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Abstract
In this paper, we present a new conjugate gradient method using an acceleration
scheme for solving large-scale unconstrained optimization. The generated search
direction satisfies both the sufficient descent condition and the Dai–Liao conjugacy
condition independent of line search. Moreover, the value of the parameter contains
more useful information without adding more computational cost and storage
requirements, which can improve the numerical performance. Under proper
assumptions, the global convergence result of the proposed method with a Wolfe
line search is established. Numerical experiments show that the given method is
competitive for unconstrained optimization problems, with a maximum dimension of
100,000.
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1 Introduction
Consider the following unconstrained optimization problem:

min f (x), x ∈ R
n, (1)

where f : Rn →R is a continuously differentiable function, bounded below and its gradient
is denoted by g(x) = ∇f (x). Conjugate gradient methods characterized by simplicity and
low storage are efficient for solving (1), especially when the dimension n is large.

Starting from an initial guess x0 ∈ R
n, the conjugate gradient methods use the recur-

rence

xk+1 = xk + αkdk , k ≥ 0, (2)

where xk+1 is the current iterate, αk > 0 is the step-length, which is obtained by some line
search, and dk is the search direction determined by

d0 = –g0, dk+1 = –gk+1 + βkdk , k = 0, 1, 2, . . . , (3)
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where gk = g(xk). The scalar βk is called the conjugate gradient parameter. There are many
formulas to construct the scalar βk , such as βPRP

k [28, 29], βHS
k [19] and βFR

k [16].
The line search in conjugate gradient methods is usually based on the general Wolfe

conditions [33, 34],

f (xk + αkdk) – f (xk) ≤ ραkgT
k dk , (4)

gT
k+1dk ≥ σ gT

k dk , (5)

where dk is a descent direction and the constants ρ , σ satisfy 0 < ρ ≤ σ ≤ 1. However, in
order to establish the convergence and enhance the stability, the strong Wolfe conditions
given by (4) and

∣
∣gT

k+1dk
∣
∣ ≤ σ

∣
∣gT

k dk
∣
∣ (6)

are needed.
Recently efforts have been made to modify conjugate gradient methods for minimiz-

ing unconstrained optimization. In a natural way, Dai and Liao [8] extended the classical
conjugate condition yT

k dk+1 = 0 to

dT
k+1yk = –tgT

k+1sk , (7)

where sk = xk+1 – xk , yk = gk+1 – gk and t is a positive parameter. Based on the Dai–Liao
conjugacy condition (7), [8] introduced the conjugate gradient parameter βDL

k as follows:

βDL
k =

gT
k+1yk

dT
k yk

– t
gT

k+1sk

dT
k yk

. (8)

Having applied modified secant equations, many researchers have derived various con-
jugate gradient methods [7, 17, 21, 22, 25, 26, 30, 35, 44]. Moreover, combining with a
quasi-Newton updating technique, conjugate gradient methods can be considered as a
special type of quasi-Newton methods. From (3), (7) and Perry’s point of view in [27], we
can rewrite the search direction as follows:

dk+1 = –Qk+1gk+1, (9)

where

Qk+1 = I –
skyT

k

sT
k yk

+ t
sksT

k

sT
k yk

. (10)

Obviously, the Dai–Liao method can be considered as a special type of quasi-Newton
method in which the matrix Qk+1 is used to approximate the inverse Hessian of the ob-
jective function. Since the matrix Qk+1 is nonsymmetric and does not satisfy the secant
condition, (9) cannot be regarded as a quasi-Newton direction from a strict point of view.

To overcome the above shortcomings and improve the numerical performance of con-
jugate gradient methods, Andrei [1, 2] proposed the following matrix QA

k+1:

QA
k+1 = I –

skyT
k – yksT

k

yT
k sk

+ t
sksT

k

yT
k sk

(11)
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to replace the matrix Qk+1 in (10). The parameter t in the last term on the right-hand side is
calculated with t = 1+ ‖yk‖2

yT
k sk

and t = 1+2 ‖yk‖2

yT
k sk

, corresponding to the THREECG method [1]
and the TTCG method [2], respectively. The search directions satisfy not only the descent
condition but also the conjugacy condition, independent of the line search. Both of the
methods can be regarded as modifications of the classical HS or of the CG_DESCENT
conjugate gradient methods. Numerical results support this claim.

