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Abstract
In this article, we discuss the existence and uniqueness of solution of a delay Caputo
q-fractional difference system. Based on the q-fractional Gronwall inequality, we
analyze the Ulam–Hyers stability and the Ulam–Hyers–Rassias stability. An example is
provided to support the theoretical results.
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1 Introduction
In the theory of differential equations, Gronwall’s inequality is one of the most impor-
tant tools. In 1919, for the first time, Gronwall worked on this type of inequality [1]. As
time passed, many extensions of the Gronwall inequality have started to take part of the
literature on mathematical inequalities. In 1935, Mikeladze published about the discrete
fractional Gronwall inequality for the first time [2]. Gronwall’s inequality is useful in the
analysis of qualitative and quantitative properties of the ordinary and fractional dynami-
cal systems. That is why it attracted many researchers to work on it. Haiping Ye et al. [3]
presented a generalized Gronwall inequality and studied the dependence of the solution
on the order and the initial condition of a fractional differential equation. Very recently,
the authors in [4], proved a Gronwall inequality for the generalized proportional fractional
operators. A class of stochastic Gronwall inequalities has been studied by Wang et al. in
[5]. Luo et al. in [6] studied the uniqueness and novel finite-time stability of solutions of
delay difference equations using the Gronwall inequality approach. Recently, Almeida et
al. in [7] and Yassine et al. in [8] presented an extension of the fractional Gronwall in-
equality and used it in the qualitative analysis of the solutions to generalized fractional
differential equations. For the category of fractional operators with nonsingular Mittag-
Leffler kernels, a recent version and its application have been reported in [9].

Difference equations have appeared in mathematical modeling to describe many real life
problems, e.g., queueing problems, electrical networks, economics, etc. For that reason,
many researchers have proved discrete versions of Gronwall-type inequalities in fractional
calculus and applied them to study the qualitative and quantitative properties of fractional
difference equations [10–15]. Moreover, Gronwall’s inequality is widely used for the anal-
ysis of stability of fractional differential as well as fractional difference equations. In one
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of the most recent works, Ameen et al. discussed the Ulam stability of delay fractional
differential equations with a generalized Caputo derivative using a Gronwall inequality
approach [16]. Kui Liu et al. [17] also presented Ulam–Hyers stability of solutions for dif-
ferential equations with Caputo–Fabrizio fractional derivative with the help of Gronwall’s
inequality. For further assistance in stability analysis using the Gronwall inequality ap-
proach, one can follow the articles cited in [18–20]. As for the stability results without any
Gronwall approach for the q-fractional systems, we refer to the first two works [21, 22].
Since stability, and specially Ulam–Hyers stability, is of high priority for researchers and
has been studied for applied as well as mathematical problems, one can follow the most
recent articles on stability cited in [23–25]. For recent operator and mathematical models,
whose stability analysis is an open dilemma, we refer to [26–28].

In q-fractional calculus most probably the first article on a q-fractional Gronwall in-
equality was presented by Abdeljawad et al. in [29]. Later on, another new Gronwall in-
equality in q-fractional calculus was proved in [30], where the authors considered a non-
linear delay Caputo q-fractional difference system and discussed the uniqueness and esti-
mates for the solutions of the system under consideration.

For 0 < q < 1, time scale Tq is defined as Tq = {qn : n ∈ Z} ∪ {0}, where Z is the set of
integers. If n0 ∈ Z and a = qn0 , Ta can be written as Ta = [a,∞)q = {q–ia : i = 0, 1, 2, . . .}.
Further define Iτ = {τa, q–1τa, q–2τa, . . . , a} and Tτa = [τa,∞)q = {τa, q–1τa, q–2τa, . . .},
where τ = qd ∈ Tq, d ∈N0, whereN0 = {0, 1, 2, 3, . . .} and Iτ = {a} with d = 0 is the non-delay
case. The objective of this paper is to study the existence, uniqueness and then analyze the
Ulam–Hyers and Ulam–Hyers–Rassias stabilities of Caputo q-fractional difference equa-
tion with delay of the form

⎧
⎨

⎩

c
q∇ξ

a u(t) = F (t, u(t), u(G (τ t))), t ∈ Ta,

u(t) = Φ(t), t ∈ Iτ ,
(1)

where u : Tτa → R, F : Ta × R
2 → R, G : Ta → Ta, Φ : Iτ → R, and c

q∇ξ
a denotes the

Caputo q-fractional difference operator of order 0 < ξ < 1. To prove our main results, we
use the q-fractional Gronwall inequality proved in [30].

