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Abstract
Recently, λ-analogues of Stirling numbers of the first kind were studied. In this paper,
we introduce, as natural extensions of these numbers, λ-Stirling polynomials of the
first kind and r-truncated λ-Stirling polynomials of the first kind. We give recurrence
relations, explicit expressions, some identities, and connections with other special
polynomials for those polynomials. Further, as applications, we show that both of
them appear in an expression of the probability mass function of a suitable discrete
random variable, constructed from λ-logarithmic and negative λ-binomial
distributions.
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1 Introduction
As is known, the Stirling numbers of the first kind are defined by

(x)n =
n∑

l=0

S1(n, l)xl (n ≥ 0) (see [1, 2, 4, 7–25]), (1)

where (x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1) (n ≥ 1).
For any real number λ, the λ-analogue of (x)n is defined as

(x)0,λ = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ
)

(n ≥ 1). (2)

Note that limλ→1(x)n,λ = (x)n (n ≥ 0) (see [2, 11, 13, 16, 19]).
The λ-analogues of the Stirling numbers of the first kind are given by

(x)n,λ =
n∑

k=0

S1,λ(n, k)xk (see [13]). (3)

We recall that the λ-binomial coefficients are defined by the generating function

(1 + λt)
x
λ =

∞∑

l=0

(
x
l

)

λ

tl =
∞∑

l=0

(x)l,λ
tl

l!
(see [13, 16]). (4)
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From (4), we note that

(
n
k

)

λ

=
(n!)λ

k!(n – kλ)n–k,λ
=

(n)k,λ

k!
(n ≥ k ≥ 0), (5)

where

(n!)λ = n(n – λ)(n – 2λ) · · · (n – (n – 1)λ
)

= (n)n,λ (see [13])

and

n∑

m=0

(
y
m

)

λ

(
x

n – m

)

λ

=
(

x + y
n

)

λ

(n ≥ 0). (6)

For r ∈N, the unsigned r-Stirling numbers of the first kind are defined by

(x + r)(x + r + 1) · · · (x + r + n – 1) =
n∑

k=0

[
n + r
k + r

]

r

xk (see [10, 13, 16]). (7)

In [16, 18], the r-Stirling numbers of the first kind are given by

(x + r)n =
n∑

k=0

S(r)
1 (n, k)xk (n ≥ 0). (8)

By (7) and (8), we get

S(–r)
1 (n, k) = (–1)n–k

[
n + r
k + r

]

r

(n ≥ k ≥ 0). (9)

It is known that λ-analogues of r-Stirling numbers of the first kind are given by

(x + r)n,λ =
n∑

k=0

S(r)
1,λ(n, k)xk (see [16]). (10)

From (3), (6), and (10), we note that

S(r)
1,λ(n, k) =

n∑

m=k

(
n
m

)
S1,λ(m, k)(r)n–m,λ (n, k ≥ 0). (11)

If X is a discrete random variable taking values in the nonnegative integers, then the
probability generating function of X is defined as follows:

G(t) = E
[
tX]

=
∞∑

x=0

p(x)tx (see [7, 24]), (12)

where p(x) is the probability mass function of X.
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Let X = (X1, X2, . . . , Xk) be a discrete random variable taking values in the k-dimensional
nonnegative integer lattice. Then the probability generating function of X is defined as
follows:

G(t) = G(t1, t2, . . . , tk) = E
[
tX1
1 , tX2

2 , . . . , tXk
k

]

=
∞∑

x1,x2,...,xk=0

p(x1, x2, . . . , xk)tx1
1 tx2

2 · · · txk
k , (13)

where p(x1, x2, . . . , xk) is the probability mass function of X. The power series converges ab-
solutely at least for all convex vectors t = (t1, t2, . . . , tk) ∈C

k with max{|t1|, |t2|, . . . , |tk|} ≤ 1.
The logarithmic random variable X with parameter α ∈ (0, 1) is a discrete random vari-

able on N with probability mass function p(x) given by

P[X = n] = p(n) = –
1

log(1 – α)
· αn

n
(n ∈N). (14)

Note that

∞∑

n=1

p(n) = –
1

log(1 – α)

∞∑

n=1

αn

n
= 1

and

E[X] =
∞∑

n=1

p(n) · n = –
1

log(1 – α)

∞∑

n=1

αn = –
1

log(1 – α)
· α

1 – α
.

