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Abstract
Let {Xni , 1≤ i ≤ mn,n ≥ 1} be an array of independent random variables with uniform
distribution on [0,θn], and {Xn(k), k = 1, 2, . . . ,mn} be the kth order statistics of the
random variables {Xni , 1 ≤ i ≤mn}. We study the limit properties of ratios
{Rnij = Xn(j)/Xn(i), 1≤ i < j ≤ mn} for fixed sample sizemn =m based on their moment
conditions. For 1 = i < j ≤ m, we establish the weighted law of large numbers, the
complete convergence, and the large deviation principle, and for 2 = i < j ≤ m, we
obtain some classical limit theorems and self-normalized limit theorems.
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1 Introduction
Let {Xni, 1 ≤ i ≤ mn, n ≥ 1} be an array of independent random variables with uniform
distribution on [0, θn], and {Xn(k), k = 1, 2, . . . , mn} be the kth order statistics of the random
variables {Xni, 1 ≤ i ≤ mn} for given n. In contrast to the commonly used models of or-
der statistics, such as the extreme values, the median, the sample range, and the linear
functions of order statistics, some researchers are interested in the investigation of limit
behaviors for the ratios of these order statistics

Rnij =
Xn(j)

Xn(i)
, 1 ≤ i < j ≤ mn.

To derive the density function of Rnij, we recall that the joint density function of Xn(i)

and Xn(j) is

f (xi, xj) =
mn!xi–1

i (xj – xi)j–i–1(θn – xj)mn–j

(i – 1)!(j – i – 1)!(mn – j)!θmn
n

I(0 ≤ xi < xj ≤ θn).

Let ω = xi, r = xj/xi. Then the Jacobian of the transformation is ω, so that the joint density
function of Xn(i) and Rnij is

f (r,ω) =
mn!ωj–1(r – 1)j–i–1(θn – rω)mn–j

(i – 1)!(j – i – 1)!(mn – j)!θmn
n

I(ω ≥ 0, r > 1, rω ≤ θn).
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Therefore, the density function of the ratio Rnij is

fRnij (r) =
mn!(r – 1)j–i–1

(i – 1)!(j – i – 1)!(mn – j)!θmn
n

∫ θn/r

0
ωj–1(θn – rω)mn–j dω

=
mn!

(i – 1)!(j – i – 1)!(mn – j)!θmn
n

(r – 1)j–i–1

rj

∫ θn

0
(θn – u)j–1umn–j du

=
mn!

(i – 1)!(j – i – 1)!(mn – j)!

j–1∑
k=0

(–1)kCk
j–1

mn + k – j + 1
(r – 1)j–i–1

rj I(r > 1), (1.1)

which is not related to θn. Thus, for fixed i, j and the sample size mn = m, {Rnij, n ≥ 1} is a
sequence of independent identically distributed (i.i.d.) random variables, which allows us
to obtain better limit behaviors for {Rnij, n ≥ 1}, although the random variables in different
rows of the array {Xni, 1 ≤ i ≤ mn, n ≥ 1} possess different uniform distributions.

In this paper, some generalized results of {Rnij, n ≥ 1} for the fixed sample size mn = m
are established based on the works by Adler [1], Miao et al. [7], and Xu and Miao [11]. In
Sect. 2, we first derive the moments of Rnij, on which the limit theorems for Rn1j and Rn2j

are established in Sects. 3 and 4, respectively.
Throughout this paper, let log x = ln max{e, x}, where “ln” is the natural logarithm. De-

note by C a generic positive real number, which is not necessarily the same value in each
appearance, and by I(B) the indicator function of set B.

2 Moments of Rnij

It is known from (1.1) that the density function of Rn1j is

fRn1j (r) = γm,1,j
(r – 1)j–2

rj I(r > 1), (2.1)

where

γm,1,j =
m!

(j – 2)!(m – j)!

j–1∑
k=0

(–1)kCk
j–1

m + k – j + 1
,

and the density function of Rn2j is

fRn2j (r) = γm,2,j
(r – 1)j–3

rj I(r > 1), (2.2)

where

γm,2,j =
m!

(j – 3)!(m – j)!

j–1∑
k=0

(–1)kCk
j–1

m + k – j + 1
.

