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1 Introduction
Let D = {z : |z| < 1} be the open unit disk in the complex plane C and H(D) be the class of
all functions analytic in D. For 0 < p < ∞, Hp denotes the Hardy space, which consists of
all functions f ∈ H(D) for which (see [6])

‖f ‖p
Hp = sup

0<r<1

1
2π

∫ 2π

0

∣∣f (reiθ )∣∣p dθ < ∞.

As usual, H∞ denotes the space of all bounded analytic functions in D.
The Bloch space B is the set of all functions f ∈ H(D) that satisfies

‖f ‖β = sup
z∈D

(
1 – |z|2)∣∣f ′(z)

∣∣ < ∞.

It is well known thatB is a Banach space if it is equipped with the norm ‖f ‖B = |f (0)|+‖f ‖β .
Note that H∞ ⊂ B. The little Bloch space, denoted by B0, is the subspace of B consisting
of all f ∈ H(D) such that lim|z|→1(1 – |z|2)|f ′(z)| = 0. It is well known that B0 is the closure
of polynomials in B.

Let 0 < α < ∞. Recall that the Bloch type space, denoted by Bα , is the space of all func-
tions f ∈ H(D) satisfying

‖f ‖Bα =
∣∣f (0)

∣∣ + sup
z∈D

(
1 – |z|2)α∣∣f ′(z)

∣∣ < ∞.
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It is easy to see that Bα is a Banach space under the norm ‖ ·‖Bα . Let n be a positive integer.
It is well known that ‖f ‖Bα is equivalent to ‖f ‖Bα,n (see [34, p. 1149]), where

‖f ‖Bα,n =
∣∣f (0)

∣∣ +
∣∣f ′(0)

∣∣ + · · · +
∣∣f (n–1)(0)

∣∣ + sup
z∈D

(
1 – |z|2)α+n–1∣∣f (n)(z)

∣∣.

The little Bloch type space Bα
0 is the subspace of Bα consisting of all f ∈ H(D) such that

lim|z|→1

(
1 – |z|2)α∣∣f ′(z)

∣∣ = 0.

For 0 < p < ∞ and s > –1, the classical weighted Bergman space Ap
s consists of those

f ∈ H(D) such that

‖f ‖Ap
s

=
(

(s + 1)
∫
D

∣∣f (z)
∣∣p(1 – |z|2)s dA(z)

)1/p

< ∞.

Suppose that ω is a positive and integrable function in D. ω is called a radial weight if
ω(z) = ω(|z|). Let ω̂(r) =

∫ 1
r ω(t) dt for 0 ≤ r < 1 and ω̂(z) = ω̂(|z|) for z ∈ D, respectively. ω

is called a doubling weight, denoted by ω ∈ D̂, if there is a constant C > 0 such that

ω̂(r) < Cω̂

(
1 + r

2

)
, when 0 ≤ r < 1.

ω is called a regular weight, denoted by ω ∈ R, if there is a constant C > 0 determined by
ω such that

1
C

<
ω̂(r)

(1 – r)ω(r)
< C, when 0 ≤ r < 1.

ω is called a reverse doubling weight, denoted by ω ∈ Ď, if there exist constants K = K(ω) >
1 and C = C(ω) > 1 such that

ω̂(r) ≥ Cω̂

(
1 –

1 – r
K

)
, 0 ≤ r < 1.

We write D = D̂ ∩ Ď. Weights in D are said to be two-sided doubling weights. They orig-
inated in the work of Peláez and Rättyä [22, 23].

Let 0 < p < ∞ and ω ∈ D. The weighted Bergman space Ap
ω(D) = Ap

ω is the space of all
f ∈ H(D) for which

‖f ‖p
Ap

ω
=

∫
D

∣∣f (z)
∣∣p

ω(z) dA(z) < ∞.