Motivated by [1] and [2], Deng and Wan [14] presented a symmetric matrix to estimate
the inverse Hessian approximation as follows:

QB
k+1 = I –

yksT
k + yksT

k

yT
k sk

+ t
sksT

k

yT
k sk

, (12)

where t = 1 – ‖yk‖2

yT
k sk

. The search direction in this method (MTHREECG) is close to the
Newton direction and satisfies the Dai–Liao conjugacy condition. Then they restricted
t = 1 – min{1, ‖yk‖2

yT
k sk

} and obtained the descent property. Numerical results show that
the MTHREECG method outperforms the THREECG method and the CG_DESCENT
method.

More recently, Yao and Ning [37] suggested the following symmetric matrix:

QC
k+1 = I – tk

yksT
k + yksT

k

yT
k sk

+
sksT

k

yT
k sk

, (13)

where the positive parameter tk is determined by minimizing the distance of QC
k+1 and the

self-scaling memoryless BFGS matrix in the Frobenius norm. In this method (NTAP), they
let ak = ‖sk‖2‖yk‖2

(sT
k yk )2 , then tk can be expressed as tk = min{ 1

1+ak
, sT

k yk
‖yk‖2 }. The sufficient descent

property of the search direction depends neither on the line search, nor on the convexity
of objective function. For relevant research see [3–6, 10–13, 20, 23, 24, 31, 32, 36, 38–43].

By focusing on the above research, we are interested in developing a new accelerated
conjugate gradient method (NACG) for large-scale unconstrained optimization. The gen-
erated search direction satisfies both sufficient descent condition and Dai–Liao conjugacy
condition. The parameter in the given method provides more useful information and adds
no extra computational and storage burden. In addition, the proposed method has an ob-
vious improvement in computational performance, especially in dealing with large-scale
unconstrained optimization problems.

The rest of this paper is organized as follows. In the next section, we will describe the
framework of the new method and the choice of parameter in generated search direction.
Global convergence results of the obtained method will be established under appropriate
conditions in Sect. 3. Section 4 is devoted to numerical experiments and comparisons with
some other efficient conjugate gradient algorithms for solving unconstrained optimization
problems with different dimensions. Conclusions are drawn in Sect. 5.

2 The NACG method
In this section, we state our new accelerated conjugate gradient method exploiting BFGS
updating technology, for which at each step both the sufficient descent condition and the
Dai–Liao conjugacy condition are satisfied, independent of the line search.
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It is well known that the BFGS method is one of the most efficient quasi-Newton meth-
ods. By introducing two adaptive parameters for adjusting, we give the following matrix:

Qk+1 = I – tk1

skyT
k + yksT

k

yT
k sk

+ tk2

sksT
k

yT
k sk

, (14)

where the parameters tk1 and tk2 are determined in the following.
In a sense, the method of form (9) and (14) could be considered as a self-adaptive mem-

oryless BFGS method. Substituting (14) into (9), we get

dk+1 = –
(

I – tk1

skyT
k + yksT

k

yT
k sk

+ tk2

sksT
k

yT
k sk

)

gk+1

= –gk+1 +
(

tk1

yT
k gk+1

yT
k sk

– tk2

sT
k gk+1

yT
k sk

)

· sk + tk1

sT
k gk+1

yT
k sk

· yk . (15)

Let

ak = tk1

yT
k gk+1

yT
k sk

– tk2

sT
k gk+1

yT
k sk

, (16)

bk = tk1

sT
k gk+1

yT
k sk

, (17)

then (15) takes the form of three-term conjugate gradient,

dk+1 = –gk+1 + aksk + bkyk . (18)

In what follows, we discuss the choices for the two parameters tk1 and tk2 . The parame-
ters are selected in such a manner that the Dai–Liao conjugacy condition and the sufficient
descent condition are satisfied from iteration to iteration.

