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1 Introduction and the main results
Fractional integral operators and the associated maximal functions are very useful tools
in harmonic analysis and PDE, especially in the study of differentiability or smoothness
properties of functions. Recall that, for 0 < λ < n, the fractional integral operator Iλ of a
locally integrable function f defined on R

n is given by

Iλf (x) :=
∫
Rn

f (y)
|x – y|λ dy.

And the fractional maximal function Mλ is defined by

Mλf (x) := sup
Q�x

1
|Q|λ/n

∫
Q

∣∣f (y)
∣∣dy,

where the supremum is taken over all cubes Q in R
n with sides parallel to the axes. We

refer to [1–5] for more results on fractional integral operators.
For 1 < p, q < ∞, we call a locally integrable positive function w(x) defined onR

n a weight
belongs to Ap,q(Rn) if

[w]Ap,q := sup
Q

(
1

|Q|
∫

Q
w(x)q dx

)(
1

|Q|
∫

Q
w(x)–p′

dx
)q/p′

< ∞.

In [6], Muckenhoupt and Wheeden showed that, for 1 < p < n/(n – λ) and 1/q + 1/p′ =
λ/n, the fractional integral operator Iλ is bounded from Lp(wp) to Lq(wq) if and only if w
belongs to Ap,q. They also proved that the fractional maximal function Mλ is bounded
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from Lp(wp) to Lq(wq) under the same conditions on the weights. Lacey, Moen, Pérez and
Torres [7] proved the sharp weighted bound for fractional integral operators. Specifically,

‖Iλ‖Lp(wp)→Lq(wq) ≤ Cn,p[w]
λ
n max{1, p′

q }
Ap,q

.

And the sharp weighted bound for the fractional maximal function was proved by
Pradolini and Salinas [8], i.e.,

‖Mλ‖Lp(wp)→Lq(wq) ≤ Cn,p[w]
λ
n · p′

q
Ap,q

. (1.1)

Hytönen and Lacey [9] introduced a different approach to improving the sharp Ap es-
timates for Calderón–Zygmund operators using a mixed Ap–A∞ condition. Cruz-Uribe
and Moen [4] studied the corresponding problem for fractional integral operators. Recall
that w is said to be a weight in A∞ if

[w]A∞ := sup
Q

1
w(Q)

∫
Q

M(1Qw)(x) dx < ∞,

where M is the Hardy–Littlewood maximal function and w(Q) :=
∫

Q w(x) dx. There are
several equivalent definitions of the A∞ weights. For example w ∈ A′∞ if

[w]A′∞ := sup
Q

exp

(
1

|Q|
∫

Q
– log

(
w(x)

)
dx

)(
1

|Q|
∫

Q
w(x) dx

)
< ∞.

In [10], Fujii proved that w ∈ A∞ if and only if w ∈ A′∞. It is well known that w ∈ A∞ if
and only if w ∈ Ap for some p > 1, here Ap denotes the class of Muckenhoupt weights for
which

[w]Ap := sup
Q

(
1

|Q|
∫

Q
w(x) dx

)(
1

|Q|
∫

Q
w(x)1–p′

dx
)p–1

< ∞.

Sbordone and Wik [11] showed that

[w]A′∞ = lim
p→∞[w]Ap .

Hytönen and Pérez [12] showed that [w]A∞ � [w]A′∞ , and in fact [w]A∞ can be substantially
smaller.

In this paper, we introduce a new class of weights, called the Aλ,∞ weights, which is
defined with the fractional maximal function.

Definition 1.1 Given 0 < λ < n, Aλ,∞ consists of all locally integrable functions w(x) on
R

n for which

[w]Aλ,∞ := sup
Q

1
w(Q)

∥∥Mλ(w1Q) · 1Q
∥∥

n/λ < ∞.

We show that A∞ is a subset of Aλ,∞. Specifically, we have the following results.
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Theorem 1.2 For any 0 < λ < n and w ∈ A∞, we have w ∈ Aλ,∞ and

[w]
n
λ

Aλ,∞ ≤ Cn,λ[w]A∞ .

With Aλ,∞ weights, we give a mixed two-weight estimate of fractional integral operators.