This article is composed as follows: In Sect. 2, we present some basic definitions, no-
tations, lemmas, and remarks that are important for proving our main results. In Sect. 3,
we discuss the existence and uniqueness of solution of problem (1). Then, we discuss the
Ulam–Hyers and Ulam–Hyers–Rassias stabilities of the above-mentioned problem. In the
last section, examples are provided.

2 Essential preliminaries and definitions
In this section, we provide some basic concepts of q-fractional calculus that are essential to
proving our main results. For more details on the theory of q-calculus and q-fractional cal-
culus, we refer to [31–34] (and the references therein). For more remarkable basic articles
in q-fractional calculus, we refer to [35–39]. The book [40] and [41] are also recommended
for readers.

Definition 1 ([33]) For u : Tq →R, the nabla q-derivative of u is defined as

∇qu(t) =
u(t) – u(qt)

(1 – q)t
, t ∈ Tq – {0}.
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Definition 2 ([33]) For u : Tq →R, the nabla q-integral of u is defined as

∫ t

0
u(s)∇qs = (1 – q)t

∞∑

i=0

qiu
(
tqi).

For 0 ≤ a ∈ Tq,

∫ t

a
u(s)∇qs =

∫ t

0
u(s)∇qs –

∫ a

0
u(s)∇qs.

Definition 3 ([30, 33]) For ξ ∈R, we have:
(i) The nabla q-derivative of the q-factorial function with respect to t is given by

∇q(t – s)ξq =
1 – qξ

1 – q
(t – s)ξ–1

q .

(ii) The nabla q-derivative of the q-factorial function with respect to s is given by

∇q(t – s)ξq = –
1 – qξ

1 – q
(t – qs)ξ–1

q .

Definition 4 ([33, 40]) Let u : Tq → R, then left q-fractional integral of order ξ �=
0, –1, –2, –3, . . . and starting at 0 < a ∈ Tq is defined as

q∇–ξ
a u(t) =

1
Γq(ξ )

∫ t

a
(t – qs)ξ–1

q u(s)∇qs,

where

Γq(ξ + 1) =
1 – qξ

1 – q
Γq(ξ ), Γq(1) = 1, ξ > 0.

Definition 5 ([33, 39]) Let u : Tq →R, where 0 < ξ /∈N. Then the Caputo left q-fractional
derivative of order ξ is defined as

c
q∇ξ

a u(t) = q∇–(n–ξ )
a ∇n

q u(t) =
1

Γq(n – ξ )

∫ t

a
(t – qs)n–ξ–1

q ∇n
q u(s)∇qs,

where n = 	ξ
 + 1.

Lemma 1 ([33]) For ξ > 0 and u defined on suitable domain, we have

q∇–ξ
a

c
q∇ξ

a u(t) = u(t) –
n–1∑

k=0

(t – a)k
q

Γq(k + 1)
∇k

q u(a).

In particular, for ξ ∈ (0, 1], we have

q∇–ξ
a

c
q∇ξ

a u(t) = u(t) – u(a).
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Lemma 2 ([33]) For ξ ∈ R
+ and μ ∈ (–1,∞), we have

q∇–ξ
a (u – a)μq =

Γq(μ + 1)
Γq(ξ + μ + 1)

(u – a)μ+ξ
q , 0 < a < u < b.

Definition 6 Eq. (1) is said to be Ulam–Hyers stable if there exists a real number c such
that, for all ε > 0 and for each v(t) defined on Tτa, satisfying the inequality

∣
∣c
q∇ξ

a v(t) – F
(
t, v(t), v

(
G (τ t)

))∣
∣ ≤ ε, t ∈ Ta, (2)

there exists a solution u(t) defined on Tτa of Eq. (1) satisfying

∣
∣v(t) – u(t)

∣
∣ ≤ cε, t ∈ Tτa.