In probability and statistics, the logarithmic distribution (also known as the logarithmic
series distribution) is a discrete probability distribution derived from the Maclaurin series
expansion

– log(1 – α) = α +
α2

2
+

α3

3
+ · · · .

In probability theory and statistics, the negative binomial distribution is a discrete prob-
ability distribution of the number of successes in a sequence of independent and identically
distributed Bernoulli trials before a specified number of failures (denoted by r) occurs. The
negative binomial random variable is sometimes defined in terms of the random variable
Y = the number of failures before the rth success. The probability mass function of the
negative binomial random variable with parameters r and p is given by

P[X = y] = p(y) =
(

y + r – 1
y

)
py(1 – p)r . (15)

In this paper, we consider λ-Stirling polynomials of the first kind and truncated λ- Stir-
ling polynomials of the first kind rising from the λ-analogues of the falling factorial se-
quence and investigate some properties for these polynomials. In particular, we give some
identities, recurrence relations, and explicit expressions for the λ-Stirling polynomials of
the first kind and the truncated λ-Stirling polynomials of the first kind. Further, we show
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that both of them appear in an expression of the probability mass function of a suitable
discrete random variable, constructed from λ-logarithmic and negative λ-binomial distri-
butions.

2 λ-Stirling polynomials of the first kind
Let t be a real variable, x be a real number, and let n be a nonnegative integer. The Taylor
expansion of the function (t)n,λ is given by

(t)n,λ =
∞∑

k=0

1
k!

[
dk

dtk (t)n,λ

]

t=x
(t – x)k . (16)

Let

S(x)
1,λ(n, k) =

1
k!

[
dk

dtk (t)n,λ

]

t=x
(n, k ≥ 0). (17)

Then, by (16) and (17), we get

(t)n,λ =
n∑

k=0

S(x)
1,λ(n, k)(t – x)k (n ≥ 0). (18)

Here S(x)
1,λ(n, k) will be called the λ-Stirling polynomials of the first kind.

It is easy to show that

(t)n+1,λ = (t – x)(t)n,λ + (x – nλ)(t)n,λ. (19)

From (18), we can derive the following equation:

n+1∑

k=0

S(x)
1,λ(n + 1, k)(t – x)k = (t)n+1,λ = (t – x)(t)n,λ + (x – nλ)(t)n,λ

=
n∑

k=0

S(x)
1,λ(n, k)(t – x)k+1 + (x – nλ)

n∑

k=0

S(x)
1,λ(n, k)(t – x)k

=
n+1∑

k=1

S(x)
1,λ(n, k – 1)(t – x)k + (x – nλ)

n∑

k=0

S(x)
1,λ(n, k)(t – x)k

=
n+1∑

k=0

(
S(x)

1,λ(n, k – 1) + (x – nλ)S(x)
1,λ(n, k)

)
(t – x)k . (20)

Therefore, by comparing the coefficients on both sides of (20), we obtain the following
theorem.

Theorem 2.1 For n, k ≥ 0 with n ≥ k – 1, we have

S(x)
1,λ(n, k – 1) + (x – nλ)S(x)

1,λ(n, k) = S(x)
1,λ(n + 1, k).
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Note that

S(x)
1,λ(0, 0) = 1, S(x)

1,λ(n, 0) = (x)n,λ, S(x)
1,λ(0, k) = 0 (k > 0).

From (18), we easily note that S(x)
1,λ(n, k) = 0 if k > n. Let us take t = x + 1 and t = x – 1 in

(18). Then we have

(x + 1)n,λ =
n∑

k=0

S(x)
1,λ(n, k)(x + 1 – x)k =

n∑

k=0

S(x)
1,λ(n, k)

and

(x – 1)n,λ =
n∑

k=0

S(x)
1,λ(n, k)(–1)k .

By (3), we get

1
k!

[
dk

dtk (t)n,λ

]

t=x
=

1
k!

n∑

l=k

S1,λ(n, l)(l)ktl–k∣∣
t=x

=
n∑

l=k

S1,λ(n, l)
(

l
k

)
xl–k . (21)

From (17) and (21), we obtain the following theorem.

Theorem 2.2 For n ≥ k, we have

S(x)
1,λ(n, k) =

n∑

l=k

S1,λ(n, l)
(

l
k

)
xl–k .

Note that S(0)
1,λ(n, k) = S1,λ(n, l).

