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1 Introduction
Schur-convexity was introduced by Schur in 1923. Since then many researchers have de-
voted their efforts to it; see for example [6, 8, 12, 17, 19]. Schur-convexity has many impor-
tant applications in analytic and geometric inequality, combinatorial analysis, numerical
analysis, matrix theory, and so on. We recall some definitions.

Definition 1.1 ([2]) Suppose that x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈R
n. x is said to be

majorized by y (with symbol x ≺ y) if

k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, . . . , n – 1,

and

n∑

i=1

x[i] =
n∑

i=1

y[i],

where x[i], denotes the ith largest component in x.

Definition 1.2 ([2]) Let E ⊂ R
n, f : E →R is said to be Schur-convex function on E if x ≺ y

on E implies f (x) ≤ f (y). f is said to be Schur-concave if and only if –f is Schur-convex.

Chu in [4, 5, 7, 18] defined the concept of Schur-harmonically convex function.

Definition 1.3 ([5]) A set E ⊂ R
n
+ is said to be harmonically convex if ( 2x1y1

x1+y1
, 2x2y2

x2+y2
, . . . ,

2xnyn
xn+yn

) ∈ E, for every x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ E.
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Definition 1.4 ([5]) A function f : E →R+ is said to be Schur-harmonically convex on E,
for every x, y ∈ E, if ( 1

x1
, 1

x2
, . . . , 1

xn
) ≺ ( 1

y1
, 1

y2
, . . . , 1

yn
) implies f (x) ≤ f (y).

Definition 1.5 ([2, 14])
(i) A set E ⊂R

n is called symmetric, if x ∈ E implies Px ∈ E for every n × n
permutation matrix P.

(ii) A function f : E →R is said to be a symmetric function if f (Px) = f (x) for every
permutation matrix P, and for every x ∈ E.

Recall that a n × n square matrix P is said to be a permutation matrix if each row and
column has a single unit entry, and all other entries are zero. The following theorem, called
the Schur condition, is very useful for specifying Schur-convexity or Schur-concavity of
functions.

Theorem 1.1 ([2]) Let E ⊂R
n be a symmetric convex set with nonempty interior (E◦ is the

interior of E), and f : E →R be a symmetric continuous function on E. If f is differentiable
on E◦, then f is Schur-convex (Schur-concave) on E◦ if and only if

(x1 – x2)
(

∂f
∂x1

–
∂f
∂x2

)
≥ 0 (≤ 0),

for every x = (x1, x2, . . . , xn) ∈ E◦.

In [5] Chu proved the following result, which is useful for determining Schur-harmonic
convexity or Schur-harmonic concavity of functions.

Theorem 1.2 ([5]) Let E ⊂R
n
+ be a symmetric and harmonically convex set with nonempty

interior (E◦ is the interior of E), and f : E →R+ is a symmetric continuous function on E. If f
is differentiable on E◦, then f is Schur-harmonically convex (Schur-harmonically concave)
on E◦ if and only if

(x1 – x2)
(

x2
1

∂f
∂x1

– x2
2

∂f
∂x2

)
≥ 0 (≤ 0),

for every x = (x1, x2, . . . , xn) ∈ E◦.

By Definition 1.4 the following simple fact is obvious.

Lemma 1.1 ([5]) The function f : E → R
+ is Schur-harmonically convex (Schur-

harmonically concave ) if and only if f ( 1
x1

, 1
x2

, . . . , 1
xn

) is Schur-convex (Schur-concave ) on
1
E = { 1

x : x ∈ E}.

In [1] harmonical convexity was introduced by Anderson et al. and in [13] İşcan gave
the following definition.

Definition 1.6 Let I ⊂R–{0} be an interval. A function f : I →R is said to be HA-convex
or harmonically convex, if

f
(

xy
tx + (1 – t)y

)
≤ tf (y) + (1 – t)f (x), (1)
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for every x, y ∈ I and t ∈ [0, 1]. If the inequality in (1) is reversed, then f is said to be
harmonically concave.