It is easy to check that Ap
ω is a Banach space when p ≥ 1 and a complete metric space with

the distance ρ(f , g) = ‖f – g‖p
Ap

ω
when 0 < p < 1. When ω(z) = (1 – |z|2)s (s > –1), the space

Ap
ω becomes the classical weighted Bergman space Ap

s .
Let ϕ be an analytic self-map of D. Every ϕ induces a composition operator Cϕ , which

is defined on H(D) by

Cϕ(f )(z) = f
(
ϕ(z)

)
, z ∈ D.
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Composition operators have been widely studied on various Banach spaces of analytic
functions in recent years. One of the main themes when studying composition operators
is to characterize the operator properties of Cϕ in terms of the function properties of the
symbol ϕ when Cϕ acts on several Banach spaces of analytic functions. Readers can refer
to [5], which is a standard introductory reference for the theory of composition operators
written by Cowen and MacCluer.

It is a well-known consequence of the Schwartz–Pick lemma that the composition op-
erators are bounded on the classical Bloch space. In 1995, Madigan and Matheson [21]
characterized continuity and compactness for composition operators on the Bloch space.
Another two compactness criteria for composition operators on the Bloch space have been
obtained in [28] and [30]. More characterizations of the boundedness and compactness
of composition operators between different Bloch type spaces were studied, for instance,
in [12, 18, 19, 32] (see also the references therein).

Let D be the differentiation operator Df = f ′, f ∈ H(D). It is well known that the dif-
ferentiation operator is unbounded on various Banach spaces of analytic functions. The
products of composition and differentiation operators DCϕ and CϕD are defined by

DCϕ(f ) = (f ◦ ϕ)′ = f ′(ϕ)ϕ′ and CϕD(f ) = f ′(ϕ).

For a nonnegative integer m ∈N, we define Dmf = f (m), f ∈ H(D). It is natural to define the
product of composition operator and mth differentiation operator as follows:

CϕDmf = f (m) ◦ ϕ, f ∈ H(D).

See [13–17, 37] for the study of the product of composition and differentiation operators
on various spaces of analytic functions.

Let X and Y be two Banach spaces of analytic functions. For simplicity, the closure of
X ∩Y in the norm of Y is denoted by CY (X ∩Y ). The question, which was raised by Ander-
son, Clunie, and Pommerenke in [2], of describing the closure of H∞ in B is still open. An-
derson in [1] mentioned that Jones gave an unpublished characterization of the closure of
BMOA in B. Ghatage and Zheng in [10] provided a complete proof for Jones’s description.
In 2008, Zhao studied CB(F(p, p – 2, s)) when 1 ≤ p < ∞ and 0 < s ≤ 1 in [31]. Aulaskari
and Zhao studied composition operators from the Bloch space to CB(F(p, p – 2, s)) in [3].
Monreal Galán and Nicolau in [7] characterized the closure in the Bloch norm of the space
Hp ∩ B for 1 < p < ∞. Recently, Galanopoulos, Monreal Galán, and Pau in [8] extended
the above result to the case of the unit ball in C

n and for 0 < p < ∞. Bao and Göğüş in
[4] characterized the closure of D2

α ∩ B (–1 < α ≤ 1) in the Bloch space, where D2
α is the

Dirichlet type space. See [9, 11, 20, 26, 27, 29] for more results of the closure of some
function spaces in the Bloch space.

It is well known that in many aspects the Hardy space Hp is the limit of Ap
α as α →

–1. However, this is a rough estimate. From [22, 23], we see that Ap
ω induced by rapidly

increasing weights lie “closer” to Hp than any Ap
α , i.e.,

Hp ⊂ Ap
ω ⊂ Ap

α .