Consider the Dai–Liao conjugacy condition (7) with t = 1, i.e.,

yT
k dk+1 = –sT

k gk+1. (19)

Substituting (15) into (19), by simple calculation, we obtain

–yT
k gk+1 + tk1 yT

k gk+1 – tk2 sT
k gk+1 + tk1

sT
k gk+1

yT
k sk

· yT
k yk = –sT

k gk+1,

which yields

tk2 = tk1

yT
k yk

yT
k sk

+ tk1

yT
k gk+1

sT
k gk+1

–
yT

k gk+1

sT
k gk+1

+ 1. (20)
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Since the descent property of the search direction, gT
k+1dk+1 < 0, is crucial for the con-

vergence analysis. It is easy to see

gT
k+1dk+1 = –‖gk+1‖2 + 2tk1

yT
k gk+1 · gT

k+1sk

yT
k sk

– tk2

(gT
k+1sk)2

yT
k sk

≤ –‖gk+1‖2 + 2tk1 |gk+1|
∣
∣
∣
∣

ykgT
k+1sk

yT
k sk

∣
∣
∣
∣

– tk2

(gT
k+1sk)2

yT
k sk

≤ –‖gk+1‖2 + tk1

[

‖gk+1‖2 +
(gT

k+1sk)2

(yT
k sk)2 · yT

k yk

]

– tk2

(gT
k+1sk)2

yT
k sk

= –(1 – tk1 )‖gk+1‖2 –
(

gT
k+1sk

yT
k sk

)2
(

tk2 yT
k sk – tk1 yT

k yk
)

.

If we restrict |tk1 | < 1 and take

tk2 = tk1

yT
k yk

yT
k sk

, (21)

then gT
k+1dk+1 < 0 holds. Substituting (21) into (20), we have

tk1 = 1 –
sT

k gk+1

yT
k gk+1

. (22)

If |1 – sT
k gk+1

yT
k gk+1

| ≥ 1, we set tk1 = 0. This implies a restarted scheme. Taking into consideration
the acceleration technique, the new accelerated conjugate gradient method (NACG) can
be suggested.

Algorithm 1 (NACG)
Step 0. Choose an initial point x0 ∈R

n, ε > 0, and compute f0 = f (x0), g0 = ∇f (x0). Set
d0 := –g0 and k := 0.

Step 1. If ‖gk‖ < ε, stop, else go to Step 2.
Step 2. Compute a step-length αk by Wolfe line search (4) and (5).
Step 3. Compute xk+1 by the acceleration scheme,

3.1. Compute z = xk + αkdk , gz = ∇f (z) and yz = gk – gz ;
3.2. Compute āk = αkgT

k dk and b̄k = –αkyT
k dk ;

3.3. Acceleration scheme. If b̄k > 0, then compute ξk = –āk/b̄k and update the
variables as xk+1 = xk + ξkαkdk , otherwise update the variables as
xk+1 = xk + αkdk .

Step 4. Compute fk+1 = f (xk+1), gk+1 = g(xk+1), sk = xk+1 – xk and yk = gk+1 – gk .
Step 5. Compute sT

k gk+1, yT
k gk+1, yT

k sk and yT
k yk , respectively.

Step 6. Compute tk1 and tk2 by

tk1 =

⎧

⎨

⎩

1 – sT
k gk+1

yT
k gk+1

, if 0 < sT
k gk+1

yT
k gk+1

< 2,

0, else,
(23)
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and

tk2 = tk1

yT
k yk

yT
k sk

, (24)

respectively.
Step 7. Compute ak and bk by (16) and (17), respectively.
Step 8. Set dk+1 = –gk+1 + aksk + bkyk . Set k := k + 1 and go to Step 1.

In Algorithm 1, Step 3 corresponds to the acceleration scheme. In Step 6, the parameter
tk1 defined by (23) satisfies |tk1 | < 1, and the parameter tk2 could be determined by the
equality with tk1 . Furthermore, the main computational cost lies in sT

k gk+1, yT
k gk+1, yT

k sk and
yT

k yk in Step 5. It costs O(4n) operations to compute the values of tk1 and tk2 , and further
get the values of ak and bk . No additional storage cost is required during the calculation.
Compared with the existing effective algorithms TTCG [2], MTHREECG [14] and NTAP
[37], the TTCG and the MTHREECG require O(4n) operations, while the NTAP requires
O(5n) operations. In one word, our algorithm NACG is competitive in computational cost.

The sufficient descent condition and Dai–Liao conjugacy condition of the generated
search direction holds independent of line search, a concept we discuss next.