If I ⊂ (0,∞) and f is a convex and nondecreasing function then f is harmonically convex.
If f is an harmonically convex and nonincreasing function then f is convex. If [a, b] ⊂ I ⊂
(0,∞) then the function g : [ 1

b , 1
a ] → R, defined by g(t) = f ( 1

t ), is convex if and only if f is
harmonically convex on [a, b] (see [10]).

The following Hermite–Hadamard type inequality for harmonically convex functions
was obtained by İşcan [13] and Dragomir [10] in different ways.

Theorem 1.3 Let f : I ⊂R– {0} →R ba a harmonically convex function and a, b ∈ I with
a < b. If f ∈ L[a, b] then the following inequalities hold:

f
(

2ab
a + b

)
≤ ab

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
, a, b ∈ I, a < b.

The above inequalities are sharp.

In [9], Dragomir defined convex function on the co-ordinates (or co-ordinated convex
functions ) on the set [a, b] × [c, d] in R

2 with a < b and c < d as follows.

Definition 1.7 A function f : [a, b] × [c, d] → R is said to be convex on the co-ordinates
on [a, b] × [c, d] if for every y ∈ [c, d] and x ∈ [a, b], the partial mappings

fy: [a, b] →R, fy(u) = f (u, y),

and

fx: [c, d] →R, fx(v) = f (x, v),

are convex. This means that, for every (x, y), (z, w) ∈ [a, b] × [c, d] and t, s ∈ [0, 1],

f
(
tx + (1 – t)z, sy + (1 – s)w

) ≤ tsf (x, y) + s(1 – t)f (z, y)

+ t(1 – s)f (x, w) + (1 – t)(1 – s)f (z, w).

Clearly, every convex function is co-ordinated convex. Furthermore, there exist co-
ordinated convex functions which are not convex. The following Hermite–Hadamard type
inequality for co-ordinated convex functions was also proved in [9].

Theorem 1.4 Suppose that f : [a, b] × [c, d] →R is convex on the co-ordinates on [a, b] ×
[c, d]. Then

f
(

a + b
2

,
c + d

2

)
≤ 1

2

[
1

b – a

∫ b

a
f
(

x,
c + d

2

)
dx +

1
d – c

∫ d

c
f
(

a + b
2

, y
)

dy
]

≤ 1
(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y) dy dx

≤ 1
4

[
1

b – a

∫ b

a
f (x, c) dx +

1
b – a

∫ b

a
f (x, d) dx
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+
1

d – c

∫ d

c
f (a, y) dy +

1
d – c

∫ d

c
f (b, y) dy

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

.

The above inequalities are sharp.

In [16] Set and İşcan defined an harmonically convex and an harmonically convex func-
tion on the co-ordinates on the set [a, b] × [c, d] in R

2 with a < b and c < d as follows.

Definition 1.8 Let � = [a, b] × [c, d] ⊂ (0,∞) × (0,∞) with a < b and c < d. A function
f : � →R is said to be harmonically convex on � if the following inequality holds:

f
(

xz
tz + (1 – t)x

,
yw

tw + (1 – t)y

)
= f

(
1

t
x + 1–t

z
,

1
t
y + 1–t

w

)

≤ tf (x, y) + (1 – t)f (z, w), (2)

for every (x, y), (z, w) ∈ � and t ∈ [0, 1]. If the inequality in (2) is reversed, then f is said to
be harmonically concave on �.

Definition 1.9 Let � = [a, b] × [c, d] ⊂ (0,∞) × (0,∞) with a < b and c < d. A function
f : � →R is said to be harmonically convex on the co-ordinates on � if for every y ∈ [c, d]
and x ∈ [a, b], the partial mappings,

fy: [a, b] →R, fy(u) = f (u, y),

and

fx: [c, d] →R, fx(v) = f (x, v),

are harmonically convex.