Definition 7 Eq. (1) is said to be Ulam–Hyers–Rassias stable with respect to ψ(t), ψ :
Ta →R

+ if there exists a real number c such that, for all ε > 0 and for each v(t) defined on
Tτa satisfying the inequality

∣
∣c
q∇ξ

a v(t) – F
(
t, v(t), v

(
G (τ t)

))∣
∣ ≤ εψ(t), t ∈ Ta, (3)

there exists a solution u(t) defined on Tτa of Eq. (1) satisfying

∣
∣v(t) – u(t)

∣
∣ ≤ cεψ(t), t ∈ Tτa.

The following lemma is the key to proceeding.

Lemma 3 ([30]) Let ξ > 0, u(t) and v(t) be nonnegative functions, w(t) be a nonnegative
and nondecreasing function for t ∈ Ta such that w(t) ≤ M, where M is a constant. If

u(t) ≤ v(t) + w(t)q∇–ξ
a u(t),

then

u(t) ≤ v(t) +
∞∑

k=1

(
w(t)Γq(ξ )

)k
q∇–kξ

a v(t).

Corollary 1 ([30]) Under the hypothesis of Lemma 3, assume further that v(t) is a nonde-
creasing function for t ∈ Ta, then

u(t) ≤ v(t)qEξ

(
w(t)Γq(ξ ), t – a

)
, t ∈ Ta,

where qEξ (λ, t – a) =
∑∞

k=0 λk (t–a)kξ
q

Γq(kξ+1) is the q-Mittag-Leffler function.

3 Main results
In this section, we present our main results. First, we start by proving the existence and
uniqueness of the solution of Eq. (1). Then, we proceed to analyzing the Ulam–Hyers and
Ulam–Hyers–Rassias stabilities.
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3.1 Existence and uniqueness results
Consider the space X = l∞(Tτa) of bounded functions (sequences) on Tτa, where Tτa =
[τa,∞)q. The space X is a Banach space with the norm defined by ‖z‖X = supt∈Tτa |z(t)|.
In the following lemma we present the solution representation.

Lemma 4 u(t) satisfies Eq. (1) if and only if it satisfies the following q-sum equation:

u(t) =

⎧
⎨

⎩

Φ(t) t ∈ Iτ ,

Φ(a) + q∇–ξ
a F (t, u(t), u(G (τ t))), t ∈ Ta.

(4)

Proof For t ∈ Iτ , it is clear that u(t) = Φ(t) is the solution of Eq. (1). Now, for t ∈ Ta, ap-
plying c

q∇ξ
a on both sides of Eq. (4), we get

c
q∇ξ

a u(t) = c
q∇ξ

aΦ(a) + c
q∇ξ

a
(

q∇–ξ
a

)
F

(
t, u(t), u

(
G (τ t)

))
.

Using the facts that c
q∇ξ

a (constant) = 0 and c
q∇ξ

a (q∇–ξ
a )u(t) = u(t), which can be seen by

Theorem 7 in [33], we have

c
q∇ξ

a u(t) = F
(
t, u(t), u

(
G (τ t)

))
.

On the other hand, from Eq. (4), for t ∈ Iτ , we have u(t) = Φ(t). Also, by applying q∇–ξ
a on

both sides of Eq. (1) and making use of Lemma 1, we get

u(t) = u(a) + q∇–ξ
a F

(
t, u(t), u

(
G (τ t)

))
,

hence we get

u(t) = Φ(a) + q∇–ξ
a F

(
t, u(t), u

(
G (τ t)

))
. �

Now we present the following uniqueness theorem.

Theorem 1 Assume the following:
(A1) F and Φ are continuous functions defined as F : Ta ×R

2 →R and Φ : Iτ →R;
(A2) F satisfies the Lipschitz condition with L > 0 such that, for t ∈ Ta,

∥
∥F (t, u1, u2) – F (t, v1, v2)

∥
∥ ≤ L

(‖u1 – v1‖ + ‖u2 – v2‖
)
;

(A3) The map G preserves the delay interval Iτ .
If u(t) and v(t) satisfy problem (1), then u(t) = v(t).

