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Abstract
In this paper, we are concerned with Liouville-type theorems of the Hénon
Lane–Emden triharmonic equations in whole space. We prove Liouville-type
theorems for solutions belonging to one of the following classes: stable solutions and
finite Morse index solutions (whether positive or sign-changing). Our proof is based
on a combination of the Pohozaev-type identity, monotonicity formula of solutions
and a blowing down sequence.
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1 Introduction and main results
The paper is devoted to the study of the following nonlinear sixth-order Hénon type el-
liptic equation:

–�3u = |x|a|u|p–1u, in R
n, (1.1)

where a > 0, and p > 1. We are interested in the Liouville-type theorems—i.e., the nonex-
istence of the solution u which is stable or of finite Morse index.

The idea of using the Morse index of a solution of a semilinear elliptic equation was first
explored by Bahri and Lions [1] to obtain further qualitative properties of the solution. In
2007, Farina [7] made significant progress, and considered the Lane–Emden equation

–�u = |u|p–1u, in R
n, (1.2)

where n ≥ 2 and p > 1. Farina completely classified finite Morse index solutions (positive
or sign-changing) in his seminal paper [7]. His proof makes a delicate application of the
classical Moser iteration method. Hereafter, many experts utilized the Moser’s iterative
method to discuss the stable and finite Morse index solutions of the harmonic and fourth-
order elliptic equation and obtained many excellent results. We refer to [4, 5, 9, 16, 17]
and the references therein.
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However, the classical Moser iterative technique does not completely classify finite
Morse index solutions of the biharmonic equation

�2u = |u|p–1u, in R
n. (1.3)

Dávila, Dupaigne, Wang and Wei [6] have derived a monotonicity formula for solutions
of (1.3) to reduce the nonexistence of nontrivial entire solutions for the problem (1.3),
to that of nontrivial homogeneous solutions, and gave a complete classification of stable
solutions and those of finite Morse index solutions.

For the triharmonic Lane–Emden equation

–�3u = |u|p–1u, in R
n, (1.4)

Harrabi and Rahal [10] proved various Liouville-type theorems for smooth solutions un-
der the assumption that they are stable or stable outside a compact set of Rn. Again, fol-
lowing [6, 9, 17], they established the standard integral estimates via stability property to
derive the nonexistence results in the subcritical case by the use of Pohozaev identity. The
supercritical case needs more involved analysis, motivated by the monotonicity formula
established in [3], they then reduced the nonexistence of nontrivial entire solutions, to that
of nontrivial homogeneous solutions similarly to [6]. Through this approach, they gave a
complete classification of stable solutions and those which are stable outside a compact
set of Rn possibly unbounded and sign-changing. Inspired by [12], this analysis reveals a
new critical exponent called the sixth-order Joseph–Lundgren exponent.

Let us recall that the Liouville-type theorems and properties of the subcritical case has
been extensively studied by many authors. Gidas and Spruck have been investigated the
optimal Liouville-type theorems in the celebrated paper [8]. Thus, Eq. (1.2) has no positive
solution if and only if

p <
n + 2
n – 2

(= +∞, if n ≤ 2).

The supercritical case p > n+2
n–2 is much less completely understood. Bidaut–Véron and

Véron [2] proved the asymptotic behavior of positive solution of (1.2) by the use of the
Bochner–Lichnerowicz–Weitzenböck formula in R

n.
On the other hand, understanding of the case a �= 0 is less complete and is more delicate

to handle than the case a = 0. In [8], Gidas and Spruck concluded that, for a ≤ –2, the
equation

–�u = |x|aup, in R
n, (1.5)

has no positive solution. Recently, Wang and Ye [16] proved some Liouville-type theorems
for weak finite Morse index solutions in the low dimensional Euclidean spaces of (1.5) with
a > –2, p > 1 and n ≥ 2.

The fourth-order Hénon type equation:

�2u = |x|a|u|p–1u, in R
n (1.6)
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studied by Hu [11]. He proved Liouville-type theorems for solutions belonging to one of
the following classes: stable solutions and finite Morse index solutions (whether positive
or sign-changing). His proof is based on a combination of the Pohozaev-type identity,
monotonicity formula of solutions and a blowing down sequence.

Inspired by the ideas in [10, 13], our purpose in this paper is to prove the Liouville-type
theorems in the class of stable solution and finite Morse index solution.

Thus, for any fixed a > 0, we need to recall the following definition.

Definition 1.1 We say that a solution u of (1.1) belonging to C6(Rn)
• is stable, if for any ψ ∈ C3

c (Rn), we have

Qu(ψ) :=
∫
Rn

∣∣∇(�ψ)
∣∣2 dx – p

∫
Rn

|x|a|u|p–1ψ2 dx ≥ 0;

• has Morse index equal to K ≥ 1 if K is the maximal dimension of a subspace XK of
C3

c (Rn) such that Qu(φ) < 0 for any φ ∈ XK \ {0};
• is stable outside a compact set K ⊂R

n, if Qu(φ) ≥ 0 for any φ ∈ C3
c (Rn \K).

Remarks 1.1
1. Clearly, a solution stable if and only if its Morse index is equal to zero.
2. It is well known that any finite Morse index solution u is stable outside a compact

set K ⊂R
n. Indeed, there exist K ≥ 1 and XK := Span{φ1, . . . ,φK } ⊂ C3

c (Rn) such
that Qu(φ) < 0 for any φ ∈ XK \ {0}. Hence, Qu(ψ) ≥ 0 for every ψ ∈ C3

c (Rn \K),
where K :=

⋃K
j=1 supp(φj).

