〈h(x),φn(x)〉
∫ T0

0 Sn(T0 – s,γ )Q(s) ds

]2

. (41)

By equation (25), we know that, for n ≥ 1,

〈
f (x),φn(x)

〉
=

〈h(x),φn(x)〉
∫ T0

0 Sn(T0 – s,γ )Q(s) ds
.
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Using the last two equations, we get

I1 =
∞∑

n=N+1

[〈
f (x),φn(x)

〉]2.

By 1 = n–2βn2β , we can rewrite I1 as follows:

I1 =
∞∑

n=N+1

n
–2β

n
2β
∣
∣
〈
f (x),φn(x)

〉∣
∣2. (42)

In the last series (42), since n≥N + 1 > N , we get n–2β ≤N –2β . Using the last two obser-
vations, we obtain

I1 ≤
∞∑

n=N+1

N –2β
n

2β
∣
∣
〈
f (x),φn(x)

〉∣
∣2 = N –2β

∞∑

n=N+1

n
2β
∣
∣
〈
f (x),φn(x)

〉∣
∣2 = N –2β̂

I1. (43)

We shall begin with showing that

Î1 =
∞∑

n=N+1

n
2β
∣
∣
〈
f (x),φn(x)

〉∣
∣2 ≤

∞∑

n=1

n
2β
∣
∣
〈
f (x),φn(x)

〉∣
∣2 = ‖f ‖2

Hβ (Ω). (44)

Using (43) and (44), we get

I1 ≤N –2β‖f ‖2
Hβ (Ω) ≤N –2βP2. (45)

Recall the definition of I2 in equation (40)

I2 =
N∑

n=1

π2

M2
∑M

k=1 σ 2
kEε2

k + G2
n,M

[
∫ T0

0 Sn(T0 – s,γ )Q(s) ds]2

=

(
π2

M2

M∑

k=1

σ 2
kEε2

k + G2
n,M

) N∑

n=1

[∫ T0

0
Sn(T0 – s,γ )Q(s) ds

]–2

. (46)

We invoke Lemma 3.3 to deduce that

∣
∣
〈
h(x),φn(x)

〉∣
∣ =

[∫ T0

0
Sn(T0 – s,γ )Q(s) ds

]
∣
∣
〈
f (x),φn(x)

〉∣
∣

≤ ‖Q‖∞
B2(d,γ )

n2
T γ

0
γ

‖f ‖L2(Ω), (47)

where
∑∞

l=1
1
l2 = π2

6 . We can now combine the results of Lemma 2.2 and equation (47) to
obtain

Gn,M ≤
∞∑

l=1

[〈
h(x),φn+2lM(x)

〉
+
〈
h(x),φ–n+2lM(x)

〉]

≤ B2(d,γ )T γ
0 ‖Q‖∞‖f ‖L2(Ω)

γ

[ ∞∑

l=1

1
(n + 2lM)2 +

∞∑

l=1

1
(–n + 2lM)2

]
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≤ π2

6
B2(d,γ )T γ

0 ‖Q‖∞‖f ‖L2(Ω)

γM2 (48)

≤ π2

6
B2(d,γ )‖Q‖∞P

1
β+1 ‖h‖

β
β+1
L2(Ω)T

γ
0

γM2Q
β

β+1
0 B

β
β+1
1 (d,T0,γ )

. (49)

Since σk < Rmax, we estimate I2 as follows:

I2 ≤
(

π

M
R2

max +
π4

36
B2

2(d,γ )‖Q‖2∞P
2

β+1 ‖h‖
2β
β+1
L2(Ω)T

2γ
0

γ 2M4Q
2β
β+1
0 B

2β
β+1
1 (d,T0,γ )

)

×
N∑

n=1

[∫ T0

0
Sn(T0 – s,γ )Q(s) ds

]–2

≤
(

π

M
R2

max +
π4

36
B2

2(d,γ )‖Q‖2∞P
2

β+1 ‖h‖
2β
β+1
L2(Ω)T

2γ
0

γ 2M4Q
2β
β+1
0 B

2β
β+1
1 (d,T0,γ )

) N∑

n=1

n4

Q2
0B2

1(d,T0,γ )

≤
(

π

MQ2
0B2

1(d,T0,γ )
R2

max +
π4

36
B2

2(d,γ )‖Q‖2∞P
2

β+1 ‖h‖
2β
β+1
L2(Ω)T

2γ
0

γ 2M4Q
4β+2
β+1

0 B
4β+2
β+1

1 (d,T0,γ )

)

N 5. (50)

Combining equation (45) with equation (50), we obtain

E‖̃fM,N – f ‖2
L2(Ω)

≤
(

π

MQ2
0B2

1(d,T0,γ )
R2

max +
π4

36
B2

2(d,γ )‖Q‖2∞P
2

β+1 ‖h‖
2β
β+1
L2(Ω)T

2γ
0

γ 2M4Q
4β+2
β+1

0 B
4β+2
β+1

1 (d,T0,γ )

)

N 5 + N –2βP2.

(51)

It is shown that our main results are stated and proved. �

4.2.2 Error estimate in Hβ

Now, we give error estimate between the source and the regularized source in higher
Sobolev spaces. For any β > 0, the convergence rate in Hβ norm is as follows.