Clearly, every harmonically convex function is harmonically convex on the co-ordinates.
Furthermore, there exist co-ordinated harmonically convex functions which are not har-
monically convex. Note that if fx and fy are convex and nondecreasing functions then fx

and fy are harmonically convex. The following Hermite–Hadamard type inequality for
harmonically co-ordinated convex functions was also proved in [16].

Theorem 1.5 Let f : � = [a, b] × [c, d] ⊂ (0,∞) × (0,∞) → R is harmonically convex on
the co-ordinates on �. Then

f
(

2ab
a + b

,
2cd

c + d

)
≤ 1

2

[
ab

b – a

∫ b

a

f (x, 2cd
c+d )

x2 dx +
cd

d – c

∫ d

c

f ( 2ab
a+b , y)
y2 dy

]

≤ abcd
(b – a)(d – c)

∫ b

a

∫ d

c

f (x, y)
(xy)2 dy dx

≤ 1
4

[
ab

b – a

∫ b

a

f (x, c)
x2 dx +

ab
b – a

∫ b

a

f (x, d)
x2 dx
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+
cd

d – c

∫ d

c

f (a, y)
y2 dy +

cd
d – c

∫ d

c

f (b, y)
y2 dy

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

.

The above inequalities are sharp.

In [11] Elezović and Pečarić investigated the Schur-convexity on the upper and the lower
limit of the integral for the mean of convex function and proved the following important
result by using the Hermite–Hadamard inequality.

Theorem 1.6 Let f be a continuous function on an interval I , and

F(x, y) =

⎧
⎨

⎩

1
y–x

∫ y
x f (t) dt, x, y ∈ I, x 
= y,

f (x), x = y ∈ I.

Then F(x, y) is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I .

Let I ⊂R be an open interval and f ∈ C2(I). In [6] Chu et al. proved the following theo-
rems.

Theorem 1.7 Let f : I →R be a continuous function. The function

F(x, y) =

⎧
⎨

⎩

1
y–x

∫ y
x f (t) dt – f ( x+y

2 ), x, y ∈ I, x 
= y,

0, x = y ∈ I,

is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I .

Theorem 1.8 Let f : I →R be a continuous function. The function

F(x, y) =

⎧
⎨

⎩

f (x)+f (y)
2 – 1

y–x
∫ y

x f (t) dt, x, y ∈ I, x 
= y,

0, x = y ∈ I,

is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I .

We recall the following lemma from [3], which is known as Leibniz’s formula.

Lemma 1.2 Suppose that f : � = [a, b] × [c, d] → R and ∂f
∂t : [a, b] × [c, d] →R are contin-

uous and α1,α2 : [c, d] → [a, b] are differentiable functions. Then the function ϕ : [c, d] →R

defined by

ϕ(t) =
∫ α2(t)

α1(t)
f (x, t) dx,

has a derivative for each t ∈ [c, d], which is given by

ϕ′(t) = f
(
α2(t), t

)
α′

2(t) – f
(
α1(t), t

)
α′

1(t) +
∫ α2(t)

α1(t)

∂f
∂t

(x, t) dx.
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Moreover, in [15] we proved the following lemma which will be useful in the sequel.
A version of the following lemma was proved in [17].

Lemma 1.3 Let F(u, v) =
∫ v

u
∫ v

u f (x, y) dx dy, where f (x, y) is continuous on the rectangle
[a, p] × [a, q], u = u(b) and v = v(b) are differentiable with a ≤ u(b) ≤ p and a ≤ v(b) ≤ q.
Then

∂F
∂b

=
(∫ v

u
f (x, v) dx +

∫ v

u
f (v, y) dy

)
v′(b) –

(∫ v

u
f (x, u) dx +

∫ v

u
f (u, y) dy

)
u′(b).

2 Main result
In this section we prove new theorems like Theorem 1.6 and Theorems 1.7 and 1.8 for
harmonically convex functions and co-ordinated harmonically convex functions.