Now, we give an explicit expression for the polynomials S(x)
1,λ(n, k) and their relations with

λ-Stirling numbers of the first kind. First we observe that

(1 + λt)
y
λ =

∞∑

k=0

(y)k,λ
tk

k!

=
∞∑

k=0

( k∑

n=0

1
n!

[
dn

dyn (y)k,λ

]

y=x
(y – x)n

)
tk

k!

=
∞∑

n=0

( ∞∑

k=n

S(x)
1,λ(k, n)

tk

k!

)
(y – x)n. (22)
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On the other hand,

(1 + λt)
y
λ = e

y
λ

log(1+λt)

=
∞∑

k=0

1
k!

(
1
λ

log(1 + λt)
)k

e
x
λ

log(1+λt)(y – x)k

=
∞∑

k=0

1
k!

(
1
λ

log(1 + λt)
)k

(1 + λt)
x
λ (y – x)k . (23)

From (22) and (23), we obtain the generating function for S(x)
1,λ(n, k) given by

1
k!

(
log(1 + λt)

λ

)k

(1 + λt)
x
λ =

∞∑

n=k

S(x)
1,λ(n, k)

tn

n!
, (24)

where k is a nonnegative integer.
Indeed, we note that

1
k!

(
log(1 + λt)

λ

)k

(1 + λt)
x
λ =

∞∑

m=0

(x)m,λ
tm

m!

(
1
k!

∞∑

l=k

( ∑

l1+l2+···+lk =l

(–λ)l–k

l1l2 · · · lk

)
tl

)

=
∞∑

n=k

(
1
k!

n∑

l=k

(–λ)l–kl!
(

n
l

)
(x)n–l,λ

∑

l1+l2+···+lk =l

1
l1l2 · · · lk

)
tn

n!
.

(25)

Therefore, by (24) and (25), we obtain the following theorem.

Theorem 2.3 For n ≥ k, we have

S(x)
1,λ(n, k) =

1
k!

n∑

l=k

(–λ)l–kl!
(

n
l

)
(x)n–l,λ

∑

l1+l2+···+lk =l

1
l1l2 · · · lk

,

where the inner sum runs over all positive integers l1, l2, . . . , lk with l1 + l2 + · · · + lk = l.

It is known that

1
k!

(
1
λ

log(1 + λt)
)k

=
∞∑

n=k

S1,λ(n, k)
tn

n!
(see [13, 16]). (26)

From (24) and (26), we have

∞∑

n=k

S(x)
1,λ(n, k)

tn

n!
=

∞∑

l=0

(x)l,λ
tl

l!

∞∑

m=k

S1,λ(m, k)
tm

m!

=
∞∑

n=k

( n–k∑

l=0

(x)l,λ

(
n
l

)
S1,λ(n – l, k)

)
tn

n!

=
∞∑

n=k

( n∑

l=k

(x)n–l,λ

(
n
l

)
S1,λ(l, k)

)
tn

n!
. (27)
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Comparing the coefficients on both sides of (27), we obtain the following theorem.

Theorem 2.4 Let n, k be nonnegative integers. Then we have

S(x)
1,λ(n, k) =

⎧
⎨

⎩

∑n
l=k

(n
l
)
(x)n–l,λS1,λ(l, k), if k ≤ n,

0, if k > n.

Corollary 2.5 Let n, k be nonnegative integers. Then we have

S1,λ(n, k) =

⎧
⎨

⎩

∑n
l=k

(n
l
)
(x)n–l,λS(x)

1,λ(l, k), if k ≤ n,

0, if k > n.

We now consider the r-truncated λ-Stirling numbers of the first kind.
For x ∈ R and r ∈ N, the r-truncated λ-Stirling polynomials of the first kind are defined

by

(1 + λt)
x
λ

1
k!

(
log(1 + λt)

λ
–

r–1∑

j=1

(–λ)j–1 tj

j

)k

=
∞∑

n=rk

S(x)
1,λ(n, k|r)

tn

n!
. (28)

Remark 2.6 The definition of λ-Stirling polynomials of the first kind and that of r-
truncated λ-Stirling polynomials of the first kind are similar to the non-central Stirling
numbers of the first kind and the generalized non-central Stirling numbers of the first
kind, respectively (see [20]). In fact, one replaces α by x and (x)n by (x)n,λ, as in [3] and [6],
or replaces α by x with setting αi = iλ, i = 0, 1, . . . , n – 1, as in (1.8) of [5].

From (28), we have

(1 + λt)
x
λ

1
k!