Proof Let z(t) = u(t) – v(t), then we have to show that z(t) = 0. It is immediate that z(t) = 0
for t ∈ Iτ . For t ∈ Ta, we have

z(t) = q∇–ξ
a F

(
t, u(t), u

(
G (τ t)

))
– q∇–ξ

a F
(
t, v(t), v

(
G (τ t)

))
.
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If t ∈ Iτ–1 = {a, . . . , τ–1a}, then (A3) forces z(G (τ t)) = 0. Then, together with the other as-
sumptions, it will imply that

∥
∥z(t)

∥
∥ =

∥
∥q∇–ξ

a F
(
t, u(t), u

(
G (τ t)

))
– q∇–ξ

a F
(
t, v(t), v

(
G (τ t)

))∥
∥

≤ q∇–ξ
a

∥
∥F

(
t, u(t), u

(
G (τ t)

))
– F

(
t, v(t), v

(
G (τ t)

))∥
∥

≤ q∇–ξ
a L

(∥
∥u(t) – v(t)

∥
∥ +

∥
∥u

(
G (τ t)

)
– v

(
G (τ t)

)∥
∥
)

≤ q∇–ξ
a L

(∥
∥z(t)

∥
∥ +

∥
∥z

(
G (τ t)

)∥
∥
)

≤ L

Γq(ξ )

∫ t

a
(t – qs)ξ–1

q
∥
∥z(s)

∥
∥∇qs.

An application of Corollary 1 will imply

∥
∥z(t)

∥
∥ ≤ 0.qEξ

[
L Γq(ξ ), t – a

]
,

and hence z(t) = 0 for t ∈ Iτ–1 . Next, for t ∈ [τ–1a,∞)q, we have

∥
∥z(t)

∥
∥ =

∥
∥q∇–ξ

a F
(
t, u(t), u

(
G (τ t)

))
–q ∇–ξ

a F
(
t, v(t), v

(
G (τ t)

))∥
∥

≤ q∇–ξ
a

∥
∥F

(
t, u(t), u

(
G (τ t)

))
– F

(
t, v(t), v

(
G (τ t)

))∥
∥

≤ q∇–ξ
a L

(∥
∥u(t) – v(t)

∥
∥ +

∥
∥u

(
G (τ t)

)
– v

(
G (τ t)

)∥
∥
)

≤ L

Γq(ξ )

∫ t

a
(t – qs)ξ–1

q
(∥
∥z(s)

∥
∥ +

∥
∥z

(
G (τ s)

)∥
∥
)∇qs.

If we let ẑ(t) = supβ∈Iτ ‖z(G (βt))‖, then we have

ẑ(t) ≤ L

Γq(ξ )

∫ t

a
(t – qs)ξ–1

q
(
ẑ(s) + ẑ(s)

)∇qs

≤ 2L

Γq(ξ )

∫ t

a
(t – qs)ξ–1

q ẑ(s)∇qs.

Finally, Corollary 1 implies that

∥
∥z(t)

∥
∥ ≤ ẑ(t) ≤ 0.qEξ

[
2L Γq(ξ ), t – a

]
.

Hence again we have z(t) = 0, i.e., u(t) = v(t) for t ∈ Tτa. �

Now we present the following existence and uniqueness theorem for problem (1).

Theorem 2 In addition to assumptions (A1), (A2), and (A3), let us assume that

(A4) 2L (T–a)ξq
Γq(ξ+1) < 1 for some T > a.

Then problem (1) has a unique solution in Tτa.

Proof On the Banach space X = l∞(Tτa) define an operator as follows:

T u(t) =

⎧
⎨

⎩

Φ(t), t ∈ Iτ ,

Φ(a) + q∇–ξ
a F (t, u(t), u(G (τ t)), t ∈ Ta.
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For t ∈ Iτ , we have |T v(t) – T u(t)| = 0, u, v ∈ X. Now, for t ∈ Ta, we have

∣
∣T v(t) – T u(t)

∣
∣ =

∣
∣q∇–ξ

a F (t, v(t), v
(
G (τ t)

)
– q∇–ξ

a F (t, u(t), u
(
G (τ t)

)∣
∣

≤ q∇–ξ
a

∣
∣F (t, v(t), v

(
G (τ t)

)
– F (t, u(t), u

(
G (τ t)

)∣
∣

≤ L
(

max
t∈Tτa

∣
∣v(t) – u(t)

∣
∣ + max

t∈Tτa

∣
∣v

(
G (τ t)

)
– u

(
G (τ t)

)∣
∣
)

q∇–ξ
a (1)

≤ 2L (t – a)ξq
Γq(ξ + 1)

‖v – u‖X

≤ 2L (T – a)ξq
Γq(ξ + 1)

‖v – u‖X , t < T .