Lemma 2.1 Suppose that the search direction dk+1 is generated by Algorithm 1. Then dk+1

shows sufficient descent, i.e., gT
k+1dk+1 ≤ –c‖gk+1‖2, where the constant c > 0.

Proof From (16)–(18), we have

gT
k+1dk+1 = –‖gk+1‖2 +

(

tk1

yT
k gk+1

yT
k sk

– tk2

sT
k gk+1

yT
k sk

)

· gT
k+1sk + tk1

sT
k gk+1

yT
k sk

· gT
k+1yk

≤ –(1 – tk1 )‖gk+1‖2 –
(

gT
k+1sk

yT
k sk

)2
(

tk2 yT
k sk – tk1 yT

k yk
)

.

Combining with (23) and (24), it follows that gT
k+1dk+1 ≤ –c‖gk+1‖2 with c := 1 – tk1 > 0. The

proof is completed. �

Lemma 2.2 Suppose that the search direction dk+1 is generated by Algorithm 1. Then dk+1

satisfies the Dai–Liao conjugacy condition (19).

Proof From (16)–(18), we have

yT
k dk+1 = –yT

k gk+1 +
(

tk1

yT
k gk+1

yT
k sk

– tk2

sT
k gk+1

yT
k sk

)

· yT
k sk + tk1

sT
k gk+1

yT
k sk

· yT
k yk

= –yT
k gk+1 + tk1 yT

k gk+1 – tk2 sT
k gk+1 + tk1

sT
k gk+1

yT
k sk

· yT
k yk .

Substituting (23) and (24) into the above equality yields

yT
k dk+1 = –yT

k gk+1 +
(

1 –
sT

k gk+1

yT
k gk+1

)

· yT
k gk+1 – tk1

yT
k yk

yT
k sk

· sT
k gk+1

+ tk1

sT
k gk+1

yT
k sk

· yT
k yk
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= –yT
k gk+1 + yT

k gk+1 – sT
k gk+1

= –sT
k gk+1,

which completes the proof. �

3 Convergence analysis
In this section, under appropriate assumptions, the global convergence of Algorithm 1 is
established. Without loss of generality, we make the following basic assumptions.

Assumption (i) The level set

Ω =
{

x ∈R
n : f (x) ≤ f (x0)

}

(25)

is bounded, i.e., there exists a constant B > 0 such that

‖x‖ ≤ B, ∀x ∈ Ω . (26)

Assumption (ii) The function f : Rn → R is continuously differentiable and its gradient
is Lipschitz continuous in a neighborhood N of Ω , i.e., there exists a constant L > 0 such
that

∥
∥g(x) – g(y)

∥
∥ ≤ L‖x – y‖, ∀x, y ∈N. (27)

Under the above assumptions, we can easily see that there exists a constant Γ > 0 such
that

∥
∥g(x)

∥
∥ ≤ Γ , ∀x ∈ Ω . (28)

Although the search direction dk+1 generated by Algorithm 1 is always a descent direc-
tion, in order to obtain the convergence of Algorithm 1, we need to derive a lower bound
for the step-length αk .

Lemma 3.1 Suppose that Assumption (ii) holds and {dk} is generated by Algorithm 1. Then
the step-length αk satisfies

αk ≥ (σ – 1)gT
k dk

L‖dk‖2 . (29)

The following lemma is called the Zoutendijk condition [45], which is often used to
prove global convergence of conjugate gradient methods.

Lemma 3.2 Suppose that the assumptions hold. Consider the algorithm (2) and (18), where
dk is a descent direction and αk is obtained by a Wolfe line search (4) and (5). Then

∑

k≥0

(gT
k dk)2

‖dk‖2 < ∞. (30)
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The next lemma shows the sequence of gradient norms ‖gk‖ is bounded away from
zero only if

∑

k≥0 1/‖dk‖ < +∞ for any conjugate gradient methods with strong Wolfe
line search (4) and (6).

Lemma 3.3 Suppose that the assumptions hold. Consider the algorithm (2) and (18), where
dk is a descent direction and αk is obtained by a strong Wolfe line search (4) and (6). If

∑

k≥0

1
‖dk‖2 = +∞, (31)

then

lim inf
k→∞

‖gk‖ = 0. (32)

The proofs of Lemmas 3.1–3.3 refer to [1, 2], which are omitted here.
For uniformly convex functions, we establish the following global convergence result of

Algorithm 1.