Theorem 2.1
(I) For 1 < j ≤ m, we have

⎧⎨
⎩
ERβ

n1j < ∞, 0 < β < 1,

ERβ

n1j = ∞, β ≥ 1.
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(II) For 2 < j ≤ m, we have
⎧⎨
⎩
ERβ

n2j < ∞, 0 < β < 2,

ERβ

n2j = ∞, β ≥ 2.

(III) Let L(x) = ER2
n2jI(|Rn2j| ≤ x) and L̃(x) = E(Rn2j – ERn2j)2I(|Rn2j – ERn2j| ≤ x). Then

both L(x) and L̃(x) are slowly varying functions.

Proof (I) It is easily known from (2.1) that fRn1j (r) ≤ γm,1,j/r2 and fRn1j (r) ∼ γm,1,j/r2 as r →
∞. Therefore, ERβ

n1j < ∞ for 0 < β < 1 and ERβ

n1j = ∞ for β ≥ 1, respectively.
(II) Similarly, since fRn2j (r) ≤ γm,2,j/r3 and fRn2j (r) ∼ γm,2,j/r3 as r → ∞, then we have

ERβ

n2j < ∞ for 0 < β < 2 and ERβ

n2j = ∞ for β ≥ 2, respectively.
(III) For any λ > 0,

L(λx) =
∫ λx

1
r2fRn2j (r) dr

∼
∫ λx

1
r2 γm,2,j

r3 dr as x → ∞.

It is not difficult to prove that L(λx) ∼ γm,2,j log x ∼ L(x) as x → ∞, implying that L(x)
varies slowly at x → ∞, so does L̃(x) as L̃(λx) ∼ γm,2,j log x ∼ L̃(x). �

Remark 2.1 With similar derivations, it can be obtained that the second moment of Rnij

is finite for all 3 ≤ i < j ≤ m. Therefore, a large number of classical limit properties of
{Rnij, n ≥ 1} for all 3 ≤ i < j ≤ m can be established easily. Hence, to study the limit behav-
iors for {Rnij, n ≥ 1}, we are only interested in {Rn1j, n ≥ 1} and {Rn2j, n ≥ 1}.

3 Limit properties of Rn1j

According to part (I) of Theorem 2.1, ERn1j = ∞. It follows that the classical strong law of
large numbers for {Rn1j, n ≥ 1} fails. Hence, we give the following weighted strong law of
large numbers.

Theorem 3.1 Let {an, n ≥ 1} and {bn, n ≥ 1} be two positive sequences satisfying the fol-
lowing conditions:

(i) bn is nondecreasing, bn → ∞ as n → ∞, and
∑∞

n=1
an
bn

< ∞;
(ii) 1

bN

∑N
n=1 an log( bn

an
) → λ < ∞ as N → ∞.

Then we have

lim
N→∞

1
bN

N∑
n=1

anRn1j = γm,1,jλ almost surely,

where γm,1,j is the same number as that in (2.1).

Proof Let cn = bn/an. Then cn → ∞ follows from condition (i). Without loss of generality,
we assume that cn ≥ 1 for all n ≥ 1. Notice the following partition:

1
bN

N∑
n=1

anRn1j = IN + IIN + IIIN , (3.1)
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where

IN =
1

bN

N∑
n=1

an
[
Rn1jI(1 ≤ Rn1j ≤ cn) – ERn1jI(1 ≤ Rn1j ≤ cn)

]
,

IIN =
1

bN

N∑
n=1

anRn1jI(Rn1j > cn),

IIIN =
1

bN

N∑
n=1

anERn1jI(1 ≤ Rn1j ≤ cn).

Firstly, it can be established by condition (i) that

∞∑
n=1

1
c2

n
ER2

n1jI(1 ≤ Rn1j ≤ cn)

=
∞∑

n=1

γm,1,j

c2
n

∫ cn

1

(r – 1)j–2

rj–2 dr

≤ C
∞∑

n=1

1
c2

n

∫ cn

1
1 dr ≤ C

∞∑
n=1

1
cn

= C
∞∑

n=1

an

bn
< ∞, (3.2)

and for any 0 < ε < 1,

∞∑
n=1

P
(
Rn1jI(Rn1j > cn) > ε

)

=
∞∑

n=1

P(Rn1j > cn)

=
∞∑

n=1

γm,1,j

∫ ∞

cn

(r – 1)j–2

rj dr

≤ C
∞∑

n=1

∫ ∞

cn

1
r2 dr ≤ C

∞∑
n=1

1
cn

= C
∞∑

n=1

an

bn
< ∞. (3.3)

