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Abstract
The main aim of this article is to discuss the uniqueness of meromorphic functions
partially sharing some values and small functions in a k-punctured complex plane Ω .
We proved the following: Let f1, f2 be two admissible meromorphic functions in Ω
and αj (j = 1, 2, . . . , l) be l(≥ 5) distinct small functions with respect to f and g. If
˜E(αj ,Ω , f1) ⊆˜E(αj ,Ω , f2) (j = 1, 2, . . . , l) and

lim inf
r→+∞

∑l
j=1 N0(r, 1

f1–αj
)

∑l
j=1 N0(r, 1

f2–αj
)
>

5
2l – 5

,

then f1 ≡ f2. Our results are some improvements and extension of previous theorems
given by Cao–Yi and Ge–Wu.
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1 Introduction
This article is devoted to the study of uniqueness of functions which are meromorphic in
a multiply-connected domain–k-punctured complex plane Ω . In 1920s, Nevanlinna gave
the definition of characterized function T(r, f ) of meromorphic function and established
the famous first and second main theorem, lemma on the logarithmic derivatives etc. of
Nevalinna theory (see Hayman [1], Yang [2] and Yi and Yang [3]). Nowadays, Nevanlinna
theory is a powerful tool in studying the properties of meromorphic functions in the fields
of complex analysis. By applying this theory, the following well-known five-value theorem
was given by Nevanlinna [4].

Theorem A (see [4]) If f and g are two nonconstant meromorphic functions that share five
distinct values a1, a2, a3, a4, a5 IM in X = C, then f (z) ≡ g(z).

Nevanlinna [4] also pointed out the following question.

Question A (see [4]) Does Theorem A still hold if the five distinct values a1, a2, a3, a4, a5

are replaced by five distinct small functions αj (j = 1, 2, . . . , 5)?
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Around Theorem A and Question A, the value distribution theory of meromorphic
functions occupies one of the central places in complex analysis. Moreover, it is always
an interesting topic how to extend and improve some important uniqueness theorems in
the complex plane to the subset X (including the unit disc, the angular domain, the annu-
lus, etc.). Many scholars have paid significant attention to this topic and obtained lots of
meaningful and important results (see [3, 5–9]). For example, Fang [10] in 1999 proved
the five-value theorem for meromorphic functions in the unit disc; Zheng [11] in 2003
obtained the five-value theorem for meromorphic functions in an angular domain; Cao,
Yi, and Xu [12] in 2009 gave the five-value theorem for meromorphic functions in the an-
nuli with the help of the Nevanlinna theory for meromorphic functions on annuli given
by Khrystiyanyn and Kondratyuk [13, 14], or [15] in 2005, or [16] in 2004 (see [12]), etc.
including [3, 10, 11, 17–22]; Yi and Yang, Lahiri, and Xu improved a series of uniqueness
theorems about weight-shared and partially shared (see [3, 23–26]); there are a series of
beautiful and important results related to Question A (see [27–32]). Especially, Yi [31]
gave a positive answer to Question A and extended the five-value theorem to the case of
sharing five distinct small functions.

Theorem B ([31] The five small functions theorem) Let f and g be two nonconstant mero-
morphic functions in a complex plane C and aj (j = 1, 2, 3, 4, 5) be five distinct small func-
tions with respect to f and g . If f and g share aj (j = 1, 2, 3, 4, 5) IM in C, then f ≡ g .

In 2016, the authors investigated the uniqueness of meromorphic functions sharing
some finite sets in a special multiply-connected region—k-punctured complex plane—
and obtained an analog of Nevanlinna’s famous five-value theorem for meromorphic func-
tions f and g in a k-punctured complex plane [33, 34]. To state the result, some basic nota-
tions and a definition about k-punctured complex plane should be introduced as follows,
which can be found in [35].

For k distinct points cj ∈C, j ∈ {1, 2, . . . , k}, Ω = C \⋃k
j=1{cj} can be called a k-punctured

complex plane. Of course, the annulus is a special k-punctured plane as k = 1. Let k ≥ 2,
d = 1

2 min{|cs – cj| : j �= s}, and r0 = 1
d + max{|cj| : j ∈ {1, 2, . . . , k}}, thus it yields that 1

r0
< d,

D1/r0 (cj) ∩ D1/r0 (cs) = ∅ for j �= s

and

D1/r0 (cj) ⊂ Dr0 (0) for j ∈ {1, 2, . . . , k},

where Dδ(c) = {z : |z – c| < δ} and Dδ(c) = {z : |z – c| ≤ δ}. Define

Ωr = Dr(0) \
k

⋃

j=1

D1/r(cj) for any r ≥ r0.

