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Abstract
This paper considers the problem of estimating the state vector of uncertain
stochastic time-delay systems, while the system states are unmeasured. The system
under study involves parameter uncertainties, noise disturbances and time delay, and
they are dependent on the state. Based on the Lyapunov–Krasovskii functional
approach, we present a delay-dependent condition for the existence of a state
observer in terms of a linear matrix inequality. A numerical example is exploited to
show the validity of the results obtained.
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1 Introduction
Uncertain stochastic time-delay systems have come to play an important role in many
branches of science and engineering applications. Some recent improved research results
pertaining to the analysis for stochastic time-delay systems have been reported; see [1–
6] and the references therein. It is well known that the dynamic behaviour of many in-
dustrial processes contains inherent time delays due to the distributed nature of the sys-
tems [7–17]. Both time delay and uncertainties are inevitable in real applications. Sys-
tems have difficulty keeping nice performances, because time delay and/or uncertainties
often destroy the stability of systems. As regards being based on the size of the time de-
lays of the systems, the criteria for time-delay systems can be classified into two groups:
delay-independent criteria and delay-dependent criteria. Generally speaking, since delay-
dependent conditions make use of information on the length of the delay, they are less con-
servative than delay-independent ones. To obtain delay-dependent conditions, the main
approaches consist of model transformations of an original system and the bounding tech-
nique [18, 19].

On the other hand, the availability for direct measurements of all the state variables
is rare in practice. In most cases, we need to estimate unmeasurable state variables. For
this particular task, a state observer is more common, in order to accurately reconstruct
the state variables of the systems [20–24]. The problem of observer design for uncertain
stochastic time-delay systems has been investigated by many researchers. For example,
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the authors in [25] designed an exponent filter estimate state for stochastic nonlinear sys-
tems with time delay by using a high-gain observer-based approach. The authors of [26]
investigated a stochastic system with process noises and sensor noises, and they gave a
design method of observer minimizing the upper bound of an error variance. In [27], the
authors dealt with the output feedback sliding mode control for Itô stochastic time-delay
systems. The delay-independent sufficient condition for the asymptotic stability in prob-
ability of the overall closed-loop stochastic system was derived. To the best of the author’s
knowledge, so far little work is available in the literature that addresses a delay-dependent
condition of the existence of observer for uncertain stochastic time-delay systems.

This article considers state estimation for a class of Itô-type stochastic systems subject to
time delay and parameter uncertainties. The system states are unmeasured. The stochas-
tic system involves parameter uncertainties and time delay, and they are dependent on the
state. The objective is to design a robust observer such that the dynamics of the estimation
error is guaranteed to be asymptotically stable in the mean square. Attention is focused on
the design of the gain matrix and the state-feedback controller. This paper derived an ob-
server design method of uncertain stochastic time-delay systems by constructing a proper
Lyapunov–Krasovskii functional and by making use of the free weighting matrix method.
In [27], the authors obtained some theorems, but conclusions are independent of time
delay. Consequently, this will largely restrict the applying area of the conclusions. The in-
novation of this paper is that the delay-dependent sufficient condition for the existence of
such a state observer for any admissible uncertainties is given. We present a new method
to estimate the stochastic systems. Based on the new criterion, a delay-dependent con-
dition for the existence of state observer is derived in terms of a linear matrix inequality
(LMI), therefore it is in the sense of being conservative reduced. A numerical example is
exploited to show the validity of the results obtained.

In this paper, we work on the complete probability space (Ω ,F ,P) with the filtra-
tion Ft{t≥0} satisfying the usual conditions. Rn and R

m×n denote, respectively, the n-
dimensional Euclidean space and the set of all m × n real matrices. L2[0,∞) is the space of
square-integrable vector functions over [0, ∞). C2,1(Rn ×R+;R+) denotes the family of all
nonnegative functions V (x(t), t) on R

n ×R+ that are continuously twice differentiable in x
and once differentiable in t. Let τ > 0 and denote by C([–τ , 0];Rn) the family of continuous
functions ϕ from [–τ , 0] to R

n with the norm ‖ϕ‖ = supθ∈[–τ ,0] |ϕ(θ )|, where | · | and ‖ · ‖
are the usual Euclidean norm in R

n and the L2[0,∞) norm, respectively. P > 0 means the
matrix P is symmetric positive definite, the notation U > V , where U and V are symmetric
matrices, means that U – V is a positive definite matrix. E(x) stands for the expectation
of stochastic variable x, BT represents the transposed matrix of B, I denote the identity
matrix of compatible dimension; moreover, [ A B

∗ D] = [ A B
BT D]. The shorthand diag{F1, . . . , Fn}

denotes a block diagonal matrix with diagonal blocks being the matrices F1, . . . , Fn.