Since 2L (T–a)ξq
Γq(ξ+1) < 1, then the operator T is a contraction and by the Banach fixed point

theorem there exists a unique fixed point. Clearly this unique fixed point is the unique
solution of problem (1). �

3.2 Ulam–Hyers stability
In the rest of what follows, we prove the Ulam–Hyers stability of problem (1).

Lemma 5 If a function v(t) defined on Tτa is a solution of inequality (2), then v(t) satisfies
the following inequality:

∣
∣v(t) – v(a) – q∇–ξ

a F
(
t, v(t), v

(
G (τ t)

))∣
∣ ≤ ε(t – a)ξq

Γq(ξ + 1)
.

Proof As we know, v(t) satisfies inequality (2) if and only if there exists a function h(t) such
that |h(t)| ≤ ε and

c
q∇ξ

a v(t) – F
(
t, v(t), v

(
G (τ t)

))
= h(t), t ∈ Ta. (5)

Now, applying q∇–ξ
a on both sides of Eq. (5), we get

(
q∇–ξ

a
)(c

q∇ξ
a
)
v(t) – q∇–ξ

a F
(
t, v(t), v

(
G (τ t)

))
= q∇–ξ

a h(t),

or

v(t) – v(a) – q∇–ξ
a F

(
t, v(t), v

(
G (τ t)

))
= q∇–ξ

a h(t).

Hence it follows that

∣
∣
(

q∇–ξ
a

)(c
q∇ξ

a
)
v(t) – q∇–ξ

a F
(
t, v(t), v

(
G (τ t)

))∣
∣ ≤ q∇–ξ

a
∣
∣h(t)

∣
∣

≤ εq∇–ξ
a (1)

=
ε(t – a)ξq
Γq(ξ + 1)

=
ε(T – a)ξq
Γq(ξ + 1)

, t < T . �
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Theorem 3 Under assumptions (A1), (A2), (A3), and (A4), Eq. (1) is Ulam–Hyers stable.

Proof Assume that v(t) is a solution of inequality (2) and u(t) is the unique solution of Eq.
(1) satisfying the condition u(t) = v(t) for t ∈ Iτ . Then we have

u(t) =

⎧
⎨

⎩

v(t), t ∈ Iτ ,

v(a) + q∇–ξ
a F (t, u(t), u(G (τ t)), t ∈ Ta.

For t ∈ Iτ , we have |v(t) – u(t)| = 0. Now, for t ∈ Iτ–1 = {a, . . . , τ–1a}, we have

∣
∣v(t) – u(t)

∣
∣ =

∣
∣v(t) – v(a) – q∇–ξ

a F
(
t, u(t), u

(
G (τ t)

))∣
∣

≤ ∣
∣v(t) – v(a) – q∇–ξ

a F
(
t, v(t), v

(
G (τ t)

))∣
∣

+
∣
∣q∇–ξ

a F
(
t, v(t), v

(
G (τ t)

))
– q∇–ξ

a F
(
t, u(t), u

(
G (τ t)

))∣
∣

≤ ∣
∣v(t) – v(a) – q∇–ξ

a F
(
t, v(t), v

(
G (τ t)

))∣
∣

+
∣
∣q∇–ξ

a
(
F

(
t, v(t), v

(
G (τ t)

))
– F

(
t, u(t), u

(
G (τ t)

)))∣
∣

≤ ∣
∣v(t) – v(a) – q∇–ξ

a F
(
t, v(t), v

(
G (τ t)

))∣
∣ + L q∇–ξ

a
(∣
∣v(t) – u(t)

∣
∣
)
,

where we have used v(G (τ t)) – u(G (τ t)) = 0 for t ∈ Iτ–1 . Now, using Lemma 5, we conclude
that

∣
∣v(t) – u(t)

∣
∣ ≤ ε(t – a)ξq

Γq(ξ + 1)
+ L q∇–ξ

a
(∣
∣v(t) – u(t)

∣
∣
)
.