Thus, it follows that Ωr ⊃ Ωr0 for r0 < r ≤ +∞. Obviously, Ωr is a multiple connected and
k + 1 connected region.
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For a meromorphic function f in the k-punctured plane Ω and r0 ≤ r < +∞, let n0(r, f )
denote the counting function of its poles in Ω r , and

N0(r, f ) =
∫ r

r0

n0(t, f )
t

dt,

m0(r, f ) =
1

2π

∫ 2π

0
log+∣

∣f
(

reiθ )∣
∣dθ +

1
2π

m
∑

j=1

∫ 2π

0
log+

∣

∣

∣

∣

f
(

cj +
1
r

eiθ
)∣

∣

∣

∣

dθ

–
1

2π

∫ 2π

0
log+∣

∣f
(

r0eiθ )∣
∣dθ –

1
2π

m
∑

j=1

∫ 2π

0
log+

∣

∣

∣

∣

f
(

cj +
1
r0

eiθ
)∣

∣

∣

∣

dθ ,

where log+ x = max{log x, 0}, then

T0(r, f ) = m0(r, f ) + N0(r, f )

is called the Nevanlinna characteristic of f in the k-punctured complex plane. Besides, we
use S(r, f ) to denote any quantity satisfying S(r, f ) = o(T0(r, f )) for all r outside a possible
exceptional set E of finite linear measure.

Definition 1.1 (see [33]) Let f be a nonconstant meromorphic function in a k-punctured
plane Ω . The function f is called admissible in a k-punctured plane Ω provided that

lim sup
r→+∞

T0(r, f )
log r

= +∞, r0 ≤ r < +∞.

Remark 1.1 (see [33]) From Theorem 5 in [35], a meromorphic function f in a k-
punctured plane is rational if f satisfies

lim sup
r→+∞

T0(r, f )
log r

< +∞, r0 ≤ r < +∞.

Theorem C (see [33, Theorem 3.1]) Let f and g be two admissible meromorphic functions
in Ω ; if f , g share five distinct values a1, a2, a3, a4, a5 IM in Ω , then f (z) ≡ g(z).

2 Results
The purpose of this article is to extend and improve some uniqueness results (including
Theorems A–C) to a special multiply-connected region—k-punctured complex plane.

By relaxing the form of sharing values IM to the partially sharing in Theorem C, we
obtain the first result of this article, which is an improvement of Theorem C.

Theorem 2.1 Let f1, f2 be two admissible meromorphic functions in Ω , a1, a2, . . . , al be l(≥
5) distinct values. If ˜E(aj,Ω , f1) ⊆˜E(aj,Ω , f2) for all 1 ≤ j ≤ l and

lim inf
r→+∞

∑l
j=1

˜N0(r, 1
f1–aj

)
∑l

j=1
˜N0(r, 1

f2–aj
)

>
1

l – 3
,

where ˜E(a,Ω , h) = {z|h(z) – a = 0, z ∈ Ω} for a meromorphic function h(z) in Ω , where each
zero is counted only once, then f1 ≡ f2.
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From Theorem 2.1, we can obtain the following corollary immediately.

Corollary 2.1 Let f1, f2 be two admissible meromorphic functions in Ω , a1, a2, . . . , al be
l(≥ 5) distinct values. If ˜E(aj,Ω , f1) ⊆˜E(aj,Ω , f2) for all 1 ≤ j ≤ l and f1 �≡ f2, then

lim inf
r→+∞

∑l
j=1

˜N0(r, 1
f1–aj

)
∑l

j=1
˜N0(r, 1

f2–aj
)
≤ 1

l – 3
.

Remark 2.1 When l = 5 and ˜E(aj,Ω , f1) =˜E(aj,Ω , f2) for all 1 ≤ j ≤ l, in this case,

lim inf
r→+∞

∑5
j=1

˜N0(r, 1
f1–aj

)
∑5

j=1
˜N0(r, 1

f2–aj
)

= 1 >
1
2

.

Then it follows f1 ≡ f2 by Theorem 2.1. Thus, this shows that Theorem 2.1 is an improve-
ment of Theorem C.

Inspired by Question A, Theorem B, and Theorem 2.1, the second purpose of this paper
is to investigate the uniqueness of meromorphic functions concerning small functions, and
we obtain an analog of Nevanlinna’s five-value theorem for meromorphic functions in a
k-punctured complex plane.

Theorem 2.2 Let f1, f2 be two admissible meromorphic functions in Ω , α1,α2, . . . ,αl be l(≥
5) distinct small functions with respect to f1, f2. If ˜E(αj,Ω , f1) ⊆˜E(αj,Ω , f2) for all 1 ≤ j ≤ l
and

lim inf
r→+∞

∑l
j=1

˜N0(r, 1
f1–αj

)
∑l

j=1
˜N0(r, 1

f2–αj
)

>
5

2l – 5
,

where ˜E(α,Ω , h) = {z|h(z) – α(z) = 0, z ∈ Ω} for a meromorphic function h(z) in Ω , where
each zero is counted only once, then f1 ≡ f2.