2 Preliminaries
Consider the following stochastic time-delay systems described in Itô’s form:

dx(t) =
[(

A + ΔA(t)
)
x(t) +

(
Aτ + ΔAτ (t)

)
x(t – τ ) + Bu(t)

]
dt + Dx(t) dω(t), (1a)

x(t) = ϕ(t), t ∈ [–τ , 0], (1b)

y(t) = Cx(t), (1c)
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where x(t) ∈R
n is the state, u(t) ∈R

p is the control input, y(t) ∈R
r is the measured output,

τ is a real constant time delay satisfying 0 ≤ τ < ∞. ϕ(t) ∈ C([–τ , 0];Rn) is a continuous
vector-valued initial function, and ω(t) is a one-dimensional Brownian motion satisfying

E
[
dω(t)

]
= 0, E

[
dω2(t)

]
= d(t).

Here, A ∈R
n×n, Aτ ∈R

n×n, B ∈R
n×p, D ∈ R

n×n, C ∈R
r×n are known real constant matri-

ces of appropriate dimensions. Moreover, ΔA(t) and ΔAτ (t) are unknown matrices rep-
resenting time-varying parameter uncertainties, and they are assumed to be of the form

[
ΔA(t) ΔAτ (t)

]
= GF(t)

[
H1 H2

]
, (2)

where G, H1, H2 are known real constant matrices and F(t) is an unknown time-varying
matrix function satisfying

F(t)T F(t) ≤ I, ∀t. (3)

The parameter uncertainties ΔA(t) and ΔAτ (t) are said to be admissible if both (2) and
(3) hold.

Definition 1 ([28]) System (1a)–(1c) is said to be robustly asymptotically mean-square
stable if for all admissible uncertainties (2) and (3) the following holds for any initial con-
dition:

lim
t→∞E

{∥∥x(t)
∥
∥2} = 0.

Remark 1 Uncertain stochastic time-delay systems in the form of (1a)–(1c) are common
in many branches of engineering applications [1, 3, 5]. It is observed that, in system (1a)–
(1c), parameter uncertainties, Itô-type stochastic disturbances and time delay are con-
sidered simultaneously, also they are dependent on the state. The aim of this paper is to
design a state observer of system (1a)–(1c) such that dynamics of the estimation error is
asymptotically stable in the mean square.

Before presenting the main results of this article, we first introduce the following several
lemmas, which will be essential for later developments.

Lemma 1 (Schur complement [29]) For a given the symmetric matrix X =
[ X11 X12

XT
12 X22

]
, the

following conditions are equivalent:
(a) X < 0,
(b) X11 < 0, X22 – XT

12X–1
11 X12 < 0,

(c) X22 < 0, X11 – X12X–1
22 XT

12 < 0.

Lemma 2 ([27]) Let G, H and F(t) be real matrices of appropriate dimensions with F(t)
satisfying F(t)T F(t) ≤ I . Then, for any scalar ε > 0, we have

GF(t)H + HT F(t)T GT ≤ εGGT + ε–1HT H .
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Lemma 3 ([30]) Let us have any positive definite matrix R > 0, scalar τ > 0. If there exists a
vector function x(t) : [0, τ ] →R

n, such that
∫ τ

0 xT (s)Rx(s) ds and
∫ τ

0 xT (s) ds are well defined,
then we have the following inequality:

–τ

∫ τ

0
xT (s)Rx(s) ds ≤ –

∫ τ

0
xT (s) ds · R ·

∫ τ

0
x(s) ds.