Theorem 2.1 Let I ⊂ (0,∞) be an open interval, and the function f : I → R+ be continu-
ously differentiable on I . Suppose that the function F : I2 →R+ is defined by

F(x, y) :=

⎧
⎨

⎩

xy
y–x

∫ y
x

f (t)
t2 dt, x, y ∈ I, x 
= y,

f (x), x = y ∈ I.
(3)

Then F is Schur-harmonically convex on I2 if and only if f is harmonically convex on I .

Proof According to Lemma 1.1 it is sufficient to show that the function F( 1
x , 1

y ) is Schur-
convex on 1

I × 1
I . From (3) we have

F
(

1
x

,
1
y

)
=

1
xy

1
y – 1

x

∫ 1
y

1
x

f (t)
t2 dt =

1
x – y

∫ 1
y

1
x

f (t)
t2 dt,

for every x, y ∈ I , with x 
= y. Using the change of variable s = 1
t , then F( 1

x , 1
y ) = 1

y–x
∫ y

x f ( 1
s ) ds.

Thus by Theorem 1.6 the function

F
(

1
x

,
1
y

)
=

⎧
⎨

⎩

1
y–x

∫ y
x f ( 1

t ) dt, x, y ∈ I, x 
= y,

f ( 1
x ), x = y ∈ I,

is Schur-convex if and only if the function f ( 1
t ) is convex on 1

I . This implies that the func-
tion f (t) is harmonically convex on I . Therefore by Theorem 1.6 the result follows. �

The proofs of the following two theorems are similar to the one for Theorem 2.1, hence
we omit them.

Theorem 2.2 Let I ⊂ (0,∞) be an open interval, and the function f : I →R has continuous
second order derivatives on I . Suppose that the function G : I2 →R+ is defined by

G(x, y) :=

⎧
⎨

⎩

xy
y–x

∫ y
x

f (t)
t2 dt – f ( 2xy

x+y ), x, y ∈ I, x 
= y,

0, x = y ∈ I.

Then G is Schur-harmonically convex on I2 if and only if f is harmonically convex on I .
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Theorem 2.3 Let I ⊂ (0,∞) be an open interval, and the function f : I →R has continuous
second order derivatives on I . Suppose that the function H : I2 →R+ is defined by

H(x, y) :=

⎧
⎨

⎩

f (x)+f (y)
2 – xy

y–x
∫ y

x
f (t)
t2 dt, x, y ∈ I, x 
= y,

0, x = y ∈ I.

Then H is Schur-harmonically convex on I2 if and only if f is harmonically convex on I .

To reach our main results, we need the following two lemmas.

Lemma 2.1 Let D = [a1, b1] × [a1, b1] be a square in R
2 – {(0, 0)} with a1 < b1, and the

function f : D → R be continuous, and have continuous second order partial derivatives
on D◦. Choose a, b ∈ (a1, b1), with a < b, and let � = [a, b]× [a, b]. Suppose that the function
F : � →R is defined by

F(x, y) :=

⎧
⎨

⎩

x2y2

(y–x)2

∫ y
x

∫ y
x

f (t,s)
t2s2 dt ds, x 
= y, x, y ∈ [a, b],

f (x, x), x = y, x, y ∈ [a, b].

Then

∂F
∂x

∣∣∣∣
(t0,t0)

=
∂F
∂y

∣∣∣∣
(t0,t0)

=
1
6

[
2t0

(
g(t0, t0) + h(t0, t0)

)

+ t2
0

(
g1(t0, t0) + h1(t0, t0) +

∂g
∂t

(t, t)
∣∣∣∣
t0

+
∂h
∂t

(t, t)
∣∣∣∣
t0

)]
, (4)

for all t0 ∈ [a, b], where

g(u, t0 + t) =
f (u, t0 + t)

u2 , h(t0 + t, v) =
f (t0 + t, v)

v2 ,

and

g1(u, t0 + t) =
∂g
∂t

(u, t0 + t), h1(t0 + t, v) =
∂h
∂t

(t0 + t, v).