Remark 2.2 Let f be a nonconstant meromorphic function in a k-punctured plane Ω ,
we denote by S(f ) a set of meromorphic function a(z) in a k-punctured plane Ω satisfying
T0(r, a) = S(r, f ), and such a meromorphic function a(z) in a k-punctured plane Ω is called
a small function with respect to f .

From Theorem 2.2, the following results can be obtained immediately.

Corollary 2.2 Let f1, f2 be two admissible meromorphic functions in Ω , and let α1,α2, . . . ,αl

be l(≥ 5) distinct small functions with respect to f1, f2. If ˜E(αj,Ω , f1) ⊆ ˜E(αj,Ω , f2) for all
1 ≤ j ≤ l and f1 �≡ f2, then

lim inf
r→+∞

∑l
j=1

˜N0(r, 1
f1–αj

)
∑l

j=1
˜N0(r, 1

f2–αj
)
≤ 5

2l – 5
.
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Corollary 2.3 Let f1, f2 be two admissible meromorphic functions in Ω , and let α1,α2, . . . ,α6

be six distinct small functions with respect to f1, f2. If ˜E(αj,Ω , f1) = ˜E(αj,Ω , f2) for all
1 ≤ j ≤ 6, then f1 ≡ f2.

3 The proof of Theorem 2.1
To prove Theorem 2.1, we require the following lemmas.

Lemma 3.1 (see [35, Theorem 3]) Let f , f1, f2 be meromorphic functions in a k-punctured
plane Ω . Then:

(i) the function T0(r, f ) is nonnegative, continuous, nondecreasing, and convex with
respect to log r on [r0, +∞), T0(r0, f ) = 0;

(ii) if f identically equals a constant, then T0(r, f ) vanishes identically;
(iii) if f is not identically equal to zero, then T0(r, f ) = T0(r, 1/f ), r0 ≤ r < +∞;
(iv) T0(r, f1f2) ≤ T0(r, f1) + T0(r, f2) + O(1) and T0(r, f1 + f2) ≤ T0(r, f1) + T0(r, f2) + O(1)

for r0 ≤ r < +∞;
(v) T0(r, 1

f –a ) = T0(r, f ) + O(1) for any fixed a ∈C.

By using Lemma 6 in [35], we can get the following lemma easily.

Lemma 3.2 Let f be a nonconstant meromorphic function in a k-punctured plane Ω and
p be a positive integer, then

m0

(

r,
f (p)

f

)

= O
(

log T0(r, f )
)

+ O
(

log+ r
)

:= S(r, f ), r → +∞,

outside a set E of finite linear measure.

Remark 3.1 Obviously, if f is admissible in a k-punctured plane Ω , then

m0

(

r,
f (p)

f

)

= S(r, f ) = o
(

T0(r, f )
)

.

Lemma 3.3 ([34, Theorem 2.5]) Let f be a nonconstant meromorphic function in a k-
punctured plane Ω , and let a1, a2, . . . , aq (q ≥ 3) be distinct complex numbers in the ex-
tended complex plane ̂C := C∪ {∞}. Then, for r0 ≤ r < +∞,

(q – 2)T0(r, f ) ≤
q

∑

ν=1

˜N0

(

r,
1

f – aν

)

+ S(r, f ),

where ñ0(r, 1
f –a ) is the counting function of zeros of f –a in Ω r with the multiplicities reduced

by 1,

˜N0

(

r,
1

f – aν

)

=
∫ r

r0

ñ0(t, 1
f –aν

)
t

dt,

r ≥ r0 and S(r, f ) is stated as in Lemma 3.2.
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Proof of Theorem 2.1 Without loss of generality, assume that aj (j = 1, 2, . . . , l) are finite. In
view of 3.3, it follows

(l – 2)T0(r, f1) ≤
l

∑

j=1

˜N0

(

r,
1

f1 – aj

)

+ S(r, f1)

and

(l – 2)T0(r, f2) ≤
l

∑

j=1

˜N0

(

r,
1

f2 – aj

)

+ S(r, f2).

Suppose that f1 �≡ f2. In view of ˜E(aj,Ω , f1) ⊆˜E(aj,Ω , f2) for all 1 ≤ j ≤ l, then it yields

l
∑

j=1

˜N0

(

r,
1

f1 – aj

)

≤ ˜N0

(

r,
1

f1 – f2

)

≤ T0(r, f1) + T0(r, f2) + O(1).