3 Main results
We design an observer to asymptotically estimate x(t). Let us propose the following
Luenberger-type observer [31] of the uncertain stochastic time-delay system (1a)–(1c):

dx̂(t) =
[
Ax̂(t) + Aτ x̂(t – τ ) + Bu(t) + L

(
y(t) – Cx̂(t)

)]
dt, (4)

where L ∈R
n×r is the observer gain to be designed later. From (1a)–(1c) and (4), the error

vector e(t) = x(t) – x̂(t) can be expressed as

de(t) =
[(

A – LC + ΔA(t)
)
e(t) +

(
Aτ + ΔAτ (t)

)
e(t – τ ) + ΔA(t)x̂(t)

+ ΔAτ (t)x̂(t – τ )
]

dt +
(
Dx̂(t) + De(t)

)
dω(t). (5)

We introduce the following new state variable for convenience:

x̄(t) = Ax̂(t) + Aτ x̂(t – τ ) + Bu(t) + L
(
y(t) – Cx̂(t)

)
, (6)

ē(t) =
(
A – LC + ΔA(t)

)
e(t) +

(
Aτ + ΔAτ (t)

)
e(t – τ ) + ΔA(t)x̂(t)

+ ΔAτ (t)x̂(t – τ ), (7)

then we rewrite the systems (4) and (5) as

dx̂(t) = x̄(t) dt, de(t) = ē(t) dt +
(
Dx̂(t) + De(t)

)
dω(t). (8)

Next, we will analyze the stability of the observer system (4) and the error system (5). We
aim at designing a gain matrix and a state-feedback matrix such that the error systems are
asymptotically stable in the mean square. In the following theorem, we present a delay-
dependent LMI condition for the observer design of the error systems with u(t) ≡ 0.

Theorem 1 Consider the stochastic time-delay system (1a)–(1c) with u(t) ≡ 0. The state
observer has the form of (4). If there exist matrices P > 0, Q1 > 0, Q2 > 0, N1, N2, N3, N4, and
positive scalar ε > 0 satisfying the following linear matrix inequality (LMI):

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

(1, 1) (1, 2) (1, 3) 0 –N1 0 AT P 0 0 0
∗ (2, 2) 0 (2, 4) 0 –N3 CT Y T (2, 8) PG 0
∗ ∗ (3, 3) 0 –N2 0 AT

τ P 0 0 0
∗ ∗ ∗ (4, 4) 0 –N4 0 AT

τ P 0 0
∗ ∗ ∗ ∗ –τ–1P 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ –τ–1P 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ –τ–1P 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –τ–1P 0 PG
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

4 εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

4 εI

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

< 0, (9)
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with

(1, 1) = AT P + PA + Q1 + DT PD + 2εHT
1 H1 + N1, (1, 2) = YC + DT PD,

(1, 3) = PAτ – N1 + NT
2 , (2, 4) = PAτ – N3 + NT

4 ,

(2, 2) = AT P + PA – YC – CT Y T + Q2 + DT PD + 2εHT
1 H1 + N3,

(3, 3) = 2εHT
2 H2 – Q1 – N2, (4, 4) = 2εHT

2 H2 – Q2 – N4,

(2, 8) = AT P – CT Y T ,

then the error systems are asymptotically stable in the mean square, and the observer gain
is given by L = P–1Y .

Proof Let P̄ =
[ P 0

0 P

]
> 0, Q̄ =

[ Q1 0
0 Q2

]
> 0. Now we choose a Lyapunov–Krasovskii func-

tional candidate V (x̂(t), e(t)) ∈ C2,1(Rn ×R+;R+) as follows:

V
(
x̂(t), e(t), t

)
=

[
xT (t) eT (t)

]
P̄

[
xT (t) eT (t)

]T

+
∫ t

t–τ

[
xT (t) eT (t)

]
Q̄

[
xT (t) eT (t)

]T
ds

+
∫ t

t–τ

∫ t

s
x̄T (α)Px̄(α) dα ds +

∫ t

t–τ

∫ t

s
ēT (α)Pē(α) dα ds. (10)

By using Itô’s formula [32], we obtain the differential operator

LV
(
x̂(t), e(t), t

)

= 2x̂T (t)Px̄(t) + 2eT (t)Pē(t) +
[
Dx̂(t) + De(t)