Since ε(t–a)ξq
Γq(ξ+1) is a nonnegative and nondecreasing function ∀t ∈ Iτ–1 , then using Gronwall’s

inequality in Corollary 1, we see that

∣
∣v(t) – u(t)

∣
∣ ≤

[
(t – a)ξq

Γq(ξ + 1) qEξ

(
L Γq(ξ ), t – a

)
]

ε, ∀t ∈ Iτ–1 .

Now, for t ∈ [τ–1a,∞)q, following the same steps as mentioned above, we get

∣
∣v(t) – u(t)

∣
∣ ≤ ∣

∣v(t) – v(a) – q∇–ξ
a F

(
t, v(t), v

(
G (τ t)

))∣
∣

+ L q∇–ξ
a

(∣
∣v(t) – u(t)

∣
∣ +

∣
∣v

(
G (τ t)

)
– u

(
G (τ t)

)∣
∣
)
.

Let ẑ(t) = supβ∈Iτ |v(G (βt)) – u(G (βt))|, so we get

ẑ(t) ≤ ε(t – a)ξq
Γq(ξ + 1)

+ L q∇–ξ
a

(
ẑ(t) + ẑ(t)

)

≤ ε(t – a)ξq
Γq(ξ + 1)

+ 2L q∇–ξ
a ẑ(t).

Similarly, the use of Gronwall’s inequality in Corollary 1 will lead to

ẑ(t) ≤
[

(t – a)ξq
Γq(ξ + 1) qEξ

(
2L Γq(ξ ), t – a

)
]

ε, ∀t ∈ [
τ–1a,∞)

q.
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So we have

∣
∣v(t) – u(t)

∣
∣ ≤ ẑ(t) ≤

[
(t – a)ξq

Γq(ξ + 1) qEξ

(
2L Γq(ξ ), t – a

)
]

ε, ∀t,

or

∣
∣v(t) – u(t)

∣
∣ ≤

[
(T – a)ξq
Γq(ξ + 1) qEξ

(
2L Γq(ξ ), T – a

)
]

ε, ∀t < T .

That is,

∣
∣v(t) – u(t)

∣
∣ ≤ cε.

Hence completing the proof. �

3.3 Ulam–Hyers–Rassias stability
This subsection is devoted to the Ulam–Hyers–Rassias stability of problem (1).

Theorem 4 In addition to assumptions (A1), (A2), (A3), and (A4), assume that
(A5) there exist a continuous function ψ : Ta →R

+ and λψ ∈R
+ such that

q∇–ξ
a ψ(t) ≤ λψψ(t).

Then Eq. (1) is Ulam–Hyers–Rassias stable with respect to ψ .

Proof Let v(t) be a solution of inequality (3). So we have

–εψ(t) ≤ c
q∇ξ

a v(t) – F
(
t, v(t), v

(
G (τ t)

)) ≤ εψ(t).

Applying q∇–ξ
a , we get

–εq∇–ξ
a ψ(t) ≤ (

q∇–ξ
a

)(c
q∇ξ

a
)
v(t) – q∇–ξ

a F
(
t, v(t), v

(
G (τ t)

)) ≤ εq∇–ξ
a ψ(t).

Now, using assumption (A5), we get

–ελψψ(t) ≤ v(t) – v(a) – q∇–ξ
a F

(
t, v(t), v

(
G (τ t)

)) ≤ ελψψ(t).

This implies

∣
∣v(t) – v(a) – q∇–ξ

a F
(
t, v(t), v

(
G (τ t)

))∣
∣ ≤ ελψψ(t). (6)

Let us consider u(t) such that

c
q∇ξ

a u(t) = F
(
t, u(t), u

(
G (τ t)

))
, t ∈ Ta,

u(t) = v(t), t ∈ Iτ .



Butt et al. Journal of Inequalities and Applications        (2019) 2019:305 Page 10 of 13

For t ∈ Iτ , we have |v(t) – u(t)| = 0. Now, for t ∈ Iτ–1 , we have

∣
∣v(t) – u(t)

∣
∣ =

∣
∣v(t) – v(a) – q∇–ξ

a F (t, u(t), u
(
G (τ t)

)∣
∣

≤ ∣
∣v(t) – v(a) – q∇–ξ

a F (t, v(t), v
(
G (τ t)

)∣
∣

+
∣
∣q∇–ξ

a (F (t, v(t), v
(
G (τ t)

)
– F

(
t, u(t), u

(
G (τ t)

))∣
∣.