Thus, we have

l
∑

j=1

˜N0

(

r,
1

f1 – aj

)

≤
(

1
l – 2

+ o(1)
) l

∑

j=1

˜N0

(

r,
1

f1 – aj

)

+
(

1
l – 2

+ o(1)
) l

∑

j=1

˜N0

(

r,
1

f2 – aj

)

for all r /∈ E, which implies

(

l – 3
l – 2

+ o(1)
) l

∑

j=1

˜N0

(

r,
1

f1 – aj

)

≤
(

1
l – 2

+ o(1)
) l

∑

j=1

˜N0

(

r,
1

f2 – aj

)

for all r /∈ E. Hence, it follows

lim inf
r→+∞

∑l
j=1

˜N0(r, 1
f1–αj

)
∑l

j=1
˜N0(r, 1

f2–αj
)
≤ 1

l – 3
,

which is a contradiction. Thus, f1 ≡ f2.
Therefore, this completes the proof of Theorem 2.1. �

4 The proof of Theorem 2.2
To prove Theorem 2.2, we will require the following lemmas.

Lemma 4.1 Let f1(z) and f2(z) be two admissible meromorphic functions in a k-punctured
plane Ω , at(z)( �≡ 0, 1) ∈ S(r) := S(f1) ∩ S(f2), t = 1, 2, be not equal to constants simultane-
ously, and let

Fs(z) =

∣

∣

∣

∣

∣

∣

∣

fsf ′
s f ′

s f 2
s – fs

a1a′
1 a′

1 a2
1 – a1

a2a′
2 a′

2 a2
2 – a2

∣

∣

∣

∣

∣

∣

∣

for s = 1, 2. (4.1)
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Then:
(i) Fs(z) �≡ 0 for s = 1, 2.

(ii)

2T0(r, fs) < ˜N0

(

r,
1

fs – 1

)

+ ˜N0

(

r,
1
fs

)

+ ˜N0(r, fs) + ˜N0

(

r,
1

fs – a1

)

+ ˜N0

(

r,
1

fs – a2

)

+ S(r, f1) + S(r, f2) for s = 1, 2.

Proof (i) Assume that F1(z) ≡ 0. Thus, we can rewrite (4.1) as the following form:

(

a′
1

a1
–

a′
2

a2

)(

f ′
1

f1 – 1
–

a′
2

a2 – 1

)

–
(

a′
1

a1 – 1
–

a′
2

a2 – 1

)(

f ′
1

f1
–

a′
2

a2

)

≡ 0. (4.2)

Next, we will divide the proof into four cases as follows.
Case 1. If a′

1
a1

≡ a′
2

a2
, then it follows a1 = η1a2, where η1 �= 1 is a constant. From the as-

sumptions of this lemma, it yields a′
1

a1–1 �≡ a′
2

a2–1 , which implies f ′
1

f1
≡ a′

2
a2

. Thus, we have
f1(z) = η2a2(z), where η2 is a constant. Therefore, we get a contradiction.

Case 2. If a′
1

a1–1 ≡ a′
2

a2–1 . By using the same argument as in Case 1, we also get a contradic-
tion.

Case 3. If a′
1

a1
�≡ a′

2
a2

, a′
1

a1–1 �≡ a′
2

a2–1 and a′
1

a1
– a′

2
a2

≡ a′
1

a1–1 – a′
2

a2–1 . Thus it follows from (4.1) that

f ′
1

f1 – 1
–

f ′
1

f1
≡ a′

2
a2 – 1

–
a′

2
a2

.

By a simple integral, we have 1
f1

= 1 – η3(1 – 1
a2

), where η3 is a constant, a contradiction.

Case 4. If a′
1

a1
�≡ a′

2
a2

, a′
1

a1–1 �≡ a′
2

a2–1 and a′
1

a1
– a′

2
a2

�≡ a′
1

a1–1 – a′
2

a2–1 . Thus, we can rewrite (4.2) as
the following form:

(

a′
1

a1
–

a′
2

a2

)

f ′
1

f1 – 1
–

(

a′
1

a1 – 1
–

a′
2

a2 – 1

)

f ′
1

f1
≡ a′

1
a1

a′
2

a2 – 1
–

a′
2

a2

a′
1

a1 – 1
. (4.3)

By observing (4.3), the zeros of f1 – 1 in Ω can only occur at the zeros, 1-points and poles
of a1(z) and a2(z), and the zeros of a′

1
a1

– a′
2

a2
in Ω . Thus, we have

˜N0

(

r,
1

f1 – 1

)

≤
2

∑

j=1

{

N0(r, aj) + N0

(

r,
1
aj

)

+ N0

(

r,
1

aj – 1

)}

+ N0

(

r,
1

a′
1

a1
– a′

2
a2

)