]T P
[
Dx̂(t) + De(t)

]

+ x̂T (t)Q1x̂(t) – x̂T (t – τ )Q1x̂(t – τ ) + eT (t)Q1e(t) – eT (t – τ )Q1e(t – τ )

+ τ x̄T (t)Px̄(t) –
∫ t

t–τ

x̄T (s)Px̄(s) ds + τ ēT (t)Pē(t) –
∫ t

t–τ

ēT (s)Pē(s) ds. (11)

By using the well-known Leibniz–Newton formula inequality, we have

E

[(
x̂T (t)N1 + x̂T (t – τ )N2

)(
x̂(t) – x̂(t – τ ) –

∫ t

t–τ

x̂(s) ds
)]

= 0,

E

[(
eT (t)N3 + eT (t – τ )N4

)(
e(t) – e(t – τ ) –

∫ t

t–τ

e(s) ds
)]

= 0.

Using the properties of stochastic integral, one has

E

[(
eT (t)N3 + eT (t – τ )N4

)(∫ t

t–τ

(
Dx̂(t) + De(t)

)
dω(t)

)]
= 0.

Noticing Eq. (8), one has

E

[(
x̂T (t)N1 + x̂T (t – τ )N2

)(
x̂(t) – x̂(t – τ ) –

∫ t

t–τ

x̄(s) ds
)]

= 0, (12)
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E

[
(
eT (t)N3 + eT (t – τ )N4

)
(

e(t) – e(t – τ ) –
∫ t

t–τ

ē(s) ds
)]

= 0. (13)

Furthermore, we can also obtain the following two inequalities from Lemma 3:

–τ

∫ t

t–τ

x̄T (s)Px̄(s) ds ≤
(∫ t

t–τ

x̄T (s) ds
)

· (–P) ·
(∫ t

t–τ

x̄(s) ds
)

, (14)

–τ

∫ t

t–τ

ēT (s)Pē(s) ds ≤
(∫ t

t–τ

ēT (s) ds
)

· (–P) ·
(∫ t

t–τ

ē(s) ds
)

. (15)

Adding the left sides of Eqs. (12) and (13) to LV (x̂(t), e(t), t), combining with (14) and (15),
we have

ELV
(
x̂(t), e(t), t

) ≤ E
[
ηT (t)Ση(t)

]
, (16)

where

Σ =

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

(1, 1) (1, 2) PAτ – N1 + NT
2 0 –N1 0

∗ (2, 2) PΔAT
τ (t) (2, 4) 0 –N3

∗ ∗ –Q1 – N2 0 –N2 0
∗ ∗ ∗ –Q2 – N4 0 –N4

∗ ∗ ∗ ∗ –τ–1P 0
∗ ∗ ∗ ∗ ∗ –τ–1P

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

+

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎣

AT

CT LT

AT
τ

0
0
0

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎦

(τP)

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎣

AT

CT LT

AT
τ

0
0
0

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎦

T

+

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

ΔAT (t)
(A – LC + ΔA(t))T

ΔAT
τ (t)

(Aτ + ΔAτ (t))T

0
0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(τP)

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

ΔAT (t)
(A – LC + ΔA(t))T

ΔAT
τ (t)

(Aτ + ΔAτ (t))T

0
0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

T

, (17)

with

η(t) =
[

x̂T (t) eT (t) x̂T (t – τ ) eT (t – τ )
∫ t

t–τ
x̄T (s) ds

∫ t
t–τ

ēT (s) ds
]T

,

(1, 1) = AT P + PA + Q1 + DT PD + N1,

(1, 2) = ΔAT (t)P + PLC + DT PD,

(2, 2) = (A – LC + ΔA(t))T P + P(A – LC + ΔA(t)) + Q2 + DT PD + N3,

(2, 4) = P(Aτ + ΔAT
τ (t)) – N3 + NT

4 .
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By applying the Schur decomposition result, we can see that Σ < 0 if and only if

⎡

⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎣

(1, 1) (1, 2) PAτ – N1 + NT
2 0 –N1 0 AT (1, 8)

∗ (2, 2) PΔAT
τ (t) (2, 4) 0 –N3 CT LT (2, 8)