Theorem 4.3 Assume that f (x) ∈Hβ+m for any m > 0. Then

E‖̃fM,N – f ‖2
Hβ (Ω) is of order max

(N 5+2β

M
,N –2m

)

. (52)

Proof We have

‖̃fM,N – f ‖2
Hβ (Ω) =

∞∑

n=1

λβ
n

∣
∣
〈
f̃M,N – f ,ϕn(x)

〉∣
∣2 =

∞∑

n=1

n
2β
∣
∣
〈
f̃M,N – f ,ϕn(x)

〉∣
∣2.
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Take the expectation to both sides and use Theorem 4.2. The fact that E(εjεl) = 0 (j = l),
and E(εj) = 0 (j = 1,n). Now we can deduce that

E‖̃fM,N – f ‖2
Hβ (Ω) =

∞∑

n=N+1

n
2β

[ 〈h(x),φn(x)〉
∫ T0

0 Sn(T0 – s,γ )Q(s) ds

]2

+
N∑

n=1

n
2β

π2

M2
∑M

k=1 σ 2
kEε2

k + G2
n,M

[
∫ T0

0 Sn(T0 – s,γ )Q(s) ds]2

= J̃1 + J̃2. (53)

First, using equation (25), we get

J̃1 =
∞∑

n=N+1

n
–2m

n
2β+2m∣∣

〈
f (x),φn(x)

〉∣
∣2 ≤N –2m‖f ‖2

Hβ+m(Ω). (54)

We can now proceed analogously to the proof of Theorem 4.2, we continue to estimate
the error Ĩ2:

J̃2 =

(
π2

M2

M∑

k=1

σ 2
kEε2

k + G2
n,M

) N∑

n=1

n
2β

[∫ T0

0
Sn(T0 – s,γ )Q(s) ds

]–2

≤
(

π

M
R2

max +
π4

36
B2

2(d,γ )‖Q‖2∞P
2

β+1 ‖h‖
2β
β+1
L2(Ω)T

2γ
0

γ 2M4Q
2β
β+1
0 B

2β
β+1
1 (d,T0,γ )

) N∑

n=1

n4+2β

Q2
0B2

1(d,T0,γ )

≤
(

π

MQ2
0B2

1(d,T0,γ )
R2

max +
π4

36
B2

2(d,γ )‖Q‖2∞P
2

β+1 ‖h‖
2β
β+1
L2(Ω)T

2γ
0

γ 2M4Q
4β+2
β+1

0 B
4β+2
β+1

1 (d,T0,γ )

)

N 5+2β . (55)

Combining (54) and (55), we obtain (52) immediately. �

Acknowledgements
The authors would like to thank the editor and reviewers in helping to improve the manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors contributed
equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City, Vietnam. 2Department of Mathematics, Cankaya
University, Ankara, Turkey. 3Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung, Taiwan. 4Institute of Space Sciences, Magurele–Bucharest, Romania. 5Institute of Fundamental and Applied
Sciences, Duy Tan University, Ho Chi Minh City, Vietnam. 6Applied Analysis Research Group, Faculty of Mathematics and
Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.



Binh et al. Journal of Inequalities and Applications        (2019) 2019:308 Page 16 of 16

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 October 2019 Accepted: 28 November 2019

References
1. Baleanu, D., Scalas, E., Diethelm, K., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. World Scientific,

Singapore (2012)
2. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, part II. Geophys. J. R. Astron. Soc.

13(5), 529–539 (1967)
3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
4. Fernandez, A., Ozarslan, A.M., Baleanu, D.: On fractional calculus with general analytic kernels. Appl. Math. Comput.

354, 248–265 (2019)
5. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier,

Amsterdam (2006)
6. Zhou, Y., Shangerganesh, L., Manimaran, J., Debbouche, A.: A class of time-fractional reaction–diffusion equation with

nonlocal boundary condition. Math. Methods Appl. Sci. 41, 2987–2999 (2018)
7. Zhou, Y., Peng, L., Huang, Y.Q.: Duhamel’s formula for time-fractional Schrödinger equations. Math. Methods Appl. Sci.

41, 8345–8349 (2018)
8. Zhou, Y., Peng, L., Huang, Y.Q.: Existence and Hölder continuity of solutions for time-fractional Navier–Stokes

equations. Math. Methods Appl. Sci. 41, 7830–7838 (2018)
9. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, San

Diego (1990)
10. Shen, F., Tan, W., Zhao, Y., Masuoka, T.: The Rayleigh–Stokes problem for a heated generalized second grade fluid with

fractional derivative model. Nonlinear Anal., Real World Appl. 7(5), 1072–1080 (2006)
11. Triet, N.A., Hoan, L.V.C., Luc, N.H., Tuan, N.H., Thinh, N.V.: Identification of source term for the Rayleigh–Stokes problem

with Gaussian random noise. Math. Methods Appl. Sci. 41(14), 5593–5601 (2018)
12. Dehghan, M.: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary

specifications. Numer. Methods Partial Differ. Equ. 22(1), 220–257 (2006)
13. Dehghan, M.: The one-dimensional heat equation subject to a boundary integral specification. Chaos Solitons

Fractals 32(2), 661–675 (2007)
14. Dehghan, M., Abbaszadeh, M.: A finite element method for the numerical solution of Rayleigh–Stokes problem for a

heated generalized second grade fluid with fractional derivatives. Eng. Comput. 33, 587–605 (2017)
15. Mehrdad, L., Dehghan, M.: The use of Chebyshev cardinal functions for the solution of a partial differential equation

with an unknown time-dependent coefficient subject to an extra measurement. J. Comput. Appl. Math. 235(3),
669–678 (2010)

16. Zaky, A.M.: An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated
generalized second grade fluid. Comput. Math. Appl. 75(7), 2243–2258 (2018)

17. Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh–Stokes problem for a generalized second-grade
fluid. Numer. Math. 131, 1–31 (2015)


	Determination of source term for the fractional Rayleigh-Stokes equation with random data
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Mild solution of backward in time problem for Rayleigh-Stokes problem
	Main results
	The ill-posedness of the problem
	Regularization and convergence rate under a priori bounded condition
	Error estimate in L2(Omega)
	Error estimate in Hbeta


	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