Theorem 3.1 Suppose that the assumptions hold. Let {xk} and {dk} be generated by Al-
gorithm 1. If f is a uniformly convex function on Ω , i.e., there exists a constant μ > 0 such
that

(∇f (x) – ∇f (y)
)T(x – y) ≥ μ‖x – y‖2, ∀x, y ∈N, (33)

then

lim
k→∞

‖gk‖ = 0. (34)

Proof From (27), it follows that

‖yk‖ ≤ L‖sk‖. (35)

From (33), we have

yT
k sk ≥ μ‖sk‖2. (36)

By the use of the Cauchy inequality and (36), it is obvious that μ‖sk‖2 ≤ yT
k sk ≤ ‖yk‖‖sk‖,

i.e.,

μ‖sk‖ ≤ ‖yk‖. (37)

We get from (23) and (24)

|tk2 | ≤ |tk1 |
|yT

k yk|
|yT

k sk|

≤ L2‖sk‖2

μ‖sk‖2

=
L2

μ
� M0. (38)
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On the other hand, from the definition of ak and bk in (16) and (17), we obtain

|ak| ≤ |tk1 | ·
|yT

k gk+1|
|yT

k sk| + |tk2 |
|sT

k gk+1|
|yT

k sk|

≤ Γ L
μ

· 1
‖sk‖ +

M0Γ

μ
· 1
‖sk‖

=
Γ L + M0Γ

μ
· 1
‖sk‖ � M1

1
‖sk‖ (39)

and

|bk| ≤ |tk1 | ·
|sT

k gk+1|
|yT

k sk|

≤ Γ ‖sk‖
μ‖sk‖2

≤ Γ L
μ

· 1
‖yk‖ � M2

1
‖yk‖ . (40)

Therefore, using (39) and (40) in (18), we get

‖dk+1‖ ≤ ‖gk+1‖ + |ak|‖sk‖ + |bk|‖yk‖
≤ Γ + M1 + M2 � M, (41)

showing that (31) holds. From Lemma 3.3, it follows that (32) is true, which for uniformly
convex functions is equivalent to (34). The proof is completed. �

4 Numerical results
In this section, we report the numerical results for some unconstrained problems from
[9] to show the efficiency of Algorithm 1 (NACG). All codes are written in Matlab R2013a
and ran on PC with 1.80 GHz CPU processor and 8.00 GB RAM memory.

We compare NACG against TTCG [2], MTHREECG [14] and NTAP [37], which have a
similar structure in search direction and have been reported to be superior to the classical
PRP method, HS method and CG-DESCENT [18] method, etc.

The iteration is terminated by the following condition:

‖gk‖ ≤ ε or
∣
∣f (xk+1) – f (xk)

∣
∣ ≤ ε max

{

1.0,
∣
∣f (xk)

∣
∣
}

. (42)

All algorithms have the same stopping criteria. We set the parameters as ε = 10–6 in (42),
and ρ = 0.0001, σ = 0.8 in a Wolfe line search (4) and (5). The other parameters are set as
default. Table 1 lists the test problems and their dimensions.

According to a comparison of four algorithms for the 300 test problems with different di-
mensions, we can see that there is only one problem that the NACG and the MTHREECG
cannot solve, while the TTCG does 98 percent of problems and the NTAP does 84.2 per-
cent of problems, respectively.

We employ the profiles by Dolan and Moré [15] to analyze the efficiency of the NACG. In
a performance profile plot, the horizontal axis gives the percentage (τ ) of the test problems
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Table 1 The test problems and their dimensions