∗ ∗ –Q1 – N2 0 –N2 0 AT
τ (3, 8)

∗ ∗ ∗ –Q2 – N4 0 –N4 0 (4, 8)
∗ ∗ ∗ ∗ –τ–1P 0 0 0
∗ ∗ ∗ ∗ ∗ –τ–1P 0 0
∗ ∗ ∗ ∗ ∗ ∗ –τ–1P–1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –τ–1P–1

⎤

⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎦

< 0, (18)

with

(1, 1) = AT P + PA + Q1 + DT PD + N1,

(1, 2) = ΔAT (t)P + PLC + DT PD,

(2, 2) = (A – LC + ΔA(t))T P + P(A – LC + ΔA(t)) + Q2 + DT PD + N3,

(2, 4) = P(Aτ + ΔAT
τ (t)) – N3 + NT

4 ,

(1, 8) = ΔAT (t),

(2, 8) = (A – LC + ΔA(t))T ,

(3, 8) = ΔAT
τ (t),

(4, 8) = (Aτ + ΔAτ (t))T .

Noting that pre- and post-multiplying by diag{I, I, I, I, I, I, P, P} and considering the con-
dition (2) (3), we can write the matrix inequality (18) as

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

(1, 1) (1, 2) PAτ – N1 + NT
2 0 –N1 0 AT P 0

∗ (2, 2) 0 (2, 4) 0 –N3 CT LT P (A – LC)T P
∗ ∗ –Q1 – N2 0 –N2 0 AT

τ P 0
∗ ∗ ∗ –Q2 – N4 0 –N4 0 AT

τ P
∗ ∗ ∗ ∗ –τ–1P 0 0 0
∗ ∗ ∗ ∗ ∗ –τ–1P 0 0
∗ ∗ ∗ ∗ ∗ ∗ –τ–1P 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –τ–1P

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

+ H̄T F̄T (t)ḠT + ḠF̄(t)H̄ < 0, (19)

with

(1, 1) = AT P + PA + Q1 + DT PD + N1,

(1, 2) = PLC + DT PD,

(2, 2) = (A – LC)T P + P(A – LC) + Q2 + DT PD + N3,

(2, 4) = PAτ – N3 + NT
4 .

Here, H̄ = [(H1)1,1, (H1)2,2, (H2)3,3, (H2)4,4, (H1)5,1, (H1)6,2, (H2)7,3, (H2)8,4] denotes a block
square matrix whose all nonzero blocks are the 11st block H1, the 21st block H2, . . . , the
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84th block H2, and all other blocks are zero matrices, i.e.,

H̄ =

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

H1 0 0 0
0 H1 0 0
0 0 H2 0
0 0 0 H2

H1 0 0 0
0 H1 0 0
0 0 H2 0
0 0 0 H2

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

.

Similarly, Ḡ = [(PG)2,1, (PG)2,2, (PG)2,3, (PG)2,4, (PG)8,5, (PG)8,6, (PG)8,7, (PG)8,8], further-
more, F̄(t) denotes a block diagonal matrix with diagonal blocks being the matrix F(t).

Let L = P–1Y . By utilizing Lemma 2 and the Schur decomposition result again, it follows
that the matrix inequality (19) is implied by the LMI (9) for a scalar ε > 0, which guarantees
that ELV (x̂(t), e(t), t) < 0. Hence, the trivial solution of the error system is asymptotically
stable in the mean square. �

Remark 2 A delay-dependent sufficient condition for the existence of the observer is given
in Theorem 1. It is easy to see that the LMI condition in (9) is dependent on the length of
delay and is less conservative than the delay-independent ones. The largest upper bound
of the delay τ such that the LMI in (9) holds can be obtained by solving the following LMI
problem:

max τ

subject to ε1 > 0, ε2 > 0, ε3 > 0, P > 0, Q1 > 0, Q2 > 0 and the LMI (9).

Next, we consider the state-feedback-based controller problem for the stochastic time-
delay systems (1a)–(1c). A delay-dependent LMI technique will be developed in order to
obtain the state-feedback observer. The following theorem shows that the controller is
reachable in the stochastic theory.