Now we can state our main results.

Theorem 1.1 Let u ∈ C6(Rn) be a stable solution of (1.1) and 1 < p < pa(n, 6). Then u ≡ 0.

Theorem 1.2 Let u ∈ C6(Rn) be a solution of Eq. (1.1) which is stable outside a compact
set of Rn.

• If 1 < p < p0(n, 6) and p �= n+6+2a
n–6 , then u ≡ 0.

• If p = n+6+2a
n–6 and n ≥ 7, then

∫
Rn

∣∣∇(�u)
∣∣2 dx =

∫
Rn

|x|a|u|p+1 dx < ∞.

Here the representation of pa(n, 6) in Theorem 1.1 is given by (2.2) below and p0(n, 6) in
Theorem 1.2 is the sixth-order Joseph–Lundgren exponent which is computed by [10] in
the case a = 0.

The organization of the rest of the paper is as follows. In Sect. 2, we need to define a
critical power of (1.1). In Sect. 3, we construct a monotonicity formula which is a crucial
tool to handle the supercritical case, In Sect. 4, we establish some finer integral estimates
for the solutions of (1.1). In Sect. 5, we obtain a nonexistence result for the homogeneous
stable solution of (1.1) in R

n \ {0}, where p belongs to ( n+6+2a
n–6 , pa(n, 6)). Then we prove a

Liouville-type theorem for the stable solutions of (1.1), this is Theorem 1.1 in Sect. 6. To
prove the result, we obtain some estimates of solutions, and we show that the limit of the
blowing down sequence u∞(x) = limλ→∞ λ

6+a
p–1 u(λx) satisfies E(u, r) ≡ const. Here, we use
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the monotonicity formula of Theorem 3.2. In Sect. 7, we study a Liouville-type theorem
of finite Morse index solutions by the use of the Pohozaev-type identity, monotonicity
formula and a blowing down sequence.

2 Sixth-order Joseph–Lundgren exponent
The purpose of this section is to provide an implicit existence of the sixth-order Joseph–
Lundgren exponent in the supercritical range. For any fixed a > 0 and n ≥ 7, we define

J3 = α(α + 2)(α + 4)(n – 2 – α)(n – 4 – α)(n – 6 – α)

and

Fa(α) = pJ3 –
(n – 6)2(n – 2)2(n + 2)2

64
= (α + 6 + a)(α + 2)(α + 4)(n – 2 – α)(n – 4 – α)(n – 6 – α)

–
(n – 6)2(n – 2)2(n + 2)2

64
,

where α = 6+a
p–1 . Note that

p >
n + 6 + 2a

n – 6
⇔ 0 < α <

n – 6
2

.

Fa is increasing on (0, n–6
2 ). A direct computation finds

Fa

(
n – 6

2

)
=

n + 6 + 2a
n – 6

(n – 6)2(n – 2)2(n + 2)2

64
–

(n – 6)2(n – 2)2(n + 2)2

64

=
2(6 + a)

n – 6
(n – 6)2(n – 2)2(n + 2)2

64
> 0. (2.1)

We have also

Fa(0) =
(n – 2)(n – 6)

64
(
–n4 + 4n3 + 16n2 + (3056 + 512a)n – 12,336 – 2048a

)

=
(n – 2)(n – 6)

64
Ea(n),

where Ea(x) = –x4 + 4x3 + 16x2 + (3056 + 512a)x – 12,336 – 2048a.
The function Ea satisfies the following properties:
(1) Ea(7) > 0, for all a > 0,
(2) E′′

a(x) = –12x2 + 24x + 32 < 0 on [7, +∞),
(3) limx→+∞ Ea(x) = –∞.

Then there exists a unique xa ∈ (7, +∞) such that Ea(xa) = 0 and Ea(x) > 0 on [7, xa).
Note that n(a) is the integer part of xa.
(i) ∀n ≤ n(a), Ea(n) > 0. This implies that Fa(0) > 0. As a consequence Fa(α) > 0, on

(0, n–6
2 ).

(ii) ∀n ≥ n(a) + 1, Ea(n) < 0. This implies that Fa(0) < 0. Then, there exists a unique
αa ∈ (0, n–6

2 ) such that Fa(αa) = 0.
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For any fixed a > 0 and n ≥ 7, we define

pa(n, 6) =

⎧⎨
⎩

+∞ if n ≤ n(a),

p(n, a) if n ≥ n(a) + 1,
(2.2)

where p(n, a) = 6+a
αa

+ 1.
Therefore,we find

pJ3 >
(n – 6)2(n + 2)2(n – 2)2

64
,

for any n+6+2a
n–6 < p < pa(n, 6). In particular, if a = 0, then p0(n, 6) in (2.2) is the sixth-order

Joseph–Lundgren exponent which is computed by [10].
Notation. Here and in the following, we use Br(x) to denote the open ball on R

n central at
x with radius r. We also write Br = Br(x). C denotes various irrelevant positive constants.