In addition, for any α > –1 and 0 < p < ∞, B ⊂ Ap
α and B � Ap

ω for some ω ∈ D̂. Motivated
by the above observations and [7], we naturally look for a characterization of CB(Ap

ω ∩B)
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or, more generally, of CBβ (Ap
ω ∩ Bβ ). The purpose of this paper is to study the closure

of Ap
ω ∩ Bβ in the norm of Bβ . We give a complete characterization for CBβ (Ap

ω ∩ Bβ ).
Moreover, we study the boundedness and compactness of the operators CϕDm : Bα(Bα

0 ) →
CBβ (Ap

ω ∩Bβ ) and CϕDm : CBβ (Ap
ω ∩Bβ ) → CBβ (Ap

ω ∩Bβ ).
Throughout this paper, we say that f � h if there exists a constant C > 0 such that f ≤ Ch.

The symbol f ≈ h means that f � h � f .

2 Characterization of CBβ (Ap
ω ∩Bβ )

To state and prove our main results in this paper, we need some lemmas. The following
well-known estimate can be found in [35, Lemma 3.10].

Lemma 1 Suppose s > 0 and t > –1. Then there exists a positive constant C such that

∫
D

(1 – |w|2)t

|1 – z̄w|2+t+s dA(w) ≤ C
(1 – |z|2)s

for all z ∈ D.

Lemma 2 ([35, Exercise 8, p. 63]) For any T > 0, there exists a constant C > 0 (depending
on T but not on t and z) such that

∫ 2π

0

dθ

|1 – zeiθ |1+t ≤ CΓ (t)
(1 – |z|)t

for all z ∈ D and t ∈ (0, T). Here Γ (t) =
∫ +∞

0 xt–1e–x dx.

Lemma 3 ([25, Proposition 5]) Let 0 < p < ∞ and ω ∈ D̂, and write W (r) = Wω(r) = ω̂(r)
1–r

for all 0 ≤ r < 1. Then ‖f ‖Ap
W

≈ ‖f ‖Ap
ω

for all f ∈ H(D) if and only if ω ∈ D. Moreover, if
ω ∈D, we have W ∈R and Ŵ = ω̂.

Lemma 4 ([24, Theorem 5]) Let ω ∈ D̂, 0 < p < ∞, and k ∈N. Then

‖f ‖p
Ap

ω
≈

∫
D

∣∣f (k)(z)
∣∣p(1 – |z|)kp

ω(z) dA(z) +
k–1∑
j=0

∣∣f (j)(0)
∣∣p, f ∈ H(D),

if and only if ω ∈D.

Now we are in a position to state and prove our main results in this paper.

Theorem 1 Let n be a positive integer. Suppose that 0 < p < ∞, ω ∈D, and 0 < β < ∞. Let
f ∈ Bβ . Then f ∈ CBβ (Ap

ω ∩Bβ ) if and only if, for any ε > 0,

∫
Ωn,β ,ε (f )

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 < ∞, (1)

where

Ωn,β ,ε(f ) =
{

z ∈D :
(
1 – |z|2)β+n–1∣∣f (n)(z)

∣∣ ≥ ε
}

.
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Proof Let W (z) = ω̂(z)
1–|z|2 = ω̂(|z|)

1–|z|2 . By Lemma 3, ‖f ‖Ap
W

≈ ‖f ‖Ap
ω

. Hence,

f ∈ CBβ

(
Ap

W ∩Bβ
) ⇔ f ∈ CBβ

(
Ap

ω ∩Bβ
)
.

Take a function f in the closure in the Bloch type norm of Ap
W ∩Bβ and ε > 0. Then there

exists g ∈ Ap
W ∩Bβ such that ‖f – g‖Bβ ,n ≤ ε

2 . Note that

(
1 – |z|2)β+n–1∣∣f (n)(z)

∣∣ ≤ sup
w∈D

(
1 – |w|2)β+n–1∣∣f (n)(w) – g(n)(w)

∣∣

+
(
1 – |z|2)β+n–1∣∣g(n)(z)

∣∣
≤ ε

2
+

(
1 – |z|2)β+n–1∣∣g(n)(z)

∣∣, z ∈ D.