Using inequality (6) and the observation that v(G (τ t)) – u(G (τ t)) = 0 for t ∈ Iτ–1 , we have

∣
∣v(t) – u(t)

∣
∣ ≤ ελψψ(t) + L q∇–ξ

a
(∣
∣v(t) – u(t)

∣
∣
)
.

Now, by using Gronwall’s inequality in Corollary 1, we conclude that

∣
∣v(t) – u(t)

∣
∣ ≤ ελψψ(t)qEξ

(
L Γq(ξ ), t – a

)
.

For t ∈ [τ–1a,∞)q, using the same steps as mentioned above, we have

∣
∣v(t) – u(t)

∣
∣ ≤ ∣

∣v(t) – v(a) – q∇–ξ
a F

(
t, v(t), v

(
G (τ t)

))∣
∣

+ L q∇–ξ
a

(∣
∣v(t) – u(t)

∣
∣ +

∣
∣v

(
G (τ t)

)
– u

(
G (τ t)

)∣
∣
)

≤ ελψψ(t) + L q∇–ξ
a

(∣
∣v(t) – u(t)

∣
∣ +

∣
∣v

(
G (τ t)

)
– u

(
G (τ t)

)∣
∣
)
.

Again, letting ẑ(t) = supβ∈Iτ |v(G (βt)) – u(G (βt))|, we see that

ẑ(t) ≤ ελψψ(t) + 2L q∇–ξ
a ẑ(t).

Finally, the use of Gronwall’s inequality as in Corollary 1 implies that

ẑ(t) ≤ ελψψ(t)qEξ

(
2L Γq(ξ ), t – a

)

≤ εψ(t)
[
λψ qEξ

(
2L Γq(ξ ), t – a

)]
.

So we have

∣
∣v(t) – u(t)

∣
∣ ≤ ẑ(t) ≤ εψ(t)

[
λψ qEξ

(
2L Γq(ξ ), t – a

)]
, ∀t.

or we may write it as follows:

∣
∣v(t) – u(t)

∣
∣ ≤ εψ(t)

[
λψ qEξ

(
2L Γq(ξ ), T – a

)]
, ∀t < T .

This implies that

∣
∣v(t) – u(t)

∣
∣ ≤ cεψ(t).

Hence Eq. (1) is Ulam–Hyers–Rassias stable. �
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4 Example
The following example will illustrate Theorem 3.

Example 1 Let us consider the following problem:

c
q∇

1
2

a u(t) =
sin(u(t)) + sin(u(τ t))

200
, t ∈ Ta,

u(t) = cos 2t, t ∈ Iτ .

(A1) F (t, u, u∗) = sin u+sin u∗
200 and Φ(t) = cos 2t are continuous functions.

(A2) F satisfies the Lipschitz condition with Lipschitz constant L = 1
200 as follows:

∣
∣F (t, u1, u2) – F (t, v1, v2)

∣
∣ ≤ 1

200
(| sin u1 – sin v1| + | sin u2 – sin v2|

)

≤ 1
200

(|u1 – v1| + |u2 – v2|
)
.

(A3) G (τ t) = τ t preserves the delay interval Iτ ,

(A4) 2L(T–a)ξq
Γq(ξ+1) = 2( 1

200 )(T–a)
1
2
q

Γq( 1
2 +1)

< 1 for some T > a.
Hence all the conditions are satisfied, so the problem under consideration is Ulam–

Hyers stable.

5 Conclusion
We summarize our concluding statements by the following:

1. Studying and analyzing fractional dynamical systems on different time scales are
essential, and they have various applications in engineering and science. We have
done our investigations on the quantum time scale.

2. We have proved the existence and uniqueness of solution for a delay Caputo
q-fractional difference system depending on the Banach fixed point theorem and a
recently proven version of q-Gronwall’s inequality.

3. We have analyzed the Ulam–Hyers stability and the Ulam–Hyers–Rassias stability
for q-fractional system under investigation.

4. An example is provided to support the Ulam–Hyers–Rassias stability proven
theoretical result.

We have investigated our work in the frame of the classical Caputo q-fractional opera-
tors. We plan to continue this type of study for other types of fractional operators on the
quantum time scale.
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