(
log(1 + λt)

λ
–

r–1∑

j=1

(–λ)j–1 tj

j

)k

=
∞∑

m=0

(x)m,λ
tm

m!
1
k!

∞∑

l=rk

( ∑

l1+l2+···+lk =l

(–λ)l–k

l1l2 · · · lk

)
tl

=
∞∑

n=kr

(
n!
k!

n∑

l=rk

(x)n–l,λ

(n – l)!
∑

l1+···+lk =l

(–λ)l–k

l1l2 · · · lk

)
tn

n!
. (29)

Therefore, by (28) and (29), we obtain the following theorem.

Theorem 2.7 For n ≥ rk, we have

S(x)
1,λ(n, k|r) =

n!
k!

n∑

l=rk

(x)n–l,λ

(n – l)!
∑

l1+···+lk =l

(–λ)l–k

l1l2 · · · lk
.

In particular, if n < kr, we have

S(x)
1,λ(n, k|r) = 0.
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When x = 0, S(0)
1,λ(n, k|r) = S1,λ(n, k|r) are called the r-truncated λ-Stirling numbers of the

first kind.
It is not difficult to show that

S(x)
1,λ(n, k|r) =

n∑

l=kr

(
n
l

)
(x)n–l,λS1,λ(l, k|r) if n ≥ kr

and

S(x)
1,λ(n, k|r) = 0 if n < kr.

Let

y(r)
k,λ(t|x) = (1 + λt)

x
λ

1
k!

[
1
λ

log 1 + λt) –
r–1∑

j=1

(–λ)j–1

j
tj

]k

. (30)

From (30), we can derive the following differential equation:

(1 + λt)
d
dt

y(r)
k,λ(t|x) = xy(r)

k,λ(t|x) + (–1)r–1tr–1λr–1y(r)
k–1,λ(t|x). (31)

By (28) and (31), we get

(1 + λt)
d
dt

y(r)
k,λ(t|x)

= xy(r)
k,λ(t|x) + (–1)r–1tr–1λr–1y(r)

k–1,λ(t|x)

= x
∞∑

n=rk

S(x)
1,λ(n, k|r)

tn

n!
+ (–1)r–1tr–1λr–1

∞∑

n=r(k–1)

S(x)
1,λ(n, k – 1|r)

tn

n!

= x
∞∑

n=rk

S(x)
1,λ(n, k|r)

tn

n!
+ (–1)r–1λr–1

∞∑

n=rk–1

S(x)
1,λ(n – r + 1, k – 1|r)

tn

(n – r + 1)!

=
∞∑

n=rk–1

(
xS(x)

1,λ(n, k|r) + (–1)r–1λr–1(r – 1)!
(

n
r – 1

)
S(x)

1,λ(n – r + 1, k – 1|r)
)

tn

n!
. (32)

On the other hand,

(1 + λt)
d
dt

y(r)
k,λ(t|x) =

∞∑

n=rk

S(x)
1,λ(n, k|r)

tn–1

(n – 1)!
(1 + λt)

=
∞∑

n=rk–1

S(x)
1,λ(n + 1, k|r)

tn

n!
+

∞∑

n=rk

nλS(x)
1,λ(n, k|r)

tn

n!

=
∞∑

n=rk–1

(
S(x)

1,λ(n + 1, k|r) + nλS(x)
1,λ(n, k|r)

) tn

n!
. (33)

Therefore, by (32) and (33), we obtain the following theorem.
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Theorem 2.8 Let n, k be nonnegative integers, and let r be a positive integer. Then we have

λr–1(r – 1)!
(

–n + r – 2
r – 1

)
S(x)

1,λ(n – r + 1, k – 1|r)

= S(x)
1,λ(n + 1, k|r) + (nλ – x)S(x)

1,λ(n, k|r) (n ≥ kr – 1).

It is easy to show that

y(r+1)
k,λ (t|x) = (1 + λt)

x
λ

1
k!

[
1
λ

log(1 + λt) –
r∑

j=1

(–λ)j–1 tj

j

]k

= (1 + λt)
x
λ

1
k!

[
1
λ

log(1 + λt) –
r–1∑

j=1

(–λ)j–1 tj

j
+ (–1)rλr–1 tr

r

]k

= (1 + λt)
x
λ

1
k!

k∑

l=0

(
k
l

)(
1
λ

log(1 + λt) –
r–1∑

j=1

(–λ)j–1 tj

j

)k–l

(–1)rl λ
rl–l

rl trl

=
k∑

l=0

(–1)rlλrl–l

l!rl trl 1
(k – l)!