Consequently, according to (3.2), the Khintchine–Kolmogorov convergence theorem (see
Theorem 1 on page 113 of Chow and Teicher [2]), and Kronecker’s lemma, it is known
that IN → 0 almost surely. Furthermore, by condition (i) and Kronecker’s lemma, we
have

1
bN

N∑
n=1

an → 0 as N → ∞.
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Then it follows from (3.3) and the Borel–Cantelli lemma that IIN → 0 almost surely. Fi-
nally, since

ERn1jI(1 ≤ Rn1j ≤ cn)

= γm,1,j

∫ cn

1

(r – 1)j–2

rj–1 dr

= γm,1,j

j–2∑
l=0

Cl
j–2(–1)l

∫ cn

1
r–l–1 dr

∼ γm,1,j log cn as n → ∞,

it is obtained by condition (ii) that IIIN → γm,1,jλ almost surely.
The proof is then completed. �

Remark 3.1 In particular, let j = 2 in Theorem 3.1, we have

lim
N→∞

1
bN

N∑
n=1

anRn12 = λ almost surely.

In this case, the result is independent of the sample size mn because the density of Rn12 is
independent of mn. Thus, there is no difference between the assumption mn → ∞ and for
fixed mn = m. Furthermore, if we take bn = (log n)α+2 and an = (log n)α/n, then for α > –2,
the conditions of Theorem 3.1 hold and λ = 1/(α + 2), demonstrating that Theorem 3.1 in
Adler [1] and Theorem 2.3 in Miao et al. [7] are special cases of Theorem 3.1.

Remark 3.2 Except for bn = (log n)α+2, an = (log n)α/n with α > –2, there are some other
sequences satisfying the conditions of Theorem 3.1, for example, (i) bn = nβ , an = 1 for β >
1; (ii) bn = n(log n)β , an = 1 for β > 1; and (iii) bn = (log n)2(log log n)β , an = (log log n)β/n for
all β ∈ R. As a result, Theorem 2.18 in Miao et al. [7] is also a special case of Theorem 3.1.

To establish the complete convergence of the ratio Rn1j, we first introduce the lemma
obtained by Sung et al. [10].

Lemma 3.1 Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of row-wise independent random vari-
ables and {μn, n ≥ 1} be a sequence of positive constants with

∑∞
n=1 μn = ∞. Suppose that,

for every ε > 0 and some δ > 0,
(i)

∑∞
n=1 μn

∑kn
i=1 P(|Xni| > ε) < ∞,

(ii) there exists J ≥ 2 such that

∞∑
n=1

μn

( kn∑
i=1

EX2
niI

(|Xni| ≤ δ
))J

< ∞,

(iii)
∑kn

i=1 EXniI(|Xni| ≤ δ) → 0 as n → ∞.
Then it is true that

∞∑
n=1

μnP

(∣∣∣∣∣
kn∑
i=1

Xni

∣∣∣∣∣ > ε

)
< ∞ for all ε > 0.
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Theorem 3.2 Let {an, n ≥ 1}, {bn, n ≥ 1}, and {μn, n ≥ 1} be three positive sequences such
that

(i) bn is nondecreasing, bn → ∞ as n → ∞, and
∑∞

n=1
an
bn

< ∞;
(ii) 1

bN

∑N
n=1 an log( bn

an
) → λ < ∞ as N → ∞;

(iii)
∑∞

n=1 μn = ∞ and
∑∞

N=1 μN
∑N

n=1
an
bn

< ∞.
Then, for every ε > 0, we have

∞∑
N=1

μN P

(∣∣∣∣∣
N∑

n=1

an

bN
Rn1j – γm,1,jλ

∣∣∣∣∣ ≥ ε

)
< ∞,

where γm,1,j is the same number as that in (2.1).

Proof Let cn = bn/an. Then cn → ∞ according to condition (i). Without loss of generality,
we assume that cn ≥ 1 for all n ≥ 1. Notice the following partition:

N∑
n=1

an

bN
Rn1j = IN + IIN + IIIN , (3.4)

where

IN =
N∑

n=1

an

bN

[
Rn1jI(1 ≤ Rn1j ≤ cn) – ERn1jI(1 ≤ Rn1j ≤ cn)

]
,

IIN =
N∑

n=1

an

bN
Rn1jI(Rn1j > cn),

IIIN =
N∑

n=1

an

bN
ERn1jI(1 ≤ Rn1j ≤ cn).