Proof Fix t0 ∈ [a, b]. By using L’Hopital’s rule and Lemmas 1.2, and 1.3 we see that

∂F
∂x

∣∣∣∣
(t0,t0)

= lim
t→0

F(t0 + t, t0) – F(t0, t0)
t

= lim
t→0

1
t3

[
t2
0(t0 + t)2

∫ t0+t

t0

∫ t0+t

t0

f (u, v)
u2v2 du dv – t2f (t0, t0)

]

= lim
t→0

1
3t2

[
2t2

0(t0 + t)
∫ t0+t

t0

∫ t0+t

t0

f (u, v)
u2v2 du dv

+ t2
0

(∫ t0+t

t0

f (u, t0 + t)
u2 du +

∫ t0+t

t0

f (t0 + t, v)
v2 dv

)
– 2tf (t0, t0)

]
. (5)
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Again, using L’Hopital’s rule we obtain

∂F
∂x

= lim
t→0

1
6t

[
2t2

0

∫ t0+t

t0

∫ t0+t

t0

f (u, v)
u2v2 du dv +

2t2
0

t0 + t

(∫ t0+t

t0

f (u, t0 + t)
u2 du

+
∫ t0+t

t0

f (t0 + t, v)
v2 dv

)
+ t2

0

(
g(t0 + t, t0 + t) +

∫ t0+t

t0

∂g
∂t

(u, t0 + t) du

+ h(t0 + t, t0 + t) +
∫ t0+t

t0

∂h
∂t

(t0 + t, v) dv
)

– 2f (t0, t0)
]

.

By a similar computation it follows that

∂F
∂x

= lim
t→0

1
6

[
2t2

0
(t0 + t)2

(∫ t0+t

t0

f (u, t0 + t)
u2 du +

∫ t0+t

t0

f (t0 + t, v)
v2 dv

)

+
2t2

0
t0 + t

(
g(t0 + t, t0 + t) +

∫ t0+t

t0

∂g
∂t

(u, t0 + t) du + h(t0 + t, t0 + t)

+
∫ t0+t

t0

∂h
∂t

(t0 + t, v) dv
)

+ t2
0

(
∂g
∂t

(t0 + t, t0 + t) + g1(t0 + t, t0 + t)

+
∫ t0+t

t0

∂g1

∂t
(u, t0 + t) du +

∂h
∂t

(t0 + t, t0 + t) + h1(t0 + t, t0 + t)

+
∫ t0+t

t0

∂h1

∂t
(t0 + t, v) dv

)]

=
1
6

[
2t0

(
g(t0, t0) + h(t0, t0)

)
+ t2

0

(
g1(t0, t0) + h1(t0, t0) +

∂g
∂t

(t, t)
∣∣∣∣
t0

+
∂h
∂t

(t, t)
∣∣∣∣
t0

)]
.

By changing the role of x by y in (5), we obtain the required results in (4). �

The proof of the following lemma is similar to the one in Lemma 2.1, hence we omit it.

Lemma 2.2 Let D = [a1, b1] × [a1, b1] be a square in R
2 – {(0, 0)} with a1 < b1, and the

function f : D → R be continuous, and have continuous third order partial derivatives
on D◦. Choose a, b ∈ (a1, b1), with a < b, and let � = [a, b]× [a, b]. Suppose that the function
G : � → R is defined by

G(x, y) :=

⎧
⎨

⎩

x2y2

(y–x)2

∫ y
x

∫ y
x

f (t,s)
t2s2 dt ds – f ( 2xy

x+y , 2xy
x+y ), x 
= y, x, y ∈ [a, b],

0, x = y, x, y ∈ [a, b].