3 Monotonicity formula
In this section, we construct a monotonicity formula which plays an important role in
dealing to understand supercritical elliptic equations or systems. This approach has been
used successfully for the Lane–Emden equation in [6, 10, 11, 13]. We define the functional
E(u,λ) depending on λ > 0 and u:

E(u,λ) =
(∫

B1

1
2
∣∣∇�uλ

∣∣2 dx –
1

p + 1

∫
B1

|x|a∣∣uλ
∣∣p+1 dx

)

+
∫

∂B1

( ∑
0≤i,j≤4,i+j≤5

C0
i,jλ

i+j diuλ

dλi
djuλ

dλj +
∑

0≤i,j≤2,i+j≤3

C1
i,jλ

i+j∇θ

diuλ

dλi ∇θ

djuλ

dλj

)
dx

+
∫

∂B1

( ∑
0≤i,j≤1,i+j≤1

C2
i,jλ

i+j�θ

diuλ

dλi �θ

djuλ

dλj

)
dx. (3.1)

Theorem 3.1 Let u satisfy Eq. (1.1). Define uλ(x) = λαu(λx), then

dE(u,λ)
λ

=
∫

∂B1

(
3λ5

(
d3uλ

dλ3

)2

+ A1λ
3
(

d2uλ

dλ2

)2

+ A2λ

(
duλ

dλ

)2)
dx

+
∫

∂B1

(
2λ3

(
d2

dλ2 ∇θ uλ

)2

+ A3λ

(
d

dλ
∇θ uλ

)2)
dx

+ 3λ

∫
∂B1

(
�θ duλ

dλ

)2

dx, (3.2)

where α = 6+a
p–1 and

A1 := 10δ1 – 2δ2 – 56 + ρ2 – 2ρ – 2γ – 4,

A2 := –18δ1 + 6δ2 – 4δ3 + 2δ4 + 72 – ρ2 + γ 2 + 2ρ + 2γ ,

A3 := 8ϑ – 4β + 4n – 18 – 2γ ,

β := α(4 + α – n), γ := α(α – n + 2), ϑ := n – 3 – 2α, ρ := n – 1 – 2α,
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and

δ1 = 2(n – 1) – 4α, δ2 = 6α(1 + α) – 6(n – 1)α + (n – 1)(n – 3),

δ3 = –4α(1 + α)(2 + α) + 6(n – 1)α(1 + α) – (n – 1)(n – 3)(1 + 2α),

δ4 = (1 + α)(2 + α)(3 + α)α – 2(n – 1)(1 + α)(2 + α)α + (n – 1)(n – 3)(α + 2)α.

The proof of Theorem 3.1 is similar to Theorem 2.1 in [13]. Take

E(u,λ) = λ
6(p+1)+2a

p–1 –n
(∫

Bλ

1
2
|∇�u|2 –

1
p + 1

∫
Bλ

|x|a|u|p+1
)

. (3.3)

Since the derivation of the derivative for the E(u,λ) is complicated, we divide it into several
steps. In step 1, we derive d

dλ
E(u,λ). In step 2, we calculate the (higher-order) derivatives

∂ j

∂rj uλ and ∂ i

∂λi uλ, i, j = 1, 2, 3, 4. In step 3, the operator �2 and its representation will be
given. In step 4, we decompose d

dλ
E(u,λ). Finally, combining the above four steps, we can

obtain the derivative formula, hence get the proof of Theorem 3.1.

Theorem 3.2 Assume that n+6+2a
n–6 < p < pa(n, 6). Then E(u,λ), is a nondecreasing function

of λ > 0. Furthermore,

dE(u,λ)
dλ

≥ C(n, p, a)λ2α–n
∫

∂Bλ

(αu + λ∂ru)2 dx, (3.4)

where C(n, p, a) > 0 is a constant independent of λ.

Proof The proof follows the main lines of the demonstration of Theorem 2.2 in [13], with
small modifications. From Theorem 3.1 we derive

dE(u,λ)
dλ

=
∫

∂B1

(
3λ5

(
d3uλ

dλ3

)2

+ A1λ
3
(

d2uλ

dλ2

)2

+ A2λ

(
duλ

dλ

)2)
dx

+
∫

∂B1

(
2λ3

(
∇θ

d2uλ

dλ2

)2

+ A3λ

(
∇θ

duλ

dλ

)2)
dx

+
∫

∂B1

λ

(
�θ

duλ

dλ

)2

dx, (3.5)

where

A1 = 10δ1 – 2δ2 – 56 + ρ2 – 2ρ – 2γ – 4, (3.6)

A2 = –18δ1 + 6δ2 – 4δ3 + 2δ4 + 72 – ρ2 + γ 2 + ρ + 2γ , (3.7)

and

A3 = 8ϑ – 4β – 2γ + 4n – 18. (3.8)

By a direct calculation we have

A1 = –10α2 + (–60 + 10n)α – n2 + 24n – 83,

A2 = 3α4 + (36 – 6n)α3 +
(
3n2 – 48n + 150

)
α2 +

(
12n2 – 114n + 252

)
α

+ 9n2 – 72n + 135,
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and

A3 = –6α2 + (–36 + 6n)α + 12n – 42.

Notice that our supercritical condition p > n+6+2a
n–6 is equivalent to 0 < α < n–6

2 . Firstly, we
have the following lemma, which yields the sign of A2 and A3.

Lemma 3.1 Let n ≥ 7. If p > n+6+2a
n–6 , then A2 > 0 and A3 > 0.

Proof From (3.7), we derive that

A2 = 3(α + 1)(α + 3)
(
α – (n – 5)

)(
α – (n – 3)

)
, (3.9)

and the roots of A3 = 0 are

1
2

n – 3 –
1
2
√

n2 – 4n + 8,
1
2

n – 3 +
1
2
√

n2 – 4n + 8.