According to condition (i), Markov’s inequality, and the following inequality

ER2
n1jI(1 ≤ Rn1j ≤ cn) = γm,1,j

∫ cn

1

(r – 1)j–2

rj–2 dr ≤ γm,1,jcn,

we have, for any ε > 0, that

P
(|IN | ≥ ε

) ≤ 1
ε2

N∑
n=1

a2
n

b2
N
ER2

n1jI(1 ≤ Rn1j ≤ cn) ≤ C
N∑

n=1

an

bn
. (3.5)

Moreover, with condition (ii) and the following estimation

ERn1jI(1 ≤ Rn1j ≤ cn)

= γm,1,j

∫ cn

1

(r – 1)j–2

rj–1 dr

= γm,1,j

j–2∑
l=0

Cl
j–2(–1)l

∫ cn

1
r–l–1 dr

∼ γm,1,j log cn as n → ∞,
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we obtain

IIIN ∼ γm,1,j

N∑
n=1

an log cn

bN
= γm,1,jλ.

It follows from (3.5) and condition (iii) that

∞∑
N=1

μN P
(|IN + IIIN – γm,1,jλ| ≥ ε

)
< ∞. (3.6)

Next, denote XNn = (an/bN )Rn1jI(Rn1j > cn). For any ε > 0, we have

N∑
n=1

P(XNn > ε) ≤
N∑

n=1

P
(

Rn1j > max

{
cn,

bNε

an

})
≤ C

N∑
n=1

∫ ∞

ξ

(r – 1)j–2

rj dr

≤ C
N∑

n=1

∫ ∞

ξ

1
r2 dr ≤ C

N∑
n=1

1
ξ

≤ C
N∑

n=1

an

bn
,

where ξ = max{cn, bNε/an}. It follows from condition (iii) that

∞∑
N=1

μN

N∑
n=1

P(XNn > ε) ≤ C
∞∑

N=1

μN

N∑
n=1

an

bn
< ∞. (3.7)

Then, for any δ > 0, the following partial sum of truncated second moment holds:

N∑
n=1

EX2
NnI(XNn ≤ δ) ≤

N∑
n=1

a2
n

b2
N

∫ bN δ
an

cn

γm,1,j
(r – 1)j–2

rj–2 dr ≤ C
N∑

n=1

an

bn
,

which is bounded according to condition (i). This, combined with condition (iii), leads to
the inequality that, for every J ≥ 2,

∞∑
N=1

μN

( N∑
n=1

EX2
NnI(XNn ≤ δ)

)J

≤ C
∞∑

N=1

μN

( N∑
n=1

an

bn

)J

≤ C
∞∑

N=1

μN

N∑
n=1

an

bn
< ∞. (3.8)

Noting that (1) 1
bN

∑N
n=1 an → 0 as N → ∞ by condition (i) and Kronecker’s lemma; and

(2) log(bNδ/bn) is bounded by log C via taking δ = Cb1/bN , we obtain, for any δ > 0, that

N∑
n=1

EXNnI(XNn ≤ δ)

=
N∑

n=1

an

bN

∫ bN δ
an

cn

γm,1,j
(r – 1)j–2

rj–1 dr

≤ C
bN

N∑
n=1

an log

(
bNδ

bn

)
→ 0 as N → ∞. (3.9)
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Thus, from Lemma 3.1 and (3.7)–(3.9), we have

∞∑
N=1

μN P
(|IIN | ≥ ε

)
< ∞. (3.10)

The combination of (3.4), (3.6), and (3.10) yields the desired result. �

Remark 3.3 As pointed out in Remark 3.2, the conditions of Theorem 3.2 are also easy to
be satisfied. For example, it can be easily proved that the following sequences all satisfy
the conditions of Theorem 3.2: (1) bn = nβ , an = 1, μn = 1/n, β > 1; (2) bn = n(log n)β ,
an = 1, μn = 1/[n(log)δ], β > 1, δ > 0; (3) bn = (log n)2(log log n)β , an = (log log n)β/n, μn =
1/[n(log)δ], β ∈ R, δ > 0; and (4) bn = (log n)α+2, an = (log n)α/n, μn = 1/[n(log)δ], α > –2,
δ > 0. When the sequences are taken to be those in (4), Theorem 3.2 becomes Theorem 2.1
and Theorem 2.6 in Xu and Miao [11], respectively.