Theorem 1.3 Let λ, p and q be constants such that 0 < λ < n and 1/q + 1/p′ = λ/n. For any
w ∈ Ap,q, set μ = wq and σ = w–p′ . Then

∥∥Iλ(·σ )
∥∥

Lp(σ )→Lq(μ) � [w]
1
q
Ap,q

(
[μ]

n
λp′
Aλ,∞ + [σ ]

n
λq
Aλ,∞

)
.

The above theorem suggests us to generalize the Ap,q condition for a pair of weights.
Given 1 < p, q < ∞, we say that a pair of weights (μ,σ ) is in the class Ap,q if

[μ,σ ]Ap,q := sup
Q

(
1

|Q|
∫

Q
μ(x) dx

)(
1

|Q|
∫

Q
σ (x) dx

)q/p′

< ∞.

With this notation, we can generalize Theorem 1.3 as follows.

Theorem 1.4 Let λ, p and q be constants such that 0 < λ < n and 1/q + 1/p′ = λ/n. For any
pair of weights (μ,σ ) ∈ Ap,q with μ, σ ∈ Aλ,∞, we have

∥∥Iλ(·σ )
∥∥

Lp(σ )→Lq(μ) � [μ,σ ]
1
q
Ap,q

(
[μ]

n
λp′
Aλ,∞ + [σ ]

n
λq
Aλ,∞

)
.

The paper is organized as follows. In Sect. 2, we collect some preliminary results. And
in Sect. 3, we give proofs for the main results.

2 Preliminaries
In this section, we introduce some preliminary results.

2.1 General dyadic grids
Let D be a set consisting of cubes in R

n. Recall that D is said to be a general dyadic grid if
it satisfies the following three conditions:

1. for any Q ∈ D , its side length l(Q) is of the form 2k for some k ∈ Z;
2. Q1 ∩ Q2 ∈ {Q1, Q2,∅} for any Q1, Q2 ∈ D ;
3. the cubes of a fixed side length 2k form a partition of Rn.
Given a general dyadic grid D , we call a subset S ⊂ D a sparse family in D if it satisfies

∣∣∣∣
⋃

Q′∈S ,Q′�Q

Q′
∣∣∣∣ ≤ 1

2
|Q|, ∀Q ∈ S .

For any Q ∈ S , denote

E(Q) := Q
∖( ⋃

Q′∈S ,Q′�Q

Q′
)

.

We see from the definition of the sparse family that |E(Q)| ≥ 1
2 |Q| for any Q ∈ S .
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Below we will make extensive use of the dyadic grids

Dα :=
{

2–k([0, 1)n + m + (–1)kα
)

: k ∈ Z, m ∈ Zn}, α ∈
{

0,
1
3

,
2
3

}n

.

Hytönen, Lacey and Pérez [13] proved the following result.

Lemma 2.1 (Three-lattice lemma) For any cube Q ⊂R
n, there exists a shifted dyadic cube

R ∈ Dα =
{

2–k([0, 1)n + m + (–1)kα
)

: k ∈ Z, m ∈ Z
n}

for some α ∈ {0, 1
3 , 2

3 }n, such that Q ⊆ R and �(R) ≤ 6�(Q).

2.2 Dyadic lattice
Let Q be any cube in R

n. A dyadic child of Q is any of the 2n cubes obtained by partitioning
Q by n “median hyperplanes” (i.e., the hyperplanes parallel to the faces of Q and dividing
each edge into two equal parts).

Passing from Q to its children, then to the children of the children, etc., we obtain a
standard dyadic lattice D(Q) of subcubes of Q.

We refer to Lerner and Nazarov [14] for more properties of the dyadic lattice.

2.3 Dyadic fractional integral operators
Given 0 < λ < n and a general dyadic grid D in R

n, we define the dyadic fractional integral
operator ID

λ by

ID
λ f (x) :=

∑
Q∈D

1
|Q|λ/n

∫
Q

f (y) dy · 1Q(x).

For a sparse family S ⊆ D , the sparse dyadic fractional integral operators ISλ are defined
similarly. Cruz-Uribe and Moen [4] proved the following two propositions.

Proposition 2.2 Given 0 < λ < n and a nonnegative function f , then Iλf is pointwise equiv-
alent to a linear combination of dyadic fractional integral operators, i.e.,

Iλf (x) �
∑

α∈{0,1/3,2/3}n

IDα

λ f (x).