Recall that p > n+6+2a
n–6 , is equivalent to 0 < α < n–6

2 , we get the conclusion. �

To show monotonicity formula, we proceed to prove the following inequality:

3λ5
(

d3uλ

dλ3

)2

+ A1λ
3
(

d2uλ

dλ2

)2

+ A2λ

(
duλ

dλ

)2

≥ ελ

(
duλ

dλ

)2

+
d

dλ

( ∑
0≤i,j≤2

ci,jλ
i+j diuλ

dλi
djuλ

dλj

)
. (3.10)

To deal with the rest of the dimensions, we employ the second idea: we find nonnegative
constants d1, d2 and constants c1, c2 such that we have the following Jordan form decom-
position:

3λ5(f ′′′)2 + A1λ
3(f ′′)2 + A2λ

(
f ′)2 = 3λ

(
λ2f ′′′ + c1λf ′′)2 + d1λ

(
λf ′′ + c2f ′)2 + d2λ

(
f ′)2

+
d

dλ

(∑
i,j

ei,jλ
i+jf (i)f (j)

)
, (3.11)

where the unknown constants are to be determined.

Lemma 3.2 Let n ≥ 7. If p > n+6+2a
n–6 and A1 satisfy

A1 + 12 > 0,

then there exist nonnegative numbers d1, d2, and real numbers c1, c2, ei,j such that the
differential inequality (3.11) holds.

Proof Since

4λ4f ′′′f ′′ =
d

dλ

(
2λ4(f ′′)2) – 8λ3(f ′′)2
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and

2λ2f ′′f ′ =
d

dλ

(
λ2(f ′)2) – 2λ

(
f ′)2

by comparing the coefficients of λ3(f ′′)2 and λ(f ′)2, we have

d1 = A1 – 3c2
1 + 12c1, d2 = A2 –

(
c2

2 – 2c2
)(

A1 – 3c2
1 + 12c1

)
.

In particular,

max
c1

d1(c1) = A1 + 12 and the critical point is c1 = 2.

Since A2 > 0, we select c1 = 2, c2 = 0. Hence, in this case, by a direct calculation we see that
d1 = A1 + 12 > 0. Then we get the conclusion. �

We conclude from Lemma 3.2 that if A1 + 12 > 0 then (3.10) holds. This implies that
when 7 ≤ n ≤ 20, p > n+6+2a

n–6 or n ≥ 21 and

n + 6 + 2a
n – 6

< p <
5n + 30 –

√
15n2 – 60n + 190 + 10a

5n – 30 –
√

15n2 – 60n + 190
, (3.12)

then (3.10) holds. Combining the idea from the above with the following idea, we can get
a better condition to make the monotonicity formula hold. We start from the differential
identity (3.11). Recall that the derivative term is a ‘good’ term since it can be absorbed by
other terms.

Let

pm,a(n, 6) =

⎧⎨
⎩

+∞ if n ≤ 30,
5n+30–

√
15n2–60n+190+10a

5n–30–
√

15n2–60n+190
if n ≥ 31.

Combining all the lemmas of this section, we obtain the following theorem.

Theorem 3.3 For n+6+2a
n–6 < p < pm,a(n, 6), there exists a C(n, p, a) > 0 such that

d
dλ

E(u,λ) ≥ C(n, p, a)
∫

∂B1

λ

(
duλ

dλ

)2

dx.

Proof of Theorem 3.2 (Continued) Let a > 0 and n > n(a). Recall that Fa(0) < 0 and Fa(α) > 0
for all αa < α < n–6

2 .
We have

Fa

(
1
2

n – 3 –
1

10
√

15n2 – 60n + 190
)

< 0 for n > n(a).

Then

1
2

n – 3 –
1

10
√

15n2 – 60n + 190 < αa =
6 + a

p(n, a) – 1
. (3.13)



Harrabi and Zaidi Journal of Inequalities and Applications        (2019) 2019:281 Page 9 of 29

From (3.13), we get

pa(n, 6) < pm,a(n, 6), ∀n > n(a).

Theorem 3.2 is thus proved. �

4 Integral estimates
The following basic integral estimates for solutions (whether positive or sign-changing)
of (1.1) follow from the rescaled test function method.

Lemma 4.1 Let u be a stable solution of (1.1), then there exists a positive constant C such
that

∫
Rn

|x|a|u|p+1ψ6 dx +
∫
Rn

|∇�u|2ψ6 dx

≤ C
∫
Rn

|�u|2ψ4|∇ψ |2 dx + C
∫
Rn

|∇u|2 |�ψ6|2
ψ6 dx + C

∫
Rn

u2 |∇�ψ6|2
ψ6 dx

+ C
∫
Rn

|∇u|2ψ2|∇ψ |4 dx + C
∫
Rn

∣∣∇2u
∣∣2

ψ4|∇ψ |2 dx

+ C
∫
Rn

|∇u|2ψ4∣∣∇2ψ
∣∣2 dx. (4.1)

Proof Multiplying Eq. (1.1) with uψ6, where ψ is a test function, we get

∫
Rn

|x|a|u|p+1ψ6 dx =
∫
Rn

–�3u.uψ6 dx =
∫
Rn

∇�2u · ∇(
uψ6)dx

= –
∫
Rn

�2u�
(
uψ6)dx =

∫
Rn

∇�u · ∇�
(
uψ6)dx. (4.2)