In what follows, we give the weighted weak law of large numbers.

Theorem 3.3 Let {an, n ≥ 1} and {bn, n ≥ 1} be two positive sequences satisfying the fol-
lowing conditions:

(i) 1
bN

∑N
n=1 an → 0 as N → ∞;

(ii) 1
bN

∑N
n=1 an log( bN

an
) → λ̃ < ∞ as N → ∞.

Then

1
bN

N∑
n=1

anRn1j
P−→ γm,1,jλ̃ as N → ∞,

where γm,1,j is the same number as that in (2.1).

Proof We use the so-called weak law (see Theorem 1 on page 356 of Chow and Teicher [2])
for the proof of Theorem 3.3. From condition (i), we have the following two inequalities:

1
b2

N

N∑
n=1

a2
nER2

n1jI(1 ≤ Rn1j ≤ bN /an)

=
1

b2
N

N∑
n=1

a2
n

∫ bN
an

1
γm,1,j

(r – 1)j–2

rj–2 dr

≤ C
b2

N

N∑
n=1

a2
n

∫ bN
an

1
1 dr ≤ C

bN

N∑
n=1

an → 0

and, for any ε > 0,

N∑
n=1

P(anRn1j > bNε)

=
N∑

n=1

∫ ∞
bN ε
an

γm,1,j
(r – 1)j–2

rj dr
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≤ C
N∑

n=1

∫ ∞
bN ε
an

1
r2 dr =

C
bN

N∑
n=1

an → 0,

which is sufficient to prove that the weighted sum converges to some real number.
Next, using condition (i) again, we have

ERn1jI(1 ≤ Rn1j ≤ bN /an)

=
∫ bN

an

1
γm,1,j

(r – 1)j–2

rj–1 dr

= γm,1,j

j–2∑
l=0

Cl
j–2(–1)l

∫ bN
an

1
r–l–1 dr

= γm,1,j

[
log bN – log an +

j–2∑
l=1

Cl
j–2(–1)l+1

(
al

n

lbl
N

–
1
l

)]

∼ γm,1,j log

(
bN

an

)
as N → ∞.

It follows from condition (ii) that

1
bN

N∑
n=1

anERn1jI(1 ≤ Rn1j ≤ bN /an)

∼ γm,1,j

bN

N∑
n=1

an log

(
bN

an

)
→ γm,1,jλ̃ as N → ∞. (3.11)

The proof is then completed. �

In particular, let L(x) be a slowly varying function. If we take an = nαL(n) and bn =
nα+1L(n) log n, in which α > –1/(j – 1) and j ≥ 2, the conditions of Theorem 3.3 hold with
λ̃ = 1/(α + 1). This result will be described as the following corollary, whose proof explains
how we verify the conditions.

Corollary 3.1 Let L(x) be a slowly varying function. Then, for any α > –1/(j – 1), we have

1
Nα+1L(N) log N

N∑
n=1

nαL(n)Rn1j
P−→ γm,1,j

α + 1
as N → ∞,

where γm,1,j is the same number as that in (2.1).

Proof Denote U(x) = xγ L(x) and Up(x) =
∫ x

0 tpU(t) dt. U(x) = xγ L(x) varies regularly with
the exponent γ as L(x) is slowly varying. Therefore, according to part (b) of Theorem 1 on
page 281 of Feller [3], for p ≥ –γ – 1, it is true that

∫ x

0
tptγ L(t) dt ∼ 1

p + γ + 1
xp+1xγ L(x) as x → ∞,
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which implies that

N∑
n=1

nαL(n) ∼ 1
α + 1

Nα+1L(N) for α > –1, as N → ∞. (3.12)

It is easy to check that L(x) log x, L(x) log L(x), and L(x)l for all l ∈ N are slowly varying
functions as L(x) is slowly varying. So, we derive the following similar estimates as (3.12):

N∑
n=1

nαL(n) log n ∼ 1
α + 1

Nα+1L(N) log N for α > –1;

N∑
n=1

nαL(n) log L(n) ∼ 1
α + 1

Nα+1L(N) log L(N) for α > –1; (3.13)

N∑
n=1

n(l+1)αL(n)l+1 ∼ 1
(l + 1)α + 1

N (l+1)α+1L(N)l+1 for α > –
1

l + 1
, 1 ≤ l ≤ m – 2.