Proposition 2.3 Given a bounded, nonnegative function f with compact support and a
dyadic grid D , there exists a sparse family S such that, for all λ with 0 < λ < n, we have

ID
λ f (x) � ISλ f (x).

2.4 Testing condition
Let λ, p and q be constants such that 0 < λ < n and 1 < p ≤ q < ∞. Lacey, Sawyer and
Uriarte-Tuero [15] reduced the proof of the boundedness for ISλ (·σ ) from Lp(σ ) to Lq(μ)
to the boundedness of the testing condition

ΘD
μ,σ := sup

R∈D

‖1RIS(R)
λ (σ1R)‖Lq(μ)

σ (R)1/p , ΘD
σ ,μ := sup

R∈D

‖1RIS(R)
λ (μ1R)‖Lp′ (σ )

μ(R)1/q′ ,



Pan and Sun Journal of Inequalities and Applications        (2019) 2019:284 Page 5 of 11

where the operator IS(R)
λ is defined by

IS(R)
λ f (x) :=

∑
Q∈S ,Q⊆R

1
|Q|λ/n

∫
Q

f dy · 1Q(x).

Proposition 2.4 ([15, Theorem 1.11]) Suppose that λ, p and q are constants such that
0 < λ < n and 1 < p ≤ q < ∞. Let D be a dyadic grid and let S be a sparse subset of D . For
any pair of weights (μ,σ ), we have

∥∥ISλ (·σ )
∥∥

Lp(σ )→Lq(μ) � ΘD
μ,σ + ΘD

σ ,μ.

3 Proofs of the main results
First, we show that a weight in Ap,q is associated with a weight in some Aλ,∞.

Theorem 3.1 Suppose that λ, p and q are constants such that 0 < λ < n and 1/q + 1/p′ =
λ/n. Let w ∈ Ap,q and set μ = wq. Then μ ∈ Aλ,∞ and

[μ]
n
λ
Aλ,∞ ≤ Cn,p[w]Ap,q .

Proof Since w ∈ Ap,q, we have w–1 ∈ Aq′ ,p′ and

[
w–1]

Aq′ ,p′ = sup
Q

(
1

|Q|
∫

Q
w–p′

(x) dx
)(

1
|Q|

∫
Q

wq(x) dx
)p′/q

= [w]
p′
q

Ap,q
.

Using (1.1), this gives us

‖Mλ‖Lq′ (w–q′ )→Lp′ (w–p′ ) ≤ Cn,p
[
w–1] λ

n · q
p′

Aq′ ,p′ = Cn,p[w]
λ
n
Ap,q

.

Fix some cube Q ∈ R
n. Since 1

p′ + 1
q = λ

n , we see from Hölder’s inequality that

∥∥Mλ(μ1Q) · 1Q
∥∥

n/λ =
∥∥Mλ(μ1Q) · w–1 · w1Q

∥∥
n/λ

≤ ∥∥Mλ(μ1Q) · w–11Q
∥∥

p′ · ‖w1Q‖q

=
∥∥Mλ(μ1Q) · 1Q

∥∥
Lp′ (w–p′ ) · μ(Q)1/q

≤ Cn,p[w]
λ
n
Ap,q

‖μ1Q‖Lq′ (w–q′ ) · μ(Q)1/q

= Cn,p[w]
λ
n
Ap,q

μ(Q).

Hence

[μ]
n
λ
Aλ,∞ � [w]Ap,q .

This completes the proof. �

Next we show that A∞ is contained in Aλ,∞ for any 0 < λ < n.
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Proof of Theorem 1.2 Fix some cube Q ⊆R
n. Let

Qβ := Q + �(Q)β , β ∈
{

–
2
3

, –
1
3

, 0,
1
3

,
2
3

}n

.

By translations and dilations, we see from Lemma 2.1 that for any cube K ⊆ Q there exists
some R ∈ D(Qβ ) for some β ∈ {– 2

3 , – 1
3 , 0, 1

3 , 2
3 }n such that R ∈ D(Qβ ) and �(R) ≤ 6�(K).