= S(r, f1) + S(r, f2). (4.4)

Similarly, we have

˜N0

(

r,
1
f1

)

= S(r, f1) + S(r, f2). (4.5)
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Further, the poles of f1 in Ω can only occur at the zeros, 1-points and poles of a1(z) and
a2(z), and the zeros of ( a′

1
a1

– a′
2

a2
) – ( a′

1
a1–1 – a′

2
a2–1 ) in Ω . By a simple calculation, we have

˜N0(r, f1) = S(r, f1) + S(r, f2). (4.6)

By Lemma 3.3 and from (4.4)–(4.6), it follows

T0(r, f1) < ˜N0

(

r,
1

f1 – 1

)

+ ˜N0

(

r,
1
f1

)

+ ˜N0(r, f1) + S(r, f1)

= S(r, f1) + S(r, f2),

a contradiction.
If F2(z) ≡ 0, by using the same argument as above, we also get a contradiction. Then we

prove (i).
(ii) Let

δ(z) =
1
3

min
{

1,
∣

∣a1(z)
∣

∣,
∣

∣a2(z)
∣

∣,
∣

∣a1(z) – 1
∣

∣,
∣

∣a2(z) – 1
∣

∣,
∣

∣a1(z) – a2(z)
∣

∣, z ∈ Ω
}

,

θt(r) =
{

θ :
∣

∣f1
(

reiθ ) – at
(

riθ )∣
∣ ≤ δ

(

riθ )} (t = 1, 2),

θ3(r) =
{

θ :
∣

∣f1
(

reiθ )∣
∣ ≤ δ

(

riθ )},

θ4(r) =
{

θ :
∣

∣f1
(

reiθ ) – 1
∣

∣ ≤ δ
(

riθ )}.

Then it follows

1
2π

∫ 2π

0
log

1
δ(reiθ )

dθ

≤ 1
2π

∫ 2π

0
log max

{

1,
1

|a1(z)| ,
1

|a2(z)| ,
1

|a1(z) – 1| ,
1

|a2(z) – 1| ,

1
|a1(z) – a2(z)| , z ∈ Ω

}

dθ + log 3

≤ m
(

r,
1
a1

)

+ m
(

r,
1
a2

)

+ m
(

r,
1

a1 – 1

)

+ m
(

r,
1

a2 – 1

)

+ m
(

r,
1

a1 – a2

)

+ 4 log 2.

Similarly, for any cj, j = 1, 2, . . . , k, we have

1
2π

∫ 2π

0
log

1
δ(cj + 1

r eiθ )
dθ

≤ 1
2π

∫ 2π

0
log max

{

1,
1

|a1(cj + 1
r eiθ )| ,

1
|a2(cj + 1

r eiθ )| ,
1

|a1(cj + 1
r eiθ ) – 1| ,

1
|a2(cj + 1

r eiθ ) – 1| ,
1

|a1(cj + 1
r eiθ ) – a2(cj + 1

r eiθ )| , z ∈ Ω

}

dθ + log 3

≤ m
(

1
r

,
1

a1(cj + z)

)

+ m
(

r,
1

a2(cj + z)

)

+ m
(

r,
1

a1(cj + z) – 1

)



Xu et al. Journal of Inequalities and Applications        (2019) 2019:289 Page 9 of 15

+ m
(

r,
1

a2(cj + z) – 1

)

+ m
(

r,
1

a1(cj + z) – a2(cj + z)

)

+ 4 log 2.

Further, for j = 1, 2, . . . , k,

1
2π

∫ 2π

0
log

1
δ(r0eiθ )

dθ = O(1),
1

2π

∫ 2π

0
log

1
δ(cj + 1

r0
eiθ )

dθ = O(1).

Thus, it follows

1
2π

∫ 2π

0
log

1
δ(reiθ )

dθ +
k

∑

j=1

1
2π

∫ 2π

0
log

1
δ(cj + 1

r eiθ )
dθ

–
1

2π

∫ 2π

0
log

1
δ(r0eiθ )

dθ –
k

∑

j=1

1
2π

∫ 2π

0
log

1
δ(cj + 1

r0
eiθ )

dθ

≤ m0

(

r,
1
a1

)

+ m0

(

r,
1
a2

)

+ m0

(

r,
1

a1 – 1

)

+ m0

(

r,
1

a2 – 1

)

+ m
(

r,
1

a1 – a2

)

+ O(1)

≤ S(r, f1) + S(r, f2). (4.7)

On the other hand, taking

f1f ′
1 = (f1 – a1)

(

f ′
1 – a′

1
)

+ a′
1(f1 – a1) + a1

(

f ′
1 – a′

1
)

+ a1a′
2 := F1,

f ′
1 =

(

f ′
1 – a′

1
)