Theorem 2 Consider the uncertain stochastic time-delay system (1a)–(1c). The state ob-
server has the form of (4). If there exist matrices P > 0, Q1 > 0, Q2 > 0, N1, N2, N3, N4, and
positive scalars ε > 0, σ > 0 such that the following LMI is satisfied:

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎣

(1, 1) (1, 2) (1, 3) 0 –N1 0 AT P 0 0 0 0 PB
∗ (2, 2) 0 (2, 4) 0 –N3 CT Y T (2, 8) PG 0 0 0
∗ ∗ (3, 3) 0 –N2 0 AT

τ P 0 0 0 0 0
∗ ∗ ∗ (4, 4) 0 –N4 0 AT

τ P 0 0 0 0
∗ ∗ ∗ ∗ –τ–1P 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ –τ–1P 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ –τ–1P 0 0 0 PB 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –τ–1P 0 PG 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

4 εI 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

4 εI 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ σ I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ – 1

3 σ I

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎦

< 0,

(20)
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with

(1, 1) = AT P + PA + Q1 + DT PD + 2εHT
1 H1 + N1,

(1, 2) = YC + DT PD, (1, 3) = PAτ – N1 + NT
2 ,

(2, 4) = PAτ – N3 + NT
4 ,

(2, 2) = AT P + PA – YC – CT Y T + Q2 + DT PD + 2εHT
1 H1 + N3,

(3, 3) = 2εHT
2 H2 – Q1 – N2, (4, 4) = 2εHT

2 H2 – Q2 – N4,

(2, 8) = AT P – CT Y T ,

then the overall closed-loop stochastic time-delay system is asymptotically stable in the
mean square. In this case, the observer gain is given by L = P–1Y and an appropriate robust
stabilizing state-feedback controller can be chosen as u(x) = Kx̂(t), K = σ –1BT P.

Proof Applying the controller u(x) = σ –1BT Px̂(t) to the system (4), and similar to the proof
of Theorem 1, we can obtain ELV (x̂(t), e(t), t) < 0 if LMI (20) is satisfied. It implies that the
trivial solution of the closed-loop system is asymptotically stable in the mean square. �

Theorem 2 provides a delay-dependent sufficient condition for the existence of the ro-
bust observer of uncertain stochastic time-delay systems by state feedback. A desired gain
matrix and state-feedback controller can be obtained by solving the LMI (20).

Remark 3 In [33], the state estimation method is given for a class of stochastic systems,
but the stochastic disturbance is independent on the system state. However, the stochastic
disturbance of uncertain systems we investigated in this paper is state dependent. In [34],
the disturbance–observer design method is given for time-delay uncertain systems, and
the considered uncertainties do not contain stochastic disturbances by Brown motion.
The systems in this paper include not only parameter uncertainties but also a stochastic
disturbance, it is derived that the closed-loop system maintains good stability despite the
presence of parameter uncertainties and a stochastic factor by Brown motion. Then the
method of this paper has some advantage in convergence property, the proposed method
can be applied to a more general class of nonlinear systems.

4 Simulation study
In order to illustrate the usefulness and flexibility of the theory developed in the above
section, we present a simple numerical example in this section.

Example 1 We consider the uncertain stochastic time-delay system (1a)–(1c) with

A =

⎡

⎢
⎣

–1.5 0.2 0.2
–1.25 –1.3 1

1.1 0.2 –1.2

⎤

⎥
⎦ , Aτ =

⎡

⎢
⎣

–1.4 0.5 –0.6
–0.4 –0.2 –1.2
0.1 1 –1.6

⎤

⎥
⎦ ,

D =

⎡

⎢
⎣

–0.01 0.02 0.15
0.12 –0.03 0.02
0.06 –0.03 0.15

⎤

⎥
⎦ , B =

[
0.01 0.02 0.2

]T
, C =

[
1 1 0

]
,
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F(t) = 0.2 sin(t), G =
[

0.01 0.02 0.2
]T

,

H1 =
[
0.03 0.03 0.01

]
, H2 =

[
0.01 0.02 0.05

]
.