Since �(ξψ) = ψ�ξ + ξ�ψ + 2∇ξ∇ψ , we have

�
(
uψ6) = ψ6�u + u�ψ6 + 12ψ5∇u∇ψ ,

therefore,

∇�
(
uψ6)∇�u = 6ψ5�u∇ψ∇�u +

(
ψ6)(∇�u)2

+ �ψ6∇u∇�u + u∇�ψ6∇�u + 60ψ4(∇ψ∇�u)(∇u∇ψ)

+ 12ψ5
∑

i,j

∂iju∂iψ∂j�u + 12ψ5
∑

i,j

∂iu∂ijψ∂j�u, (4.3)

where ∂j (j = 1, . . . , n) denote the derivatives with respect to x1, . . . , xn, respectively. A sim-
ilar method can be applied to dealing with the following term, |∇�(uψ3)|2. On the other
hand, by the stability condition, we have

p
∫
Rn

|x|a|u|p+1ψ6 dx ≤
∫
Rn

∣∣∇�
(
uψ3)∣∣2 dx. (4.4)
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Combining this with (4.2), (4.3) and (4.4), we have
∫
Rn

|∇�u|2ψ6 dx ≤ Cε

∫
Rn

|∇�u|2ψ6 dx + C(ε)
∫
Rn

|�u|2ψ4|∇ψ |2 dx

+ C(ε)
∫
Rn

|∇u|2
( |�ψ6|2

ψ6 + ψ4∣∣∇2ψ
∣∣2

)
dx

+ C(ε)
∫
Rn

u2 |∇�ψ6|2
ψ6 dx + C(ε)

∫
Rn

|∇u|2ψ2|∇ψ |4 dx

+ C(ε)
∫
Rn

∣∣∇2u
∣∣2

ψ4|∇ψ |2 dx, (4.5)

we can select ε so small that Cε ≤ 1
2 . Finally, combining with (4.2) and (4.3), we obtain the

conclusion of this lemma. �

Proposition 4.1 Let u ∈ C6(Rn) be a stable solution of (1.1). Then there exists a constant
C > 0 such that

∫
BR

(|x|a|u|p+1 +
∣∣∇(�u)

∣∣2)dx ≤ CR–6
∫

B2R\BR

u2 dx, (4.6)
∫

BR

(|x|a|u|p+1 +
∣∣∇(�u)

∣∣2)dx ≤ CRn– 6(p+1)+2a
p–1 . (4.7)

Proof We let ψ = ξm where m > 1 in the estimate (4.1), we have
∫
Rn

|∇�u|2ξ 6m dx +
∫
Rn

|x|a|u|p+1ξ 6m dx ≤
∫
Rn

u2g0(ξ ) dx +
∫
Rn

|∇u|2g1(ξ ) dx

+
∫
Rn

|�u|2g2(ξ ) dx, (4.8)

where

g0(ξ ) = ξ 6m–6
∑

0≤i+j+k+r+s+t≤6

∣∣∇ iξ
∣∣∣∣∇ jξ

∣∣∣∣∇kξ
∣∣∣∣∇rξ

∣∣∣∣∇sξ
∣∣∣∣∇ tξ

∣∣,

g1(ξ ) = ξ 6m–4
∑

0≤i+j+k+l≤4

∣∣∇ iξ
∣∣∣∣∇ jξ

∣∣∣∣∇kξ
∣∣∣∣∇ lξ

∣∣,

g2(ξ ) = ξ 6m–2
∑

0≤i+j≤2

∣∣∇ iξ
∣∣∣∣∇ jξ

∣∣,

where we define ∇0ξ = ξ and notice that gm(ξ ) ≥ 0 for m = 0, 1, 2. Now, we claim that

g2
1 (ξ ) ≤ Cg0(ξ )g2(ξ ),

∣∣∇2g2(ξ )
∣∣ ≤ Cg1(ξ ), g2

2 (ξ ) ≤ Cξ 6mg1(ξ ). (4.9)

This claim can be verified by direct calculations and will be used for the following esti-
mates.

Since |∇u|2 = 1
2�(u2) – u�u, we have

∫
Rn

|∇u|2g1(ξ ) dx =
1
2

∫
Rn

�
(
u2)g1(ξ ) dx –

∫
Rn

u�ug1(ξ ) dx

=
1
2

∫
Rn

u2�g1(ξ ) dx –
∫
Rn

u�ug1(ξ ) dx
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≤ 1
2

∫
Rn

u2�g1(ξ ) dx + ε

∫
Rn

(�u)2g2(ξ ) dx

+
1

4ε

∫
Rn

u2g0(ξ ) dx. (4.10)

We note the following differential identity

(�u)2 =
∑

j,k

(ujuk)jk –
∑

j,k

(ujk)2 – ∇�u.∇u.

Hence (�u)2 ≤ ∑
j,k(ujuk)jk – 2∇�u.∇u. Therefore we have

∫
Rn

(�u)2g2(ξ ) dx ≤
∫
Rn

∑
j,k

(ujuk)jkg2(ξ ) dx – 2
∫
Rn

∇�u.∇ug2(ξ ) dx

=
∫
Rn

∑
j,k

(ujuk)g2(ξ )jk dx – 2
∫
Rn

∇�u.∇ug2(ξ ) dx

≤ C
∫
Rn

|∇u|2g1(ξ ) dx + δ

∫
Rn

|∇�u|2ξ 6m dx

+ C(δ)
∫
Rn

|∇u|2g1(ξ ) dx

≤ C
∫
Rn

|∇u|2g1(ξ ) + δ

∫
Rn

|∇�u|2ξ 6m dx. (4.11)

Combining with (4.11) and (4.10), by selecting the positive parameter ε small enough, we
can obtain

∫
Rn

|∇u|2g1(ξ ) dx +
∫
Rn

(�u)2g2(ξ ) dx ≤ C
∫
Rn

u2g0(ξ ) dx + δ

∫
Rn

|∇�u|2ξ 6m dx.