+ a′
1 := F2,

f 2
1 – f1 = (f1 – a1)2 + (2a1 – 1)(f1 – a1) + a2

1 – a1 := F3,

and substituting these into (4.22), by a simple calculation, we have

F =

∣

∣

∣

∣

∣

∣

∣

F1 – a1a′
2 F2 – a′

1 F3 – a2
1 + a1

a1a′
1 a′

1 a2
1 – a1

a2a′
2 a′

2 a2
2 – a2

∣

∣

∣

∣

∣

∣

∣

. (4.8)

From the definition of θ1(r) and δ(z), we have

∣

∣f1
(

reiθ ) – a1
(

reiθ )∣
∣ ≤ δ

(

reiθ ) ≤ 1 +
∣

∣a1
(

reiθ )∣
∣ as θ ∈ θ1(r) (4.9)

and

1
2π

∫

θ1(r)
log+

∣

∣

∣

∣

F
f1 – a1

∣

∣

∣

∣

dθ

≤ m
(

r,
f ′
1 – a′

1
f1 – a1

)

+ O
(

m(r, a1) + m(r, a2) + m
(

r, a′
1
)

+ m
(

r, a′
2
))

< S(r, f1) + S(r, f2). (4.10)
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On the other hand, we have |f1(reiθ ) – a1(reiθ )| ≥ δ(reiθ ) as θ /∈ θ1(r), that is,

1
|f1(reiθ ) – a1(reiθ )| ≤ 1

δ(reiθ )
as θ /∈ θ1(r). (4.11)

By combining (4.10) and (4.11), we have

m
(

r,
1

f1 – a1

)

≤ 1
2π

∫

θ1(r)
log+

∣

∣

∣

∣

F
f1 – a1

∣

∣

∣

∣

dθ +
1

2π

∫

θ1(r)
log+

∣

∣

∣

∣

1
F

∣

∣

∣

∣

dθ

+
1

2π

∫

[0,2π ]–θ1(r)
log

∣

∣

∣

∣

1
δ

∣

∣

∣

∣

dθ

≤ 1
2π

∫

θ1(r)
log+

∣

∣

∣

∣

1
F(reiθ )

∣

∣

∣

∣

dθ +
1

2π

∫ 2π

0
log

∣

∣

∣

∣

1
δ(reiθ )

∣

∣

∣

∣

dθ

+ S(r, f1) + S(r, f2). (4.12)

Similarly, we have

m
(

1
r

,
1

f1(cj + 1
r eiθ ) – a1(cj + 1

r eiθ )

)

≤ 1
2π

∫

θ1(r)
log+

∣

∣

∣

∣

F(cj + 1
r eiθ )

f1(cj + 1
r eiθ ) – a1(cj + 1

r eiθ )

∣

∣

∣

∣

dθ

+
1

2π

∫

θ1(r)
log+

∣

∣

∣

∣

1
F(cj + 1

r eiθ )

∣

∣

∣

∣

dθ +
1

2π

∫

[0,2π ]–θ1(r)
log

∣

∣

∣

∣

1
δ(cj + 1

r eiθ )

∣

∣

∣

∣

dθ

≤ 1
2π

∫

θ1(r)
log+

∣

∣

∣

∣

1
F(cj + 1

r eiθ )

∣

∣

∣

∣

dθ +
1

2π

∫ 2π

0
log

∣

∣

∣

∣

1
δ(cj + 1

r eiθ )

∣

∣

∣

∣

dθ

+ S(r, f1) + S(r, f2). (4.13)

Since

m
(

r0,
1

f1 – a1

)

= O(1),
1

2π

∫

θ1(r0)
log+

∣

∣

∣

∣

1
F(r0eiθ )

∣

∣

∣

∣

dθ = O(1),

m
(

1
r0

,
1

f1(cj + 1
r0

eiθ ) – a1(cj + 1
r0

eiθ )

)

= O(1),

and

1
2π

∫

θ1(r0)
log+

∣

∣

∣

∣

1
F(cj + 1

r0
eiθ )

∣

∣

∣

∣

dθ = O(1), j = 1, 2, . . . , k,

by combining (4.7), (4.12), and (4.13), it follows

m0

(

r,
1

f1 – a1

)
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≤ 1
2π

∫

θ1(r)
log+

∣

∣

∣

∣

1
F(reiθ )

∣

∣

∣

∣

dθ +
k

∑

j=1

1
2π

∫

θ1(r)
log+

∣

∣

∣

∣

1
F(cj + 1

r eiθ )

∣

∣

∣

∣

dθ

–
1

2π

∫

θ1(r0)
log+

∣

∣

∣

∣

1
F(r0eiθ )

∣

∣

∣

∣

dθ –
k

∑

j=1

1
2π

∫

θ1(r0)
log+

∣

∣

∣

∣

1
F(cj + 1

r0
eiθ )