This implies that Ωn,β ,ε(f ) ⊆ Ωn,β , ε2 (g). Then, by Lemmas 3 and 4, we have

‖g‖p
Ap

ω
�

∫
D

∣∣g(n)(z)
∣∣p(1 – |z|2)npW (z) dA(z)

≥
∫

Ωn,β , ε2
(g)

∣∣g(n)(z)
∣∣p(1 – |z|2)npW (z) dA(z)

=
∫

Ωn,β , ε2
(g)

|g(n)(z)|p(1 – |z|2)(β+n–1)pW (z)
(1 – |z|2)(β+n–1)p–np dA(z)

≥
(

ε

2

)p ∫
Ωn,β , ε2

(g)

W (z) dA(z)
(1 – |z|2)pβ–p

≥
(

ε

2

)p ∫
Ωn,β ,ε (f )

W (z) dA(z)
(1 – |z|2)pβ–p ,

which implies that

∫
Ωn,β ,ε (f )

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 =

∫
Ωn,β ,ε (f )

W (z) dA(z)
(1 – |z|2)pβ–p < ∞.

Conversely, assume that (1) holds. Fix ε > 0 and let f satisfy (1). Without loss of gener-
ality, we may assume that f (0) = f ′(0) = · · · = f (n–1)(0) = 0. For any z ∈ D, using Proposi-
tion 4.27 in [35], we have

f (z) =
1

(γ + 2) · · · (γ + n)

∫
D

f (n)(w)(1 – |w|2)n+γ

(1 – zw)2+γ wn dA(w),

where γ ≥ 0. Then we will choose γ large enough for our purpose. Following [31], we set
f (z) = f1(z) + f2(z), where

f1(z) =
1

(γ + 2) · · · (γ + n)

∫
Ωn,β ,ε (f )

f (n)(w)(1 – |w|2)n+γ

(1 – zw)2+γ wn dA(w)

and

f2(z) =
1

(γ + 2) · · · (γ + n)

∫
D\Ωn,β ,ε (f )

f (n)(w)(1 – |w|2)n+γ

(1 – zw)2+γ wn dA(w).
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Obviously,

f (n)
1 (z) = (γ + n + 1)

∫
Ωn,β ,ε (f )

f (n)(w)(1 – |w|2)n+γ

(1 – zw)n+2+γ
dA(w)

and

f (n)
2 (z) = (γ + n + 1)

∫
D\Ωn,β ,ε (f )

f (n)(w)(1 – |w|2)n+γ

(1 – zw)n+2+γ
dA(w).

Let h(z) = f1(z) –
∑n–1

k=1
f (k)
1 (0)

k! zk . Then h(0) = h′(0) = · · · = h(n–1)(0) = 0 and (f – h)(n)(z) =
f (n)
2 (z). Using Lemma 1, we obtain

‖f – h‖Bβ ,n = sup
z∈D

(
1 – |z|2)β+n–1∣∣f (n)

2 (z)
∣∣

� sup
z∈D

(
1 – |z|2)β+n–1

∫
D\Ωn,β ,ε (f )

|f (n)(w)|(1 – |w|2)n+γ

|1 – zw|n+2+γ
dA(w)

� ε sup
z∈D

(
1 – |z|2)β+n–1

∫
D

(1 – |w|2)γ –β+1

|1 – zw|n+2+γ
dA(w)

� ε.

This means that h ∈ Bβ .
Since W ∈R, it is well known that, see [22] for example, there exist –1 < a < b < ∞ and

δ ∈ [0, 1) such that

W (r)
(1 – r)b ↗ ∞, and

W (r)
(1 – r)a ↘ 0, when r ≥ δ.