Then

∂G
∂x

∣∣∣∣
(t0,t0)

=
∂G
∂y

∣∣∣∣
(t0,t0)

=
1
6

[
4f (t0, t0)

t0

+ t2
0

(
g1(t0, t0) + h1(t0, t0) +

∂g
∂t

(t, t)
∣∣∣∣
t0

+
∂h
∂t

(t, t)
∣∣∣∣
t0

)
– 6

∂f
∂t

(t, t)
∣∣∣∣
t0

]
,
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for all t0 ∈ [a, b], where

g(u, t0 + t) =
f (u, t0 + t)

u2 , h(t0 + t, v) =
f (t0 + t, v)

v2 ,

and

g1(u, t0 + t) =
∂g
∂t

(u, t0 + t), h1(t0 + t, v) =
∂h
∂t

(t0 + t, v).

We now derive the next results for co-ordinated harmonically convex functions.

Theorem 2.4 Let D = [a1, b1] × [a1, b1] be a square in R
2
+ with a1 < b1, and the function

f : D → R+ be continuous, and have continuous second order partial derivatives on D◦.
Choose a, b ∈ (a1, b1), with a < b, and let � = [a, b] × [a, b]. Suppose that f is harmonically
convex on the co-ordinates on �, then the function F : � →R+ defined by

F(x, y) :=

⎧
⎨

⎩

x2y2

(y–x)2

∫ y
x

∫ y
x

f (t,s)
t2s2 dt ds, x 
= y, x, y ∈ [a, b],

f (x, x), x = y, x, y ∈ [a, b],
(6)

is Schur-harmonically convex on �.

Proof Case 1: if x, y ∈ [a, b], with x = y. Then Lemma 2.1 implies that

(y – x)
(

y2 ∂F
∂y

– x2 ∂F
∂x

)
= 0.

Case 2: if x, y ∈ [a, b], with x 
= y. Then by Lemma 1.3 we have

∂F
∂y

=
–2x3y

(y – x)3

∫ y

x

∫ y

x

f (t, s)
t2s2 dt ds

+
x2

(y – x)2

(∫ y

x

f (t, y)
t2 dt +

∫ y

x

f (y, s)
s2 ds

)

and

∂F
∂x

=
2xy3

(y – x)3

∫ y

x

∫ y

x

f (t, s)
t2s2 dt ds

–
y2

(y – x)2

(∫ y

x

f (t, x)
t2 dt +

∫ y

x

f (x, s)
s2 ds

)
.

Thus,

(
y2 ∂F

∂y
– x2 ∂F

∂x

)
=

–4x3y3

(y – x)3

∫ y

x

∫ y

x

f (t, s)
t2s2 dt ds

+
x2y2

(y – x)2

(∫ y

x

f (t, x) + f (t, y)
t2 dt

+
∫ y

x

f (x, s) + f (y, s)
s2 ds

)
.
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Then (y – x)(y2 ∂F
∂y – x2 ∂F

∂x ) is nonnegative if

xy
(y – x)2

∫ y

x

∫ y

x
f (t, s) dt ds

≤ 1
4(y – x)

(∫ y

x

f (t, y) + f (t, x)
t2 dt +

f (y, s) + f (x, s)
s2 ds

)
.

The last inequality follows from Theorem 1.5. Therefore by Theorem 1.2 the function F
is Schur-harmonically convex. �

The following theorem also holds.

Theorem 2.5 Let D = [a1, b1] × [a1, b1] be a square in R
2
+ with a1 < b1, and the function

f : D →R be continuous, and have continuous third order partial derivatives on D◦. Choose
a, b ∈ (a1, b1), with a < b, and let � = [a, b] × [a, b]. Suppose that f is harmonically convex
on the co-ordinates on �, then the function G : � →R+ defined by

G(x, y) :=

⎧
⎨

⎩

x2y2

(y–x)2

∫ y
x

∫ y
x

f (t,s)
t2s2 dt ds – f ( 2xy

x+y , 2xy
x+y ), x 
= y, x, y ∈ [a, b],

0, x = y, x, y ∈ [a, b],
(7)

is Schur-harmonically convex for �.