∣

∣

∣

∣

dθ

+ S(r, f1) + S(r, f2). (4.14)

By using the same argument as above, we have

m0

(

r,
1

f1 – a2

)

≤ 1
2π

∫

θ2(r)
log+

∣

∣

∣

∣

1
F(reiθ )

∣

∣

∣

∣

dθ +
k

∑

j=1

1
2π

∫

θ2(r)
log+

∣

∣

∣

∣

1
F(cj + 1

r eiθ )

∣

∣

∣

∣

dθ

–
1

2π

∫

θ2(r0)
log+

∣

∣

∣

∣

1
F(r0eiθ )

∣

∣

∣

∣

dθ –
k

∑

j=1

1
2π

∫

θ2(r0)
log+

∣

∣

∣

∣

1
F(cj + 1

r0
eiθ )

∣

∣

∣

∣

dθ

+ S(r, f1) + S(r, f2); (4.15)

m0

(

r,
1
f1

)

≤ 1
2π

∫

θ3(r)
log+

∣

∣

∣

∣

1
F(reiθ )

∣

∣

∣

∣

dθ +
k

∑

j=1

1
2π

∫

θ3(r)
log+

∣

∣

∣

∣

1
F(cj + 1

r eiθ )

∣

∣

∣

∣

dθ

–
1

2π

∫

θ3(r0)
log+

∣

∣

∣

∣

1
F(r0eiθ )

∣

∣

∣

∣

dθ –
k

∑

j=1

1
2π

∫

θ3(r0)
log+

∣

∣

∣

∣

1
F(cj + 1

r0
eiθ )

∣

∣

∣

∣

dθ

+ S(r, f1) + S(r, f2); (4.16)

and

m0

(

r,
1

f1 – 1

)

≤ 1
2π

∫

θ4(r)
log+

∣

∣

∣

∣

1
F(reiθ )

∣

∣

∣

∣

dθ +
k

∑

j=1

1
2π

∫

θ4(r)
log+

∣

∣

∣

∣

1
F(cj + 1

r eiθ )

∣

∣

∣

∣

dθ

–
1

2π

∫

θ4(r0)
log+

∣

∣

∣

∣

1
F(r0eiθ )

∣

∣

∣

∣

dθ –
k

∑

j=1

1
2π

∫

θ4(r0)
log+

∣

∣

∣

∣

1
F(cj + 1

r0
eiθ )

∣

∣

∣

∣

dθ

+ S(r, f1) + S(r, f2). (4.17)

Since θ (r) ∈ [0, 2π ), then from (4.14)–(4.17) it yields

m0

(

r,
1

f1 – a1

)

+ m0

(

r,
1

f1 – a2

)

+ m0

(

r,
1
f1

)

+ m0

(

r,
1

f1 – 1

)

< m0

(

r,
1
F

)

+ S(r, f1) + S(r, f2). (4.18)
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If z0 is a zero of f1 or f1 – 1 or f1 – a1 or f1 – a2 in Ω of multiplies p > 1 and not a pole of a1

or a2 in Ω , then z0 must be a zero of F1(z) in Ω of multiplies p – 1. Thus, it follows

4T0(r, f1) < N0

(

r,
1
f1

)

+ N0

(

r,
1

f1 – 1

)

+ N0

(

r,
1

f1 – a1

)

+ N0

(

r,
1

f1 – a2

)

– N0

(

r,
1
F1

)

+ T0(r, F1) + O(1) + S(r, f1) + S(r, f2)

< ˜N0

(

r,
1
f1

)

+ ˜N0

(

r,
1

f1 – 1

)

+ ˜N0

(

r,
1

f1 – a1

)

+ ˜N0

(

r,
1

f1 – a2

)

+ T0(r, F1) + O(1) + S(r, f1) + S(r, f2). (4.19)

In addition, from the definition of F1(z), we can get

m0(r, F1) < 2m0(r, f1) + S(r, f1) + S(r, f2), (4.20)

N0(r, F1) < 2N0(r, f1) + ˜N0(r, f1) + S(r, f1) + S(r, f2). (4.21)

Hence, from (4.19)–(4.21), we can get Lemma 4.1(ii).
Therefore, this completes the proof of Lemma 4.1. �

Lemma 4.2 Let f1(z) and f2(z) be two admissible meromorphic functions in a k-punctured
plane Ω , αj(z)( �≡ 0, 1) ∈ S(f1) ∩ S(f2), j = 1, 2, . . . , 5, be five distinct meromorphic functions
in a k-punctured plane Ω , then

2T0(r, fs) <
5

∑

j=1

˜N0

(

r,
1

fs – αj

)

+ S(r, f1) + S(r, f2), s = 1, 2. (4.22)

Proof Set

gs =
fs – α4

fs – α5

α3 – α5

α3 – α4
(s = 1, 2),

aj =
αj – α4

αj – α5

α3 – α5

α3 – α4
(j = 1, 2).