Without loss of generality, we can assume δ = 0. Then we can choose γ > 0 such that
(p – 1)(β – 1) + γ – |b| > 0. By Lemmas 1 and 2, we have

∫
|z|≤|w|

(1 – |z|2)n–(p–1)(β–1)W (z)
|1 – zw|n+2+γ

dA(z)

≈
∫ |w|

0

(
1 – r2)n–(p–1)(β–1)W (r) dr

∫ 2π

0

1
|1 – rweiθ |n+2+γ

dθ

≈
∫ |w|

0

W (r)
(1 – r)b

(1 – r)n–(p–1)(β–1)+b

(1 – r|w|)n+γ +1 dr

� W (w)
(1 – |w|)b

∫ |w|

0

1
(1 – r)(p–1)(β–1)+γ –b+1 dr

� W (w)
(1 – |w|)(p–1)(β–1)+γ

and
∫

|w|<|z|<1

(1 – |z|2)n–(p–1)(β–1)W (z)
|1 – zw|n+2+γ

dA(z)

� ω̂(w)
∫

|w|<|z|<1

(1 – |z|2)n–(p–1)(β–1)–1

|1 – zw|n+2+γ
dA(z)
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≤ ω̂(w)
∫
D

(1 – |z|2)n–(p–1)(β–1)–1

|1 – zw|n+2+γ
dA(z)

� W (w)
(1 – |w|)(p–1)(β–1)+γ

.

Thus using Fubini’s theorem and Lemma 1, we obtain

∫
D

∣∣h(n)(z)
∣∣p(1 – |z|2)npW (z) dA(z)

=
∫
D

∣∣f (n)
1 (z)

∣∣p(1 – |z|2)npW (z) dA(z)

≤ ‖f1‖p–1
Bβ ,n

∫
D

∣∣f (n)
1 (z)

∣∣(1 – |z|2)n–(p–1)(β–1)W (z) dA(z)

� ‖f1‖p–1
Bβ ,n

∫
D

(
1 – |z|2)n–(p–1)(β–1)W (z)

×
(∫

Ωn,β ,ε (f )

|f (n)(w)|(1 – |w|2)n+γ

|1 – zw|n+2+γ
dA(w)

)
dA(z)

� ‖f1‖p–1
Bβ ,n

∫
Ωn,β ,ε (f )

∣∣f (n)(w)
∣∣(1 – |w|2)n+γ

×
(∫

D

(1 – |z|2)n–(p–1)(β–1)W (z)
|1 – zw|n+2+γ

dA(z)
)

dA(w)

� ‖f1‖p–1
Bβ ,n

∫
Ωn,β ,ε (f )

|f (n)(w)|(1 – |w|2)n+γ W (w)
(1 – |w|)(p–1)(β–1)+γ

dA(w)

� ‖f1‖p–1
Bβ ,n‖f ‖Bβ ,n

∫
Ωn,β ,ε (f )

W (w) dA(w)
(1 – |w|2)pβ–p

�
∫

Ωn,β ,ε (f )

ω̂(w) dA(w)
(1 – |w|2)pβ–p+1 < ∞.

Hence, h ∈ Ap
W . Then, for any ε > 0, there exists a function h ∈ Ap

W ∩ Bβ such that ‖f –
h‖Bβ ,n � ε, which means that f ∈ CBβ (Ap

ω ∩Bβ ). The proof is complete. �

3 The operator CϕDm on CBβ (Ap
ω ∩Bβ )

Next, we characterize the boundedness and compactness of the operator CϕDm from
Bloch type spaces Bα(Bα

0 ) to CBβ (Ap
ω ∩Bβ ). We denote Ωn,β ,ε(f ) by Ωβ ,ε(f ) when n = 1.