By combining the above inequalities with (4.8) and selecting the positive parameter δ

small enough, we have

∫
Rn

|∇�u|2ξ 6m dx +
∫
Rn

|x|a|u|p+1ξ 6m dx ≤ C
∫
Rn

u2g0(ξ ) dx. (4.12)

This proves (4.6). Further, we let ξ = 1 in BR and ξ = 0 in BC
2R, satisfying |∇ξ | ≤ C

R , we have

∫
Rn

|∇�u|2ξ 6m dx +
∫
Rn

|x|a|u|p+1ξ 6m dx

≤ C
∫
Rn

u2g0(ξ ) dx ≤ C
∫

B2R\BR

|x| 2a
p+1 u2|x| –2a

p+1 g0(ξ ) dx

≤ CR–6
∫

B2R\BR

|x| 2a
p+1 |u|2|x| –2a

p+1 ξ (6m–6) dx

≤ CR–6
(∫

B2R\BR

|x|a|u|p+1ξ (3m–3)(p+1) dx
) 2

p+1
R(n– 2a

p–1 ) p–1
p+1 . (4.13)

By selecting m > 1 and letting m be close to 1, we can make sure that (3m – 3)(p + 1) ≤ 6m.
It follows that (4.7) holds. �
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5 Homogeneous solutions
In this section, we obtain a nonexistence result for a homogeneous stable solution of (1.1).

Lemma 5.1 Let

J1 = (α + 4)(n – 6 – α) + (α + 2)(n – 4 – α) + α(n – 2 – α),

J2 = (α + 4)(n – 6 – α)
[
(α + 2)(n – 4 – α) + α(n – 2 – α)

]
+ α(α + 2)(n – 2 – α)(n – 4 – α),

J3 = α(α + 2)(α + 4)(n – 2 – α)(n – 4 – α)(n – 6 – α).

If p ∈ ( n+6+2a
n–6 , pa(n, 6)), then

J1 > 0, J2 > 0, J3 > 0, pJ1 >
(n – 2)2

4
+

(n + 2)(n – 6)
2

and

pJ2 >
(n + 2)(n – 6)(n – 2)2

8
+

(n + 2)2(n – 6)2

16
.

Proof Since

p >
n + 6 + 2a

n – 6
>

n + 6
n – 6

, (5.1)

we have

J1 > 0, J2 > 0 and J3 > 0.

For n+6+2a
n–6 < p < pa(n, 6), we get from the definition of pa(n, 6)

pJ3 >
(n – 6)2(n + 2)2(n – 2)2

43 . (5.2)

From (5.2), we obtain

33p3J3 >
(

3
4

)3

(n – 2)6. (5.3)

Using the following well-known inequality:

3√xyz ≤ 1
3

(x + y + z), (5.4)

where x, y and z are positive real numbers, as follows: x = (α + 4)(n – 6 – α), y = (α + 2) ×
(n – 4 – α) and z = α(n – 2 – α), we derive

33J3 < (J1)3. (5.5)

By the last inequality combined with (5.3), we derive

pJ1 >
3
4

(n – 2)2. (5.6)
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Since

(n – 2)2 > (n + 2)(n – 6), for n ≥ 7. (5.7)

Inserting the latter into (5.6) we obtain

pJ1 >
(n – 2)2

4
+

(n + 2)(n – 6)
2

. (5.8)

Using again the same inequality (5.4) (for x = (α + 4)(n – 6 – α)(α + 2)(n – 4 – α),
y = (α + 4)(n – 6 – α)α(n – 2 – α) and z = α(α + 2)(n – 2 – α)(n – 4 – α)), we derive

33J2
3 < (J2)3. (5.9)

From (5.1) and (5.2), we deduce that

33p3J2
3 >

(
3

16

)3

(n + 2)3(n – 6)3(n – 2)6. (5.10)

Putting (5.10) into (5.9) gives

pJ2 >
3

16
(n + 2)(n – 6)(n – 2)2. (5.11)

By (5.7), it follows

3
16

(n + 2)(n – 6)(n – 2)2 >
(n + 2)(n – 6)(n – 2)2

8
+

(n + 2)2(n – 6)2

16
.

This implies

pJ2 >
(n + 2)(n – 6)(n – 2)2

8
+

(n + 2)2(n – 6)2

16
. (5.12)

This finishes the proof of Lemma 5.1. �

Theorem 5.1 Let u ∈ W 3,2
loc (Rn \ {0}) be a homogeneous, stable solution of (1.1) in R

n \ {0},
p ∈ ( n+6+2a

n–6 , pa(n, 6)). Assume that |x|a|u|p+1 ∈ L1
loc(Rn \ {0}). Then u ≡ 0.

Proof Let u be a homogeneous solution of (1.1), that is, there exists a w ∈ W 3,2(Sn–1) such
that in polar coordinates

u(r, θ ) = r– 6+a
p–1 w(θ ).

Since u ∈ W 3,2(B2 \ B1) and |x|a|u|p+1 ∈ L1(B2 \ B1), it implies that w ∈ W 3,2(Sn–1) ∩
Lp+1(Sn–1).