No. Prob dim

1. Penalty function II 500, . . . , 900, 1000
2. Chebyquad function 500, . . . , 900, 1000, 2000, . . . , 5000
3. Nearly separable function 500, . . . , 900, 1000, 2000, . . . , 5000
4. Integral equation function 500, . . . , 900, 1000, 2000, . . . , 5000
5. Penalty function I 500, . . . , 900, 1000, . . . , 9000, 10,000, . . . , 90,000, 100,000
6. Extended Powell singular function 500, . . . , 900, 1000, . . . , 9000, 10,000, . . . , 90,000, 100,000
7. Variable dimension function 500, . . . , 900, 1000, . . . , 9000, 10,000, . . . , 90,000, 100,000
8. Schittkowski function 302 500, . . . , 900, 1000, . . . , 9000, 10,000, . . . , 90,000, 100,000
9. Generalized Rosebrock function 500, . . . , 900, 1000, . . . , 9000, 10,000, . . . , 90,000, 100,000
10. Extended Rosenbrock function 500, . . . , 900, 1000, . . . , 9000, 10,000, . . . , 90,000, 100,000
11. Boundary value function 500, . . . , 900, 1000, . . . , 9000, 10,000, . . . , 90,000, 100,000
12. Broyden tridiagonal function 500, . . . , 900, 1000, . . . , 9000, 10,000, . . . , 90,000, 100,000
13. Separable cubic function 500, . . . , 900, 1000, . . . , 9000, 10,000, . . . , 90,000, 100,000
14. Yang tridiagonal function 500, . . . , 900, 1000, . . . , 9000, 10,000, . . . , 90,000, 100,000
15. Allgower function 500, . . . , 900, 1000, . . . , 9000, 10,000, . . . , 90,000, 100,000

Figure 1 The number of iterations

Figure 2 The CPU time

for which a method is the fastest (efficiency), while the vertical side gives the percentage
(ψ ) of the test problems that are successfully solved by each of the methods. Consequently,
the top curve is the method that solved the most problems in a time that is within a factor
of the best time.

Figures 1–4 plot the performance profiles for the number of iterations (k), the CPU time
(t), the number of function evaluations (nf ) and the number of gradient evaluations (ng),
respectively.
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Figure 3 The number of function evaluations

Figure 4 The number of gradient evaluations

From Fig. 1, it is obvious that the NACG exhibits the best performance subject to
the number of iterations. For example, the NACG outperforms in 129 problems, the
MTHREECG outperforms in 66 problems, while the other two methods outperform in
48 problems and 57 problems, respectively.

We see from Fig. 2 that the curve “MTHREECG” and “TTC” are very close, which are
worse than the “NACG”. The NACG occupies the first place, which solves about 57% of
the 300 test problems with the least CPU time.

Figures 3 and 4 show that if the values of τ are controlled in the range of 1 to 4, the
curve “NACG” is always on the top, which means that our new algorithm is competitive
relative to function evaluations and gradient evaluations, respectively. Until we expand
the tolerance, the performance of the MTHREECG and TTCG are almost as same as that
of the NACG, while the curve “NTAP” is at the bottom all the time.

In one word, all numerical performances indicate that the efficiency and stability of the
NACG is promising, even if the dimensions of the test problems exceed 5000. Moreover,
we conclude that the restarted scheme is called rarely from the numerical results.

If program runs failure, or the number of iterations reaches more than 500, or precision
exceeds the optimal precision in the same test problem 103 times or more, regarded as
failed. Then we denote the number of iterations, function evaluations, gradient evalua-
tions by 500 and CPU time by 10 seconds, respectively. In this way, the numerical results
indicate that the algorithm NACG is encouraging.
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5 Conclusions
Conjugate gradient methods are widely used for solving large-scale unconstrained opti-
mization problems, due to their simplicity and low storage. We employed the idea of BFGS
quasi-Newton method to improve the performance of conjugate gradient methods. With-
out affecting the amount of calculation and storage, the choice of the parameter in the pro-
posed method provides more useful information. The generated search direction is close
to a quasi-Newton direction and fulfills not only the sufficient descent condition, but also
the Dai–Liao conjugacy condition. Furthermore, under proper conditions, we prove the
global convergence of the proposed method with Wolfe line search. For a set of 300 test
problems, compared with the existing effective methods, the performance profiles show
that the proposed method is promising for large-scale unconstrained optimization.

It is worth emphasizing that conjugate gradient methods combining with BFGS updat-
ing technique represent an interesting computational innovation which produce efficient
conjugate gradient algorithms. Our future work will be concentrated on developing some
new methods to obtain superlinear convergence and extending the convergence results to
general functions.

Acknowledgements
The authors are grateful to the editor and the anonymous reviewers for their valuable comments and suggestions, which
have substantially improved this paper.