Theorem 2 Let ϕ be an analytic self-map of D and m ∈N. Suppose that 0 < p < ∞, ω ∈D,
and 0 < α,β < ∞. Then CϕDm : Bα → CBβ (Ap

ω ∩Bβ ) is bounded if and only if, for any ε > 0,

∫
Γε (ϕ)

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 < ∞, (2)

where

Γε(ϕ) =
{

z ∈D :
(1 – |z|2)β

(1 – |ϕ(z)|2)α+m

∣∣ϕ′(z)
∣∣ ≥ ε

}
.
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Proof Sufficiency. Assume that (2) holds for any ε > 0. Let f ∈ Bα . Then

∣∣(CϕDmf
)′(z)

∣∣(1 – |z|2)β =
∣∣f (m+1)(ϕ(z)

)∣∣∣∣ϕ′(z)
∣∣(1 – |z|2)β

≤ ‖f ‖Bα,m+1
(1 – |z|2)β

(1 – |ϕ(z)|2)α+m

∣∣ϕ′(z)
∣∣.

Thus, for any δ > 0, if |(CϕDmf )′(z)|(1 – |z|2)β > δ, we have that

(1 – |z|2)β

(1 – |ϕ(z)|2)α+m

∣∣ϕ′(z)
∣∣ ≥ δ

‖f ‖Bα,m+1
= ε.

Therefore,

∞ >
∫

Γε (ϕ)

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 �

∫
Ωβ ,δ (CϕDmf )

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 .

According to Theorem 1, we get that

CϕDmf ∈ CBβ

(
Ap

ω ∩Bβ
)
.

This means that CϕDmf : Bα → CBβ (Ap
ω ∩Bβ ) is bounded.

Necessity. Suppose that CϕDmf : Bα → CBβ (Ap
ω ∩Bβ ) is bounded. It is well known that,

for any positive integer m, there exist two functions f1, f2 ∈ Bα such that (see [36])

∣∣f (m)
1 (z)

∣∣ +
∣∣f (m)

2 (z)
∣∣ ≥ 1

(1 – |z|2)α+m–1 .

Due to our assumption, we get that f (m)
1 ◦ ϕ, f (m)

2 ◦ ϕ ∈ CBβ (Ap
ω ∩Bβ ). Thus, for any ε > 0,

we have
∫

Ωβ , ε2
(f (m)

1 ◦ϕ)

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 < ∞

and
∫

Ωβ , ε2
(f (m)

2 ◦ϕ)

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 < ∞.

If z ∈ Γε(ϕ), then we have

(∣∣(CϕDmf1
)′(z)

∣∣ +
∣∣(CϕDmf2

)′(z)
∣∣)(1 – |z|2)β

=
(∣∣f (m+1)

1
(
ϕ(z)

)∣∣ +
∣∣f (m+1)

2
(
ϕ(z)

)∣∣)∣∣ϕ′(z)
∣∣(1 – |z|2)β

≥ (1 – |z|2)β

(1 – |ϕ(z)|2)α+m

∣∣ϕ′(z)
∣∣ ≥ ε.

This means that, either

∣∣(CϕDmf1
)′(z)

∣∣(1 – |z|2)β ≥ ε

2
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or

∣∣(CϕDmf2
)′(z)

∣∣(1 – |z|2)β ≥ ε

2
.

Therefore,

∫
Γε (ϕ)

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 ≤

∫
Ωβ , ε2

(f (m)
1 ◦ϕ)∪Ωβ , ε2

(f (m)
2 ◦ϕ)

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1

≤
∫

Ωβ , ε2
(f (m)

1 ◦ϕ)

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 +

∫
Ωβ , ε2

(f (m)
2 ◦ϕ)

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1

< ∞.

The proof is complete. �

Theorem 3 Let ϕ be an analytic self-map of D and m ∈N. Suppose that 0 < p < ∞, ω ∈D,
and 0 < α,β < ∞. Then CϕDm : Bα

0 → CBβ (Ap
ω ∩Bβ) is bounded if and only if ϕ ∈ CBβ (Ap

ω ∩
Bβ ) and

sup
z∈D

(1 – |z|2)β

(1 – |ϕ(z)|2)α+m

∣∣ϕ′(z)
∣∣ < ∞. (3)

Proof The necessity of the conditions can be proved immediately. In fact, we suppose that
CϕDm : Bα

0 → CBβ (Ap
ω ∩Bβ ) is bounded. Notice that fm(z) = zm+1

(m+1)! ∈ Bα
0 , then we have

ϕ = CϕDmf ∈ CBβ

(
Ap

ω ∩Bβ
)
.