Hence

Mλ(w1Q)(x) · 1Q(x) ≤ Cn,λ max
β∈{– 2

3 ,– 1
3 ,0, 1

3 , 2
3 }n

Mλ,D(Qβ )(w1Q)(x) · 1Q(x),

where

Mλ,D(Qβ )(w1Q)(x) := sup
K�x

K∈D(Qβ )

1
|K |λ/n

∫
K

w(x)1Q(x) dx.

So it sufficient to estimate

1
w(Q)n/λ

∫
Q

∣∣Mλ,D(Qβ )(w1Q)(x)
∣∣n/λ dx, β ∈

{
–

2
3

, –
1
3

, 0,
1
3

,
2
3

}n

.

Among each D(Qβ ), a subset of principal cubes Pβ =
⋃∞

m=0 Pβ
m is constructed as follows:

Pβ
0 = {Qβ}, and then inductively Pβ

m+1 consists of all maximal P′ ∈D(Qβ ) such that

w(P′ ∩ Q)
|P′|λ/n > 2λ/n · 3λ w(P ∩ Q)

|P|λ/n

for some P ∈ Pβ
m with P ⊃ P′.

Since λ/n < 1, we see from the definition of Pβ that, for any P ∈ Pβ
m,

( ∑
P′∈P

β
m+1,P′⊂P

|P′|
|P|

)λ/n

≤
∑

P′∈P
β
m+1,P′⊂P

|P′|λ/n

|P|λ/n

≤ 1
2λ/n · 3λ

∑
P′∈P

β
m+1,P′⊂P

w(P′ ∩ Q)
w(P ∩ Q)

≤ 1
2λ/n · 3λ

.

That is,

∑
P′∈P

β
m+1,P′⊂P

∣∣P′∣∣ ≤ 1
2 · 3n |P|. (3.1)

For any P ∈ Pβ , we denote

E(P) := P
∖ ⋃

P′∈Pβ ,P′�P

P′.
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By (3.1), we have

∣∣E(P)
∣∣ ≥

(
1 –

1
2 · 3n

)
|P|.

By the definition of Qβ and D(Qβ ), for any R ∈ D(Qβ ) with R ∩ Q �= ∅, we have |R ∩ Q| ≥
1

3n |R|. For any P ∈ Pβ , it is easy to see that P ∩ Q �= ∅. Combining with |E(P)| ≥ (1 –
1

2·3n )|P|, we obtain

∣∣E(P) ∩ Q
∣∣ ≥ 1

2 · 3n |P|.

Hence

1
w(Q)n/λ

∫
Q

∣∣Mλ,D(Qβ )(w1Q)(x)
∣∣n/λ dx

≤ 2 · 3n 1
w(Q)n/λ

∑
P∈Pβ

w(P ∩ Q)n/λ

≤ 2 · 3n 1
w(Q)n/λ

∑
P∈Pβ

w(P ∩ Q) · ω(Q)
n
λ

–1

≤ 22 · 32n 1
w(Q)

∑
P∈Pβ

|E(P) ∩ Q|
|P| · w(P ∩ Q)

≤ 22 · 32n 1
w(Q)

∫
Q

M(w1Q)(x) dx

≤ 22 · 32n[w]A∞ .

Now we get the conclusion as desired. �

Given a locally integrable function f , a Borel measure ν and a cube Q, we denote
〈f 〉Q := 1

|Q|
∫

Q f (x) dx and 〈f 〉νQ := 1
ν(Q)

∫
Q f (x) dν(x). The following result is used in the proof

of Theorem 1.4.

Proposition 3.2 ([16, Proposition 2.2]) Let 1 < s < ∞, ν be a positive Borel measure and

φ =
∑
Q∈D

αQ1Q, φQ =
∑

Q′⊂Q

αQ′1Q′ .

Then we have

‖φ‖Ls(ν) �
(∑

Q∈D

αQ
(〈φQ〉νQ

)s–1
ν(Q)

)1/s

.

To prove Theorem 1.4, we also need the following lemma.

Lemma 3.3 ([17, Lemma 5.2]) For all γ ∈ [0, 1), we have
∑

L:L⊆P〈w〉γL |L|� 〈w〉γP |P|.