Funding
This work is supported by the Innovation Talent Training Program of Science and Technology of Jilin Province of China
(20180519011JH), and the Science and Technology Development Project Program of Jilin Province (20190303132SF).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors conceived of the study and drafted the manuscript. All authors read and approved the final version of this
paper.

Author details
1College of Mathematics, Jilin University, Changchun, China. 2College of Mathematics and Statistics, Beihua University,
Jilin, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 29 July 2019 Accepted: 28 October 2019

References
1. Andrei, N.: A simple three-term conjugate gradient algorithm for unconstrained optimization. J. Comput. Appl. Math.

241, 19–29 (2013)
2. Andrei, N.: On three-term conjugate gradient algorithms for unconstrained optimization. Appl. Math. Comput. 219,

6316–6327 (2013)
3. Andrei, N.: A new three-trem conjugate gradient algorithm for unconstrained optimization. Numer. Algorithms 68,

305–321 (2015)
4. Babaie-Kafaki, S., Ghanbari, R.: A descent family of Dai–Liao conjugate gradient methods. Optim. Methods Softw. 29,

583–591 (2014)
5. Babaie-Kafaki, S., Ghanbari, R.: The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices.

Eur. J. Oper. Res. 234, 625–630 (2014)
6. Babaie-Kafaki, S., Ghanbari, R.: Two optimal Dai–Liao conjugate gradient methods. Optimization 64, 2277–2287

(2014)
7. Babaie-Kafaki, S., Ghanbari, R., Mahdavi-Amiri, N.: Two new conjugate gradient methods based on modified secant

equations. J. Comput. Appl. Math. 234, 1374–1386 (2010)
8. Dai, Y.H., Liao, L.Z.: New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim.

43, 87–101 (2001)



Chen et al. Journal of Inequalities and Applications        (2019) 2019:300 Page 13 of 13

9. Dai, Y.H., Yuan, Y.X.: An efficient hybrid conjugate gradient method for unconstrained optimization. Ann. Oper. Res.
103, 33–47 (2001)

10. Dai, Z.F.: Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties.
Appl. Math. Comput. 276, 297–300 (2016)

11. Dai, Z.F., Chen, X.H., Wen, F.H.: A modified Perry’s conjugate gradient method-based derivative-free method for
solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270, 378–386 (2015)

12. Dai, Z.F., Chen, X.H., Wen, F.H.: Comments on “A hybrid conjugate gradient method based on a quadratic relaxation of
the Dai–Yuan hybrid conjugate gradient parameter”. Optimization 64, 1173–1175 (2015)

13. Dai, Z.F., Wen, F.H.: Comments on another hybrid conjugate gradient algorithm for unconstrained optimization by
Andrei. Numer. Algorithms 69, 337–341 (2015)

14. Deng, S.H., Wan, Z.: A three-term conjugate gradient algorithm for large-scale unconstrained optimization problems.
Appl. Numer. Math. 92, 70–81 (2015)

15. Dolan, E., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213
(2002)

16. Flether, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)
17. Ford, J.A., Narushima, Y., Yabe, H.: Multi-step nonlinear conjugate gradient methods for unconstrained minimization.

Comput. Optim. Appl. 40, 191–216 (2008)
18. Hager, W.W., Zhang, H.C.: A new conjugate gradient method with guaranteed descent and an efficient line search.

SIAM J. Optim. 16, 170–192 (2005)
19. Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49,

409–436 (1952)
20. Huang, C.X., Yang, Z.C., Yi, T.S., Zou, X.F.: On the basins of attraction for a class of delay differential equations with

non-monotone bistable nonlinearities. J. Differ. Equ. 256, 2101–2114 (2014)
21. Kou, C.X.: An improved nonlinear conjugate gradient method with an optimal property. Sci. China Math. 57, 635–648

(2014)
22. Li, D.H., Fukushima, M.: A modified BFGS method and its global convergence in nonconvex minimization. J. Comput.