Direct calculations show that

–�3
θ w(θ ) + J1�

2
θ w(θ ) – J2�θ w(θ ) + J3w(θ ) = |w|p–1w, (5.13)
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where α = 6+a
p–1 ,

J1 = (α + 4)(n – 6 – α) + (α + 2)(n – 4 – α) + α(n – 2 – α),

J2 = (α + 4)(n – 6 – α)
[
(α + 2)(n – 4 – α) + α(n – 2 – α)

]

+ α(α + 2)(n – 2 – α)(n – 4 – α),

J3 = α(α + 2)(α + 4)(n – 2 – α)(n – 4 – α)(n – 6 – α).

Because w ∈ W 3,2(Sn–1), we can test (5.13) with w, and we get

∫
Sn–1

∣∣∇θ (�θ w)
∣∣2 + J1(�θ w)2 + J2|∇θ w|2 + J3w2dθ =

∫
Sn–1

|w|p+1 dθ . (5.14)

As in [10], for any ε > 0, choose an ηε ∈ C∞
c (( ε

2 , 2
ε

)), such that ηε ≡ 1 in (ε, 1
ε

), and

r
∣∣η′

ε(r)
∣∣ + r2∣∣η′′

ε (r)
∣∣ + r3∣∣η′′′

ε (r)
∣∣ ≤ 64 for all r > 0.

Because w ∈ W 3,2(Sn–1) ∩ Lp+1(Sn–1), r– n–6
2 w(θ )ηε(r) can be approximated by

C∞
c (B4/ε \ Bε/4) functions in W 3,2(B2/ε \ Bε/2) ∩ Lp+1(B2/ε \ Bε/2). Hence in the stability

condition for u we are allowed to choose a test function of the form r– n–6
2 w(θ )ηε(r).

A simple computation gives

�
(
r– n–6

2 w(θ )ηε(r)
)

= –
(n + 2)(n – 6)

4
r– n

2 +1w(θ )ηε(r) + 5r– n
2 +2w(θ )η′

ε(r)

+ r– n
2 +3w(θ )η′′

ε (r) + r– n
2 +1�θ w(θ )ηε(r),

∂(�(r– n–6
2 w(θ )ηε(r)))
∂r

=
(n + 2)(n – 6)(n – 2)

8
w(θ )r– n

2 w(θ )ηε(r)

+
10(4 – n) – (n + 2)(n – 6)

4
r– n

2 +1w(θ )η′
ε(r)

+
16 – n

2
r– n

2 +2w(θ )η′′
ε (r) + r– n

2 +3w(θ )η′′′
ε (r)

+
2 – n

2
r– n

2 �θ w(θ )ηε(r) + r– n
2 +1�θ w(θ )η′

ε(r),

and

1
r
∇θ

(
�

(
r– n–6

2 w(θ )ηε(r)
))

= –
(n + 2)(n – 6)

4
r– n

2 ∇θ w(θ )ηε(r) + 5r– n
2 +1∇θ w(θ )η′

ε(r)

+ r– n
2 +2∇θ w(θ )η′′

ε (r) + r– n
2 ∇θ

(
�θ w(θ )

)
ηε(r).

Substituting this into the stability condition for u, we get

p
(∫

Sn–1
|w|p+1 dθ

)(∫ +∞

0
r–1ηε(r)2 dr

)

≤
[∫

Sn–1

∣∣∇θ (�θ w)
∣∣2 +

(
(n – 2)2

4
+

(n + 2)(n – 6)
2

)
(�θ w)2 dθ

+
∫
Sn–1

(
(n – 2)2(n – 6)(n + 2)

8
+

(n – 6)2(n + 2)2

16

)
|∇θ w|2 dθ
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+
∫
Sn–1

(n – 6)2(n + 2)2(n – 2)2

64
w2 dθ

](∫ +∞

0
r–1ηε(r)2 dr

)

+ O
[∫ +∞

0

(
rη′

ε(r)2 + r3η′′
ε (r)2 + r5η′′′

ε (r)2 + rηε(r)
∣∣η′′

ε (r)
∣∣ + r2ηε(r)

∣∣η′′′
ε (r)

∣∣)dr

×
∫
Sn–1

(
(�θ w)2 + |∇θ w|2 + w2)dθ

]
.

Note that

∫ +∞

0
r–1ηε(r)2 dr ≥ | log ε|,

∫ +∞

0

(
rη′

ε(r)2 + r3η′′
ε (r)2 + r5η′′′

ε (r)2 + rηε(r)
∣∣η′′

ε (r)
∣∣ + r2ηε(r)

∣∣η′′′
ε (r)

∣∣)dr ≤ C,

for some constant C independent of ε. By letting ε → 0, we obtain

p
∫
Sn–1

|w|p+1 dθ ≤
∫
Sn–1

∣∣∇θ (�θ w)
∣∣2 +

(
(n – 2)2

4
+

(n + 2)(n – 6)
2

)
(�θ w)2 dθ

+
∫
Sn–1

(
(n – 2)2(n – 6)(n + 2)

8
+

(n – 6)2(n + 2)2

16

)
|∇θ w|2

+
(n – 6)2(n + 2)2(n – 2)2

64
w2 dθ .