Let an = nαL(n), bn = nα+1L(n) log n. We once again use the so-called weak law, which can
be found on page 356 of Chow and Teicher [2]. By (3.12), it is easy to obtain that, for any
ε > 0,

N∑
n=1

P(anRn1j > bNε)

=
N∑

n=1

∫ ∞
bN ε
an

γm,1,j
(r – 1)j–2

rj dr

≤ C
N∑

n=1

∫ ∞
bN ε
an

1
r2 dr =

C
bN

N∑
n=1

an =
C

∑N
n=1 nαL(n)

Nα+1 log NL(N)

∼ CNα+1L(N)
Nα+1 log NL(N)

=
C

log N
→ 0 as N → ∞

and

1
b2

N

N∑
n=1

a2
nER2

n1jI(1 ≤ Rn1j ≤ bN /an)

=
1

b2
N

N∑
n=1

a2
n

∫ bN
an

1
γm,1,j

(r – 1)j–2

rj–2 dr

≤ C
b2

N

N∑
n=1

a2
n

∫ bN
an

1
1 dr ≤ C

bN

N∑
n=1

an → 0 as N → ∞,

which are sufficient to prove that the weighted sum converges to some real number.
Next, notice that

ERn1jI(1 ≤ Rn1j ≤ bN /an)

=
∫ bN

an

1
γm,1,j

(r – 1)j–2

rj–1 dr
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= γm,1,j

j–2∑
l=0

Cl
j–2(–1)l

∫ bN
an

1
r–l–1 dr

= γm,1,j

[
log bN – log an +

j–2∑
l=1

Cl
j–2(–1)l+1

(
al

n

lbl
N

–
1
l

)]
.

In addition, by (3.12) and (3.13), we have

log bN
∑N

n=1 an

bN
∼ 1 +

log L(N) + log log N
(α + 1) log N

;
∑N

n=1 an log an

bN
∼ α log N + log L(N)

(α + 1) log N
;

∑N
n=1 al+1

n

lbl+1
N

∼ 1
l[(l + 1)α + 1]Nl(log N)l+1 ;

∑N
n=1 an

lbN
∼ 1

l log N
.

Therefore

1
bN

N∑
n=1

anERn1jI(1 ≤ Rn1j ≤ bN /an)

=
γm,1,j

bN

N∑
n=1

an

[
log bN – log an +

j–2∑
l=1

Cl
j–2(–1)l+1

(
al

n

lbl
N

–
1
l

)]

= γm,1,j

[
log bN

∑N
n=1 an

bN
–

∑N
n=1 an log an

bN

+
j–2∑
l=1

Cl
j–2(–1)l+1

(∑N
n=1 al+1

n

lbl+1
N

–
∑N

n=1 an

lbN

)]

∼ γm,1,j
log N + log log N

(α + 1) log N
→ γm,1,j

α + 1
as N → ∞,

where α > –1/(j – 1). The proof is then completed. �

Remark 3.4 It is easy to check that the corresponding strong law of numbers of Theo-
rem 3.3 fails. Hence, the weak law of large numbers is optimal in this case. Corollary 3.1
extends Theorem 3.2 in Adler [1], which proved the same result for Rn12 of the sample
from the uniform distribution U(0, p).

4 Limit properties of Rn2j

The following Marcinkiewicz–Zygmund type law of large numbers extends the result for
Rn23 in Xu and Miao [11, Theorem 2.3].

Theorem 4.1 For any δ ∈ (0, 2), we have

1
N1/δ

N∑
n=1

(Rn2j – c) → 0 almost surely

for some finite constant c, where c takes the value ERn2j for δ ∈ [1, 2) and c is arbitrary for
δ ∈ (0, 1). In particular, the Kolmogorov type strong law of large numbers holds when δ = 1.
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Proof By part (II) of Theorem 2.1 and the Marcinkiewicz–Zygmund theorem (see Theo-
rem 2 on page 125 in Chow and Teicher[2]), the theorem can be proved. �

The following central limit theorem and its almost sure version extend the responding
result for Rn23 established by Miao et al. [7, Theorem 2.12] and Xu and Miao [11, Theo-
rem 2.4], respectively.