We are now ready to give a proof of Theorem 1.4.
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Proof of Theorem 1.4 By Propositions 2.2, 2.3 and 2.4, it suffices to show that

ΘD
μ,σ := sup

R∈D

‖1RIS(R)
λ (σ1R)‖Lq(μ)

σ (R)1/p � [μ,σ ]
1
q
Ap,q

· [σ ]
n
λq
Aλ,∞ ,

ΘD
σ ,μ := sup

R∈D

‖1RIS(R)
λ (μ1R)‖Lp′ (σ )

μ(R)1/q′ � [μ,σ ]
1
q
Ap,q

· [μ]
n

λp′
Aλ,∞ .

There are two cases.
Case 1: q ≥ 2. By Proposition 3.2, we have

∥∥1RIS(R)
λ (σ1R)

∥∥q
Lq(μ)

�
∑
Q∈S
Q⊂R

σ (Q)
|Q| λ

n

(
1

μ(Q)
∑
Q′∈S
Q′⊂Q

1
|Q′|λ/n σ

(
Q′)μ(

Q′))q–1

· μ(Q)

=
∑
Q∈S
Q⊂R

σ (Q)
|Q| λ

n

(
1

μ(Q)
∑
Q′∈S
Q′⊂Q

〈μ〉
q′
q

Q′ 〈σ 〉
q′
p′
Q′ 〈μ〉1– q′

q
Q′

∣∣Q′∣∣ 1
q′ 〈σ 〉1– q′

p′
Q′

∣∣Q′∣∣ 1
p

)q–1

· μ(Q)

≤ [μ,σ ]
q′
q (q–1)

Ap,q

∑
Q∈S
Q⊂R

σ (Q)
|Q| λ

n

(
1

μ(Q)
∑
Q′∈S
Q′⊂Q

〈μ〉1– q′
q

Q′
∣∣Q′∣∣ 1

q′ 〈σ 〉1– q′
p′

Q′
∣∣Q′∣∣ 1

p

)q–1

· μ(Q)

= [μ,σ ]Ap,q

∑
Q∈S
Q⊂R

σ (Q)
|Q| λ

n

(
1

μ(Q)
∑
Q′∈S
Q′⊂Q

〈μ〉1– q′
q

Q′
∣∣Q′∣∣ 1

q′ · 〈σ 〉1– q′
p′

Q′
∣∣Q′∣∣ 1

p

)q–1

· μ(Q)

≤ [μ,σ ]Ap,q

∑
Q∈S
Q⊂R

σ (Q)
|Q| λ

n

(
1

μ(Q)

( ∑
Q′∈S
Q′⊂Q

〈μ〉p′(1– q′
q )

Q′
∣∣Q′∣∣ p′

q′
) 1

p′

×
( ∑

Q′∈S
Q′⊂Q

〈σ 〉p(1– q′
p′ )

Q′
∣∣Q′∣∣

) 1
p
)q–1

· μ(Q).

Since p′
q′ > 1, this give us

( ∑
Q′∈S
Q′⊂Q

〈μ〉p′(1– q′
q )

Q′
∣∣Q′∣∣ p′

q′
) 1

p′
≤

( ∑
Q′∈S
Q′⊂Q

〈μ〉q′(1– q′
q )

Q′
∣∣Q′∣∣

) 1
q′

.

Note that q ≥ 2. We have

0 ≤ q′
(

1 –
q′

q

)
< 1, 0 ≤ p

(
1 –

q′

p′

)
< 1.

It follows from Lemma 3.3 that

∑
Q′∈S
Q′⊂Q

〈μ〉q′(1– q′
q )

Q′
∣∣Q′∣∣� 〈μ〉q′(1– q′

q )
Q |Q|
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and

∑
Q′∈S
Q′⊂Q

〈σ 〉p(1– q′
p′ )

Q′
∣∣Q′∣∣� 〈σ 〉p(1– q′

p′ )
Q |Q|.