(1 + λt)
x
λ

(
log(1 + λt)

λ
–

r–1∑

j=1

(–1)j–1 tj

j

)k–l

=
k∑

l=0

(–1)rlλrl–l

l!rl trly(r)
k–l,λ(t|x). (34)

By (34), we get

∞∑

n=kr

S(x)
1,λ(n, k|r + 1)

tn

n!
=

∞∑

n=k(r+1)

S(x)
1,λ(n, k|r + 1)

tn

n!

=
k∑

l=0

(–1)rlλrl–l

l!rl trl
∞∑

n=(k–l)r

S(x)
1,λ(n, k – l|r + 1)

tn

n!

=
∞∑

n=kr

( k∑

l=0

(–1)rlλrl–l

l!rl S(x)
1,λ(n – lr, k – l|r)(n)lr

)
tn

n!
. (35)

Comparing the coefficients on both sides of (35), we have

S(x)
1,λ(n, k|r + 1) =

k∑

l=0

(–1)rlλrl–l

l!rl S(x)
1,λ(n – lr, k – l|r)(n)lr , (36)

where n ≥ kr.
For λ ∈ (0, 1), X is a random variable with the λ-logarithmic distribution with parameter

α ∈ (0, 1) if the probability mass function of X is given by

Pλ[X = k] = Pλ(k) = –
λ

log(1 – αλ)
· αkλk–1

k
, (37)

where k is a positive integer.
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We easily see that

∞∑

k=1

Pλ(k) = 1, E[X] = –
1

log(1 – αλ)
· αλ

1 – αλ
.

Y is the random variable with negative λ-binomial distribution with parameters r, α if
the probability mass function of Y is given by

Pλ[Y = k] = Pλ(k) =
( r

λ
+ k – 1

k

)
(λα)k(1 – λα)

r
λ ,

where r, k, α are respectively the number of failures, the number of successes, and the
probability of successes.

Let X1, X2, . . . , Xk be independent random variables with λ-logarithmic distribution with
parameter α, and let Y be the random variable with negative λ-binomial distribution with
parameters r and α. If Y is independent of X = X1 + · · · + Xk , then we have

E
[
tX+Y ]

= E
[
tX]

E
[
tY ]

=

( k∏

j=1

E
[
tXj

]
)

· E
[
tY ]

. (38)

Now, we observe that

E
[
tXj

]
=

∞∑

x=1

Pλ[Xj = x]tx =
1

log(1 – αλ)
· log(1 – αλt) (39)

and

E
[
tY ]

=
∞∑

y=0

Pλ[Y = y]ty =
∞∑

y=0

( r
λ

+ y – 1
y

)
(λα)y(1 – λα)

r
λ ty

= (1 – λα)
r
λ (1 – λαt)– r

λ . (40)

From (38), (39), and (40), we have

E
[
tX+Y ]

=

( k∏

j=1

E
[
tXj

]
)

· E
[
tY ]

=
(

1
log(1 – αλ)

)k(
log(1 – αλt)

)k(1 – αλ)
r
λ (1 – αλt)– r

λ

= k!
(

λ

log(1 – αλ)

)k

(1 – αλ)
r
λ

1
k!

(
log(1 – αλt)

λ

)k

(1 – αλt)– r
λ

= k!
(

λ

log(1 – αλ)

)k

(1 – αλ)
r
λ

∞∑

n=k

S(–r)
1,λ (n, k)(–α)n tn

n!
. (41)

On the other hand,

E
[
tX+Y ]

=
∞∑

n=k

Pλ[X + Y = n]tn. (42)
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Therefore, by (41) and (42), we obtain the following theorem.

Theorem 2.9 Let X1, X2, . . . , Xk be independent random variables with λ-logarithmic dis-
tribution with parameter α, and let Y be the random variable with negative λ-binomial
distribution with parameters r and α. If Y is independent of X = X1 + X2 + · · · + Xk , then
the probability mass function of X + Y is given by

Pλ[X + Y = n] = k!
(

λ

log(1 – αλ)

)k

(1 – αλ)
r
x

(–α)n

n!
S(–r)

1,λ (n, k)

for n ≥ k.