Theorem 4.2 Let L(x) = ER2
n2jI(|Rn2j| ≤ x). Then

1
ηN

N∑
n=1

(Rn2j – ERn2j)
d−→ Φ(x) as N → ∞,

where ηN = 1 ∨ sup{x > 0; NL(x) ≥ x2} and Φ(x) denotes the standard normal distribution
function.

Proof From Theorem 4.17 of Kallenberg [6, page 73], it is known that L(x) = ER2
n2jI(|Rn2j| ≤

x) varies slowly at x → ∞. Therefore, the theorem is proved. �

Theorem 4.3 Let L(x) = ER2
n2jI(|Rn2j| ≤ x). Then, for any real number x, we have

lim
N→∞

1
log N

N∑
n=1

1
n

I
(

Sn

ηn
≤ x

)
= Φ(x) almost surely,

where Sn =
∑n

i=1 Yi, Yn = Rn2j – ERn2j, ηn = 1 ∨ sup{x > 0; nL(x) ≥ x2} and Φ(x) denotes the
standard normal distribution function.

The proof of Theorem 4.3 is very similar to that of Xu and Miao [11, Theorem 2.4], so
we omit it. For the same reason, the following large deviation principle, which extends the
corresponding result built by Xu and Miao [11, Theorem 2.5], is given without proof.

Theorem 4.4 For any x > 1/2,

lim
N→∞

1
log N

log P

( N∑
n=1

Rn2j > Nx

)
= –2x + 1.

As aforementioned, the βth moment of Rn2j does not exist for any β ≥ 2. Thus, some
other classical limit properties, such as the law of iterated logarithm, do not hold. As
is well known, the limit theorems for self-normalized sum usually require much less
stringent moment conditions than the classical limit theorems. Therefore, we are inter-
ested in the investigation of limit behaviors for the self-normalized sum SN /VN , where
SN =

∑N
n=1(Rn2j – ERn2j) and V 2

N =
∑N

n=1(Rn2j – ERn2j)2. Notice that {Rn2j – ERn2j, n ≥ 1}
is a sequence of i.i.d. random variables with mean zero. In addition, the distribution of
Rn2j – ERn2j is in the domain of attraction of the normal law, because L̃(x) = E(Rn2j –
ERn2j)2I(|Rn2j – ERn2j| ≤ x) is slowly varying as x → ∞. Thus many self-normalized limit
properties can be directly established as the corollaries of the corresponding well-known
results. We list some of them without the proofs.

From Theorem 3.3 in Gine et al. [4], we obtain the following self-normalized central
limit theorem.
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Theorem 4.5 SN /VN
d−→ Φ(x) as N → ∞.

The following self-normalized almost sure central limit theorem can be obtained by
Corollary 1 in Zhang [12].

Theorem 4.6 Denote dn = exp{(log n)α}/n and DN =
∑N

n=1 dn for 1 ≤ α < 1
2 . Then, for any

real x, we have

lim
N→∞

1
DN

N∑
n=1

dnI
(

Sn

Vn
≤ x

)
= Φ(x) a.s.

From Theorem 3 in Robinson and Wang [8], we have the following self-normalized
Berry–Esseen bounds.

Theorem 4.7 Let ηN = sup{x : Nx–2
ER2

n2jI(|Rn2j| ≤ x) ≥ 1}. Then there exists 0 < η < 1 such
that

∣∣∣∣P
(

SN

VN
≤ x

)
– Φ(x)

∣∣∣∣ ≤ AδN exp

{
–

ηx2

2

}

for all x ∈ R and N ≥ 1, where

δN = NP
(|Rn2j| > ηN

)
+ Nη–1

N
∣∣ERn2jI

(|Rn2j| ≤ ηN
)∣∣ + Nη–3

N E|Rn2j|3I
(|Rn2j| ≤ ηN

)

and A is an absolute constant.

From Theorem 3.1 in Shao [9], we obtain the following self-normalized moderate devi-
ation principle.

Theorem 4.8 Let {xN , N ≥ 1} be a sequence of positive numbers satisfying

xN → ∞ and
xN√

N
→ 0 as N → ∞.

Then

lim
N→∞

1
x2

N
log P

(
SN

VN
≥ xN

)
= –

1
2

.

The following self-normalized law of the iterated logarithm can be established by The-
orem 3.1 in Griffin and Kuelbs [5].

Theorem 4.9 It is true that

lim sup
N→∞

SN

VN
√

2 log log N
= 1 almost surely.
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