Since CϕDm : Bα
0 → CBβ (Ap

ω ∩Bβ ) is bounded and CBβ (Ap
ω ∩Bβ ) ⊆ Bβ , then CϕDm : Bα

0 →
Bβ is bounded. It is easy to see that (3) holds according to [33, Theorem 2.1].

To prove the sufficiency, we assume that ϕ ∈ CBβ (Ap
ω ∩Bβ ) and

Q := sup
z∈D

(1 – |z|2)β

(1 – |ϕ(z)|2)α+m

∣∣ϕ′(z)
∣∣ < ∞.

Let f ∈ Bα
0 . Then, for any ε > 0, there is a constant r (0 < r < 1) such that

∣∣f (m)(z)
∣∣(1 – |z|2)α+m–1 <

ε

Q
, whenever |z| > r.

Let z ∈ Ωβ ,ε(CϕDmf ). Then we have

Q
∣∣f (m+1)(ϕ(z)

)∣∣(1 –
∣∣ϕ(z)

∣∣2)α+m

≥ ∣∣f (m+1)(ϕ(z)
)∣∣(1 –

∣∣ϕ(z)
∣∣2)α+m (1 – |z|2)β

(1 – |ϕ(z)|2)α+m

∣∣ϕ′(z)
∣∣

=
∣∣(CϕDmf

)′(z)
∣∣(1 – |z|2)β ≥ ε.
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This means that |ϕ(z)| ≤ r. Thus,

‖f ‖Bα,m+1

(1 – r2)α+m

(
1 – |z|2)β ∣∣ϕ′(z)

∣∣

≥ ∣∣f (m+1)(ϕ(z)
)∣∣(1 –

∣∣ϕ(z)
∣∣2)α+m (1 – |z|2)β

(1 – |ϕ(z)|2)α+m

∣∣ϕ′(z)
∣∣

=
∣∣(CϕDmf

)′(z)
∣∣(1 – |z|2)β ≥ ε.

Let δ = (1–r2)α+mε

‖f ‖Bα,m+1
. Then |ϕ′(z)|(1 – |z|2)β ≥ δ. Hence, Ωβ ,ε(CϕDmf ) ⊆ Ωβ ,δ(ϕ). Due to ϕ ∈

CBβ (Ap
ω ∩Bβ ), we obtain

∞ >
∫

Ωβ ,δ (ϕ)

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 ≥

∫
Ωβ ,ε (CϕDmf )

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 .

According to Theorem 1, we get that CϕDmf ∈ CBβ (Ap
ω ∩ Bβ ). Therefore, CϕDm : Bα

0 →
CBβ (Ap

ω ∩Bβ ) is bounded. The proof is complete. �

Theorem 4 Let ϕ be an analytic self-map of D and m ∈N. Suppose that 0 < p < ∞, ω ∈D,
and 0 < α,β < ∞. Then the following statements are equivalent:

(i) CϕDm : Bα → CBβ (Ap
ω ∩Bβ ) is compact;

(ii) CϕDm : Bα
0 → CBβ (Ap

ω ∩Bβ ) is compact;
(iii) ϕ ∈ CBβ (Ap

ω ∩Bβ ) and

lim
|ϕ(z)|→1

(1 – |z|2)β

(1 – |ϕ(z)|2)α+m

∣∣ϕ′(z)
∣∣ = 0. (4)

Proof (i) ⇒ (ii). The implication is obvious because Bα
0 ⊆ Bα .