Proof Case 1: If x, y ∈ [a, b], with x = y. Then Lemma 2.2 implies that

(y – x)
(

y2 ∂G
∂y

– x2 ∂G
∂x

)
= 0.

Case 2: If x, y ∈ [a, b], with x 
= y. Then by Lemma 1.2 we have

(y – x)
(

y2 ∂G
∂y

– x2 ∂G
∂x

)
≥ 0,

if

xy
(y – x)2

∫ y

x

∫ y

x
f (t, s) dt ds

≤ 1
4(y – x)

(∫ y

x

f (t, y) + f (t, x)
t2 dt +

f (y, s) + f (x, s)
s2 ds

)
.

The result follows from Theorem 1.2 and Theorem 1.5. �

In the following examples we show that the converses of Theorems 2.4 and 2.5 are not
true in general.

Example 2.1 Consider the non-harmonically co-ordinated convex function,

f (t, s) := t2 –
1
3

s2, t, s ∈ [1, 2].
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It is easy to see that for the function F as defined in (6) we have F(x, x) = 2
3 x2, for every

x ∈ [1, 2], and

F(x, y) =
x2y2

(y – x)2

∫ y

x

∫ y

x

t2 – 1
3 s2

t2s2 dt ds =
2
3

xy,

for every x, y ∈ [1, 2], with x 
= y. Thus,

F(x, y) =
2
3

xy,

for every x, y ∈ [1, 2]. Clearly F is symmetric, continuous and differentiable on [1, 2]×[1, 2].
If x, y ∈ [1, 2], with x 
= y, we have

(y – x)
(

y2 ∂F
∂y

– x2 ∂F
∂x

)
=

2
3

xy(y – x)2 ≥ 0.

Therefore by Theorem 1.2 the function F is Schur-harmonically convex.

Remark 2.1 It is easy to see that for the function f as defined in Example 2.1 we have

f
(

2xy
x + y

,
2xy

x + y

)
≤ 1

2

[
xy

y – x

∫ y

x

f (t, 2xy
x+y )

t2 dt +
xy

y – x

∫ y

x

f ( 2xy
x+y , s)
s2 ds

]

≤ x2y2

(y – x)2

∫ y

x

∫ y

x

f (t, s)
t2s2 dt ds

≤ 1
4

[
xy

y – x

∫ y

x

f (t, x)
t2 dt +

xy
y – x

∫ y

x

f (t, y)
t2 dt

+
xy

y – x

∫ y

x

f (x, s)
s2 ds +

xy
y – x

∫ y

x

f (y, s)
s2 ds

]

≤ f (x, x) + f (x, y) + f (y, x) + f (y, y)
4

,

for every x, y ∈ [1, 2], with x 
= y. This means that each of the inequalities in Theorem 1.5
is valid while f is not harmonically convex on co-ordinates.

Example 2.2 Consider the non-harmonically co-ordinated convex function:

f (t, s) := 2t2 – s2, t, s ∈ [1, 2].

It is easy to see that for the function G as defined in (7) we have G(x, x) = 0, for every
x ∈ [1, 2], and

G(x, y) =
1

(y – x)2

∫ y

x

∫ y

x

2t2 – s2

t2s2 dt ds –
(

2xy
x + y

)2

= xy –
(

2xy
x + y

)2

,
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for every x 
= y, with x, y ∈ [1, 2]. Thus,

G(x, y) = xy –
(

2xy
x + y

)2

,

for every x, y ∈ [1, 2]. Clearly G is symmetric, continuous and differentiable on [1, 2] ×
[1, 2].

If x, y ∈ [1, 2], we have

(y – x)
(

y2 ∂G
∂y

– x2 ∂G
∂x

)
= xy(y – x)2 ≥ 0.

Therefore by Theorem 1.2 the function G is Schur-harmonically convex.
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