Then it yields

∣

∣T0(r, gs) – T0(r, fs)
∣

∣ < S(r, f1) + S(r, f2), for s = 1, 2, (4.23)

S(r, f1) + S(r, f2) = S(r, g1) + S(r, g2). (4.24)

Here we will consider three cases as follows.
Case 1. If g1 and g2 are admissible, then by applying Lemma 4.1 for g1, g2, a1, a2, we have

2T0(r, gs) < ˜N0(r, gs) + ˜N0

(

r,
1
gs

)

+ ˜N0

(

r,
1

gs – 1

)

+ ˜N0

(

r,
1

gs – a1

)

+ ˜N0

(

r,
1

gs – a2

)

+ S(r, g1) + S(r, g2) (4.25)
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for s = 1, 2. From the notations of g1 and g2 and αj ∈ S(f1) ∩ S(f2), we have

˜N0(r, gs) < N0

(

r,
1

fs – α5

)

+ O

( 5
∑

j=1

T0(r,αj)

)

, (4.26)

˜N0

(

r,
1
gs

)

< N0

(

r,
1

fs – α4

)

+ O

( 5
∑

j=1

T0(r,αj)

)

, (4.27)

and

˜N0

(

r,
1

gs – aj

)

< N0

(

r,
1

fs – αj

)

+ O

( 5
∑

j=1

T0(r,αj)

)

(4.28)

for s = 1, 2; j = 1, 2. Substituting (4.26)–(4.28) into (4.25), we can get (4.22) easily.
Case 2. If g1 and g2 are rational, then from Remark 2.1 we have T0(r, gs) = O(log r) =

S(r, f1) + S(r, f2) for s = 1, 2. Thus, combining (4.23) and (4.24), it yields T0(r, fs) = S(r, f1) +
S(r, f2) for s = 1, 2. Hence the conclusions hold.

Case 3. If one of g1, g2 is rational, without loss of generality assume that g1 is rational and
g2 is admissible. From Case 2 and Case 1, we have T0(r, f1) = S(r, f1) + S(r, f2) and

T0(r, f2) <
5

∑

j=1

˜N0

(

r,
1

f2 – αj

)

+ S(r, f1) + S(r, f2).

Then the conclusion holds.
From Cases 1–3, this completes the proof of Lemma 4.2. �

Proof of Theorem 2.2 Take any distinct s1, . . . , s5 ∈ {1, 2, . . . , l}, and in view of Lemma 4.2,
it follows

2T0(r, fi) <
5

∑

j=1

˜N0

(

r,
1

fi – αsj

)

+ S(r), i = 1, 2. (4.29)

Thus, we can conclude

2

(

l
5

)

T0(r, fi) ≤ 5
l

(

l
5

) l
∑

j=1

˜N0

(

r,
1

fi – αj

)

+ S(r), i = 1, 2,

that is,

T0(r, fi) ≤ 5
2l

l
∑

j=1

˜N0

(

r,
1

fi – αj

)

+ S(r), i = 1, 2. (4.30)

Suppose that f1 �≡ f2. In view of ˜E(αj,Ω , f1) ⊆˜E(αj,Ω , f2) for all 1 ≤ j ≤ l, we have

l
∑

j=1

˜N0

(

r,
1

f1 – αj

)

≤ ˜N0

(

r,
1

f1 – f2

)

≤ T0(r, f1) + T0(r, f2) + O(1). (4.31)
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In view of (4.30) and (4.31), we can deduce

l
∑

j=1

˜N0

(

r,
1

f1 – αj

)

≤
(

5
2l

+ o(1)
) l

∑

j=1

˜N0

(

r,
1

f1 – αj

)

+
(

5
2l

+ o(1)
) l

∑

j=1

˜N0

(

r,
1

f2 – αj

)

for r /∈ E, which implies

(

2l – 5
2l

+ o(1)
) l

∑

j=1

˜N0

(

r,
1

f1 – αj

)

≤
(

5
2l

+ o(1)
) l

∑

j=1

˜N0

(

r,
1

f2 – αj

)

for r /∈ E. This leads to

lim inf
r→+∞

∑l
j=1

˜N0(r, 1
f1–αj

)
∑l

j=1
˜N0(r, 1

f2–αj
)
≤ 5

2l – 5
,

which is a contradiction with the assumption of Theorem 2.2. Thus, f1 ≡ f2.
Therefore, this completes the proof of Theorem 2.2. �
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