(ii) ⇒ (iii). Assume that CϕDm : Bα
0 → CBβ (Ap

ω ∩ Bβ ) is compact. Obviously, CϕDm :
Bα

0 → CBβ (Ap
ω ∩Bβ ) is bounded. According to Theorem 3, we obtain ϕ ∈ CBβ (Ap

ω ∩Bβ ). On
the other hand, it is obvious that CBβ (Ap

ω ∩Bβ ) ⊆ Bβ . Then CϕDm : Bα
0 → Bβ is compact.

This clearly implies that (4) holds by [33, Theorem 2.2].
(iii) ⇒ (i). According to the assumed condition, we see that there exists r (0 < r < 1) such

that

(1 – |z|2)β

(1 – |ϕ(z)|2)α+m

∣∣ϕ′(z)
∣∣ <

ε

2
, whenever

∣∣ϕ(z)
∣∣ > r.

Let z ∈ Γε(ϕ), then |ϕ(z)| ≤ r. Therefore,

(1 – |z|2)β

(1 – r2)α+m

∣∣ϕ′(z)
∣∣ ≥ (1 – |z|2)β

(1 – |ϕ(z)|2)α+m

∣∣ϕ′(z)
∣∣ ≥ ε.

Thus

∣∣ϕ′(z)
∣∣(1 – |z|2)β ≥ (

1 – r2)α+m
ε.

Set δ = (1 – r2)α+mε. Then z ∈ Ωβ ,δ(ϕ). Since ϕ ∈ CBβ (Ap
ω ∩Bβ), we have

∞ >
∫

Ωβ ,δ (ϕ)

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 �

∫
Γε (ϕ)

ω̂(z) dA(z)
(1 – |z|2)pβ–p+1 .
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According to Theorem 2, CϕDm : Bα → CBβ (Ap
ω ∩ Bβ ) is bounded. We know that CϕDm :

Bα → Bβ is compact by [33, Theorem 2.2]. Therefore, CϕDm : Bα → CBβ (Ap
ω ∩Bβ ) is com-

pact. The proof is complete. �

Theorem 5 Let ϕ be an analytic self-map of D and m ∈N. Suppose that 0 < p < ∞, ω ∈D,
and 0 < β < ∞. Then CϕDm : CBβ (Ap

ω ∩ Bβ ) → CBβ (Ap
ω ∩ Bβ ) is compact if and only if

ϕ ∈ CBβ (Ap
ω ∩Bβ ) and

lim
|ϕ(z)|→1

(1 – |z|2)β

(1 – |ϕ(z)|2)β+m

∣∣ϕ′(z)
∣∣ = 0. (5)

Proof Assume that CϕDm : CBβ (Ap
ω ∩ Bβ) → CBβ (Ap

ω ∩ Bβ ) is compact. Thus CϕDm :
CBβ (Ap

ω ∩Bβ ) → CBβ (Ap
ω ∩Bβ ) is bounded. So we obtain ϕ ∈ CBβ (Ap

ω ∩Bβ ) since zm+1

(m+1)! ∈
CBβ (Ap

ω ∩ Bβ ). It is well known that Bβ
0 is the closure of all polynomials in Bβ and the

space Ap
ω contains all polynomials. Therefore, CϕDm : Bβ

0 → CBβ (Ap
ω ∩ Bβ ) is compact.

According to Theorem 4, we see that (5) holds.
Conversely, suppose that ϕ ∈ CBβ (Ap

ω ∩Bβ ) and (5) holds. By [33, Theorem 2.2], we see
that CϕDm : Bβ → Bβ is compact. By Theorem 4, we know that CϕDm : Bβ → CBβ (Ap

ω ∩
Bβ ) is compact. Since CBβ (Ap

ω ∩ Bβ ) ⊆ Bβ , we obtain CϕDm : CBβ (Ap
ω ∩ Bβ) → CBβ (Ap

ω ∩
Bβ ) is compact. The proof is complete. �
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