For r ∈ N, X is the random variable with r-truncated λ-logarithmic distribution with
parameter α if the probability mass function of X is given by

Pλ[X = x] = Pλ(x) =
λ

– log(1 – αλ) –
∑r–1

i=1
λiαi

i

· αxλx–1

x

= Cλ(α, r)
αxλx–1

x
(x = r, r + 1, . . .),

where

Cλ(α, r) =
λ

– log(1 – αλ) –
∑r–1

i=1
λiαi

i

.

Note that
∑∞

x=r Pλ[X = x] = 1.
Let X1, X2, . . . , Xk be independent random variables with the r-truncated λ-logarithmic

distribution with parameter p, and let Y be the random variable with negative λ-binomial
distribution with parameters α, p. If Y is independent of X = X1 + X2 + · · · + Xk , then we
have

E
[
tX+Y ]

= E
[
tX]

E
[
tY ]

=

( k∏

j=1

E
[
tXj

]
)

E
[
tY ]

. (43)

Now, we observe that

E
[
tXj

]
=

∞∑

x=r
Pλ[Xj = x]tx

= Cλ(p, r)
∞∑

x=r

λx–1px

x
tx

= Cλ(p, r)

( ∞∑

x=1

λx–1px

x
tx –

r–1∑

x=1

λx–1px

x
tx

)

= Cλ(p, r)

(
–

1
λ

log(1 – λpt) –
r–1∑

x=1

λx–1px

x
tx

)
, (44)
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and

E
[
tY ]

=
∞∑

y=0

( α
λ

+ y – 1
y

)
(λp)y(1 – λp)

α
λ ty

= (1 – λpt)– α
λ (1 – λp)

α
λ . (45)

From (43), (44), and (45), we have

E
[
tX+Y ]

= k!Cλ(p, r)k(–1)k 1
k!

(
log(1 – λpt)

λ
+

r–1∑

x=1

λx–1

x
pxtx

)k

(1 – λpt)– α
λ (1 – λp)

α
λ

= k!Cλ(p, r)k(1 – λp)
α
λ (–1)k

∞∑

n=rk

S(–α)
1,λ (n, k|r)

(–p)n

n!
tn. (46)

On the other hand,

E
[
tX+Y ]

=
∞∑

n=rk

Pλ[X + Y = n]tn. (47)

Therefore, by (46) and (47), we obtain the following theorem.

Theorem 2.10 For r ∈ N, let X1, X2, . . . , Xk be independent random variables with the r-
truncated λ-logarithmic distribution with parameter p, and let Y be the random variable
with negative λ-binomial distribution with parameters α, p. If Y is independent of X =
X1 + X2 + · · · + Xk , then the probability mass function of X + Y is given by

Pλ[X + Y = n] = k!Cλ(p, r)k(1 – λp)
α
λ (–1)n–kS(–α)

1,λ (n, k|r)
pn

n!
(n ≥ kr),

where

Cλ(α, r) =
λ

– log(1 – αλ) –
∑r–1

i=1
λiαi

i

.

3 Conclusion
Stirling numbers of the first kind appear frequently in combinatorics and number theory.
Recently, λ-analogues of Stirling numbers of the first kind were studied in [10].

In this paper, we introduced λ-Stirling polynomials of the first kind which appear as the
coefficients in the Taylor expansion of λ-falling factorial sequence and reduce to the Stir-
ling numbers of the first kind when x = 0 and λ = 1. We obtained recurrence relations,
explicit expressions, some identities, and connections with other special polynomials for
these polynomials. We showed that they appear in an expression of the probability mass
function of a suitable discrete random variable, constructed from λ-logarithmic and neg-
ative λ-binomial distributions. Thereby we demonstrated that these polynomials are not
out of nowhere but arise naturally.

We also considered r-truncated λ-Stirling polynomials of the first kind whose generat-
ing function is obtained from that of the λ-Stirling polynomials of the first kind by trun-
cating first r – 1 terms in the Taylor expansion of the logarithmic function. We derived
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several basic properties about these polynomials just in the case of λ-Stirling polynomials
of the first kind. Then we showed that they also appear in an expression of the proba-
bility mass function of a suitable discrete random variable, constructed from r-truncated
λ-logarithmic and negative λ-binomial distributions. Once again, this demonstrates that
r-truncated λ-Stirling polynomials of the first kind arise naturally.

As one of our future projects, we would like to continue to find many applications of
λ-Stirling polynomials of the first kind and r-truncated λ-Stirling polynomials of the first
kind in mathematics, sciences, and engineering.
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