Appl. Math. 129, 15–35 (2001)
23. Liu, C.Y., Gong, Z.H., Teo, K.L., Sun, J., Caccetta, L.: Robust multi-objective optimal switching control arising in

1, 3-propanediol microbial fed-batch process. Nonlinear Anal. Hybrid Syst. 25, 1–20 (2017)
24. Liu, S., Chen, Y.P., Huang, Y.Q., Zhou, J.: An efficient two grid method for miscible displacement problem

approximated by mixed finite element methods. Comput. Math. Appl. 77, 752–764 (2019)
25. Livieris, I.E., Pintelas, P.: A descent Dai–Liao conjugate gradient method based on a modified secant equation and its

global convergence. ISRN Comput. Math. 2012, Article ID 435295 (2012)
26. Narushima, Y., Yabe, H.: Conjugate gradient methods based on secant conditions that generate descent search

directions for unconstrained optimization. J. Comput. Appl. Math. 236, 4303–4317 (2012)
27. Perry, A.: Technical note—a modified conjugate gradient algorithm. Oper. Res. 26, 1073–1078 (1978)
28. Polak, E., Ribiére, G.: Note sur la convergence des méthodes de directions conjuguées. Rev. Fr. Inform. Rech. Oper., 3e

Année 16, 35–43 (1969)
29. Polyak, B.T.: The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 9, 94–112 (1969)
30. Sugiki, K., Narushima, Y., Yabe, H.: Globally convergent three-term conjugate gradient methods that use secant

conditions and generate descent search directions for unconstrained optimization. J. Optim. Theory Appl. 153,
733–757 (2012)

31. Wang, J.F., Chen, X.Y., Huang, L.H.: The number and stability of limit cycles for planar piecewise linear systems of
node-saddle type. J. Math. Anal. Appl. 469, 405–427 (2019)

32. Wang, J.F., Huang, C.X., Huang, L.H.: Discontinuity-induced limit cycles in a general planar piecewise linear system of
saddle-focus type. Nonlinear Anal. Hybrid Syst. 22, 162–178 (2019)

33. Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev. 11, 226–235 (1969)
34. Wolfe, P.: Convergence conditions for ascent methods, II: some corrections. SIAM Rev. 13, 185–188 (1971)
35. Yabe, H., Takano, M.: Global convergence properties of nonlinear conjugate gradient methods with modified secant

condition. Comput. Optim. Appl. 28, 203–225 (2004)
36. Yang, Y.T., Chen, Y.T., Lu, Y.L.: A subspace conjugate gradient algorithm for large-scale unconstrained optimization.

Numer. Algorithms 76, 813–828 (2017)
37. Yao, S.W., Ning, L.S.: An adaptive three-term conjugate gradient method based on self-scaling memoryless BFGS

matrix. J. Comput. Appl. Math. 322, 72–85 (2018)
38. Yuan, J.L., Zhang, Y.D., Ye, J.X., Xie, J., Teo, K.L., Zhu, X., Feng, E.M., Yin, H.C., Xiu, Z.L.: Robust parameter identification

using parallel global optimization for a batch nonlinear enzyme-catalytic time-delayed process presenting metabolic
discontinuities. Appl. Math. Model. 46, 554–571 (2017)

39. Zhang, L., Jian, S.Y.: Further studies on the Wei–Yao–Liu nonlinear conjugate gradient method. Appl. Math. Comput.
219, 7616–7621 (2013)

40. Zhou, W.J.: A short note on the global convergence of the unmodified PRP method. Optim. Lett. 7, 1367–1372 (2013)
41. Zhou, W.J.: On the convergence of the modified Levenberg–Marquardt method with a nonmonotone second order

Armijo type line search. J. Comput. Appl. Math. 239, 152–161 (2013)
42. Zhou, W.J., Chen, X.L.: On the convergence of a modified regularized Newton method for convex optimization with

singular solutions. J. Comput. Appl. Math. 239, 179–188 (2013)
43. Zhou, W.J., Shen, D.M.: An inexact PRP conjugate gradient method for symmetric nonlinear equations. Numer. Funct.

Anal. Optim. 35, 370–388 (2014)
44. Zhou, W.J., Zhang, L.: A nonlinear conjugate gradient method based on the MBFGS secant condition. Optim.

Methods Softw. 21, 707–714 (2006)
45. Zoutendijk, G.: Nonlinear programming, computational method. In: Abadie, J. (ed.) Integer and Nonlinear

Programming, pp. 37–86. North-Holland, Amsterdam (1970)


	A new accelerated conjugate gradient method for large-scale unconstrained optimization
	Abstract
	Keywords

	Introduction
	The NACG method
	Convergence analysis
	Numerical results
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