Hence

∥∥1RIS(R)
λ (σ1R)

∥∥q
Lq(μ)

� [μ,σ ]Ap,q

∑
Q∈S
Q⊂R

σ (Q)
|Q| λ

n

(
1

μ(Q)

( ∑
Q′∈S
Q′⊂Q

〈μ〉p′(1– q′
q )

Q′
∣∣Q′∣∣ p′

q′
) 1

p′

×
( ∑

Q′∈S
Q′⊂Q

〈σ 〉p(1– q′
p′ )

Q′
∣∣Q′∣∣

) 1
p
)q–1

· μ(Q)

� [μ,σ ]Ap,q

∑
Q∈S
Q⊂R

σ (Q)
|Q| λ

n

(
1

μ(Q)
(〈μ〉q′(1– q′

q )
Q |Q|) 1

q′ (〈σ 〉p(1– q′
p′ )

Q |Q|) 1
p

)q–1

· μ(Q)

= [μ,σ ]Ap,q

∑
Q∈S
Q⊂R

σ (Q)
q
p .

Notice that

q
p

· λ

n
=

q
p

·
(

1
q

+
1
p′

)
= 1 +

q – p
p′p

> 1.

This gives us q
p > n

λ
.

Since S is a sparse family and |E(Q)| > 1
2 |Q|, we have

∑
Q∈S
Q⊂R

σ (Q)
q
p ≤ σ (R)

q
p – n

λ

∑
Q∈S
Q⊂R

σ (Q)
n
λ

≤ 2 · σ (R)
q
p – n

λ

∑
Q∈S
Q⊂R

∣∣E(Q)
∣∣ · σ (Q)

n
λ

|Q|

≤ 2 · σ (R)
q
p – n

λ

∫
R

(
Mλ(σ1R)

) n
λ

≤ 2[σ ]
n
λ

Aλ,∞σ (R)
q
p .

So

∥∥1RIS(R)
λ (σ1R)

∥∥q
Lq(μ) � [μ,σ ]Ap,q · [σ ]

n
λ

Aλ,∞σ (R)
q
p .

Taking the supreme over all cubes R ∈ D , we obtain

ΘD
μ,σ � [μ,σ ]

1
q
Ap,q

· [σ ]
n
λq
Aλ,∞ .
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Case 2: 1 < q < 2. In this case, we have 0 ≤ 1 – q
p′ < 1. Using Proposition 3.2 and

Lemma 3.3, we get

∥∥1RIS(R)
λ (σ1R)

∥∥q
Lq(μ)

�
∑
Q∈S
Q⊂R

1
|Q| λ

n
σ (Q)

(
1

μ(Q)
∑
Q′∈S
Q′⊂Q

1
|Q′|λ/n σ

(
Q′)μ(

Q′))q–1

· μ(Q)

=
∑
Q∈S
Q⊂R

1
|Q| λ

n
σ (Q)

(
1

μ(Q)
∑
Q′∈S
Q′⊂Q

〈μ〉Q′ 〈σ 〉
q
p′
Q′ · 〈σ 〉1– q

p′
Q′

∣∣Q′∣∣2– λ
n

)q–1

· μ(Q)

≤ [μ,σ ]q–1
Ap,q

∑
Q∈S
Q⊂R

1
|Q| λ

n
σ (Q)

( |Q|1– λ
n

μ(Q)
∑
Q′∈S
Q′⊂Q

〈σ 〉1– q
p′

Q′
∣∣Q′∣∣

)q–1

· μ(Q)

� [μ,σ ]q–1
Ap,q

∑
Q∈S
Q⊂R

1
|Q| λ

n
σ (Q)

( |Q|1– λ
n

μ(Q)
〈σ 〉1– q

p′
Q |Q|

)q–1

· μ(Q)

= [μ,σ ]q–1
Ap,q

∑
Q∈S
Q⊂R

〈μ〉2–q
Q 〈σ 〉

q
p′ (2–q)
Q · σ (Q)

q
p

� [μ,σ ]Ap,q

∑
Q∈S
Q⊂R

σ (Q)
q
p .

We see from the arguments in Case 1 that

∑
Q∈S
Q⊂R

σ (Q)
q
p ≤ 2[σ ]

n
λ
Aλ,∞σ (R)

q
p .

Hence

∥∥1RIS(R)
λ (σ1R)

∥∥q
Lq(μ) � [μ,σ ]Ap,q · [σ ]

n
λ
Aλ,∞σ (R)

q
p .

Taking the supreme over all cubes R ∈ D , we obtain

ΘD
μ,σ � [μ,σ ]

1
q
Ap,q

· [σ ]
n
λq
Aλ,∞ .

The estimates of ΘD
σ ,μ can be proved with the symmetry. This completes the proof. �
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