Solving LMI (20) yields the maximum allowable bound of the time delay as τ = 0.4454.
This means that, for any time delay τ satisfying 0 < τ ≤ 0.4454, there exist a gain matrix
and a state-feedback matrix such that the resulting augmented system is asymptotically
stable in the mean square. For this example, if we choose the time delay as τ = 0.2, then,
by using the Matlab control toolbox to solve the LMI (20), we obtain

P =

⎡

⎢
⎣

1.2345 –0.3159 –0.0001
–0.3159 0.9683 –0.1272
–0.0001 –0.1272 0.8011

⎤

⎥
⎦ , Q1 =

⎡

⎢
⎣

1.5954 –0.1394 –0.3721
–0.1394 1.5292 –0.7039
–0.3721 –0.7039 1.2157

⎤

⎥
⎦ ,

Q2 =

⎡

⎢
⎣

1.6596 –0.1156 –0.2824
–0.1156 1.6058 –0.6390
–0.2824 –0.6390 1.3066

⎤

⎥
⎦ , N1 =

⎡

⎢
⎣

–0.9757 0.2730 –0.0499
0.2730 –0.4601 0.1040

–0.0499 0.1040 –0.9590

⎤

⎥
⎦ ,

N2 =

⎡

⎢
⎣

0.4629 –0.1114 0.1730
–0.1114 0.1556 0.1018
0.1730 0.1018 0.5298

⎤

⎥
⎦ , N3 =

⎡

⎢
⎣

–0.9673 0.2660 –0.0279
0.2660 –0.4891 0.0700

–0.0279 0.0700 –0.9134

⎤

⎥
⎦ ,

N4 =

⎡

⎢
⎣

0.4289 –0.1119 0.1311
–0.1119 0.1588 0.0585
0.1311 0.0585 0.4984

⎤

⎥
⎦ , ε = 5.7143, σ = 0.7306.

By Theorem 2, we can obtain the desired gain matrix and state-feedback matrix as fol-
lows:

L = P–1Y =
[
0.1165 0.1139 0.1520

]T
, K =

[
0.0825 0.1870 0.1845

]
.

State response trajectories for the open-loop and closed-loop systems are given. Fig-
ure 1 is for the state response trajectories for the open-loop systems without uncertainties,
Figs. 2–4 are the state response trajectories for the open-loop systems with uncertainties.
We can see that the system is stable without parameter uncertainties and stochastic dis-
turbances in Fig. 1, but from Figs. 2–4, the parameter uncertainties and stochastic dis-
turbances makes the stability of the system decline. In [35], Higham gives a numerical

Figure 1 State response trajectories for the open-loop systems without uncertainties
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Figure 2 Response trajectory of x1 for the open-loop systems with uncertainties

Figure 3 Response trajectory of state x2 for the open-loop systems with uncertainties

Figure 4 Response trajectory of state x3 for the open-loop systems with uncertainties

simulation algorithm for the system with stochastic disturbances. Now, by using a sim-
ilar approach, we take the initial parameters as x(t) = (1 –1 0.5)T , x̂(t) = (–1.5 1 –1.5)T ,
t ∈ [–0.2, 0], the simulation time t ∈ [0, T] with T = 10, δt = T/N , with N = 104, step size
�t = Rδt with R = 5. Figures 5–7 show the average trajectories over eight paths of x1(t),
x2(t) and x3(t) and their estimates, respectively. From the figures, we can see that the sim-
ulation result is satisfactory. The control performance of the state and parametric estima-
tion is still very well despite the presence of the stochastic factor.

5 Conclusions
This article considers the estimation of the state vector of stochastic systems with time
delay and parametrical uncertainty. The delay-dependent sufficient conditions for the ex-
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Figure 5 The simulation for state x1 of the closed-loop systems with uncertainties

Figure 6 The simulation for state x2 of the closed-loop systems with uncertainties

Figure 7 The simulation for state x3 of the closed-loop systems with uncertainties

istence of the observer are given. Also, the desired gain matrix and state-feedback con-
troller are constructed by solving certain LMIs, which can be implemented by using the
LMI control toolbox. Moreover, one can readily obtain the delay-dependent results on the
existence of an observer for the uncertain stochastic time-delay system. The numerical ex-
ample has demonstrated the effectiveness of the proposed method.
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