Substituting (5.14) into this we get

∫
Sn–1

(p – 1)
∣∣∇θ (�θ w)

∣∣2 +
(

pJ1 –
(n – 2)2

4
–

(n + 2)(n – 6)
2

)
(�θ w)2 dθ

+
∫
Sn–1

(
pJ2 –

(n – 2)2(n – 6)(n + 2)
8

–
(n – 6)2(n + 2)2

16

)
|∇θ w|2

+
(

pJ3 –
(n – 6)2(n + 2)2(n – 2)2

64

)
w2 dθ

≤ 0. (5.15)

Finally, by Lemma 5.1, we observe that w ≡ 0. Then

u ≡ 0, in R
n.

This finishes the proof of Theorem 5.1. �

Remark 5.1 One can easily check that

us(r) = J
1

p–1
3 r– 6+a

p–1

is a singular solution of (1.1) in R
n \ {0}, where

α =
6 + a
p – 1

, J3 = α(α + 2)(α + 4)(n – 2 – α)(n – 4 – α)(n – 6 – α).
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Using the well-known Hardy–Rellich inequality [15] with the best constant

∫
Rn

∣∣∇(�ψ)
∣∣2 dx ≥ (n – 6)2(n + 2)2(n – 2)2

64

∫
Rn

ψ2

|x|6 dx, ∀ψ ∈ H3(
R

n),

we conclude that the singular solution us is stable in R
n \ {0} if and only if

pJ3 ≤ (n – 6)2(n + 2)2(n – 2)2

64
.

6 Classification of stable solutions
For the case, 1 < p ≤ n+6+2a

n–6 , we apply the integral estimates. For the case, n+6+2a
n–6 < p <

pa(n, 6), with the energy estimates and the desired monotonicity formula under the con-
dition n+6+2a

n–6 < p < pa(n, 6), we can show that the stable solutions must be homogeneous
solutions, hence by applying the classification of the homogeneous solutions (see Theo-
rem 5.1), the solutions must be zero.

Proof of Theorem 1.1 Subcritical case: 1 < p < n+6+2a
n–6 .

Since p < n+6+2a
n–6 implies n < 6(p+1)+2a

p–1 , and combining with (4.7), we find

∫
BR(x)

(∣∣∇(�u)
∣∣2 + |y|a|u|p+1)dy ≤ CRn– 6(p+1)+2a

p–1 → 0, as R → +∞.

Consequently, we obtain

u ≡ 0.

Critical case: p = n+6+2a
n–6 .

Utilizing the inequality (4.7) once again we find

∫
Rn

(∣∣∇(�u)
∣∣2 + |x|a|u|p+1)dx < +∞.

Then it implies that

lim
R→+∞

∫
B2R(x)\BR(x)

(∣∣∇(�u)
∣∣2 + |y|a|u|p+1)dy = 0.

From (4.6), a direct application of Hölder’s inequality leads to

∫
BR(x)

(∣∣∇(�u)
∣∣2 + |y|a|u|p+1)dy ≤ CR–6

∫
B2R(x)\BR(x)

u2 dy

≤ CR–6
(∫

B2R(x)\BR(x)
|y|a|u|p+1 dy

) 2
p+1

×
(∫

B2R(x)\BR(x)
|y| –2a

p–1 dy
) p–1

p+1

≤ CR(n– 6(p+1)+2a
p–1 ) p–1

p+1

(∫
B2R(x)\BR(x)

|y|a|u|p+1 dy
) 2

p+1
.
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Since p = n+6+2a
n–6 , the right side of the above inequality tends to 0 as R → +∞. So we get

u ≡ 0.

Supercritical case: n+6+2a
n–6 < p < pa(n, 6).

In what follows, we obtain the following three lemmas which play an important role in
dealing with the supercritical case. For any λ > 0, define

uλ(x) = λαu(λx),

and uλ is also a smooth stable solution of (1.1) on R
n. By rescaling (4.7), for all λ > 0 and

balls Br(x) ⊂R
n

∫
Br (x)

(∣∣∇(
�uλ

)∣∣2 + |y|a∣∣uλ
∣∣p+1)dy ≤ Crn–6–2α .

In particular, uλ are uniformly bounded in Lp+1
loc (Rn). By elliptic estimates, uλ are also uni-

formly bounded in W 3,2
loc (Rn). Hence, up to a subsequence of λ → +∞, we can assume that

uλ → u∞ weakly in W 3,2
loc (Rn) ∩ Lp+1

loc (Rn). By compactness embedding, one has uλ → u∞

strongly in W 1,2
loc (Rn). Then, for any ball BR(0), by interpolation between Lq spaces and

noting (4.7), for any q ∈ [1, p + 1), as λ → +∞
∥∥uλ – u∞∥∥

Lq(BR(0)) ≤ ∥∥uλ – u∞∥∥t
L1(BR(0))

∥∥uλ – u∞∥∥1–t
Lp+1(BR(0)) → 0, (6.1)

where 1
q = t + 1–t

p+1 . That is, uλ → u∞ in Lq
loc(Rn) for any q ∈ [1, p + 1).

For any function ψ ∈ C∞
c (Rn)

∫
Rn

(∇�u∞∇�ψ – |x|a∣∣u∞∣∣p–1u∞ψ
)

dx

= lim
λ→+∞

∫
Rn

(∇�uλ∇�ψ – |x|a∣∣uλ
∣∣p–1uλψ

)
dx = 0,

and
∫
Rn

(|∇�ψ |2 – p|x|a∣∣u∞∣∣p–1
ψ2)dx = lim

λ→+∞

∫
Rn

(|∇�ψ |2 – p|x|a∣∣uλ
∣∣p–1

ψ2)dx ≥ 0.

Thus u∞ ∈ W 3,2
loc (Rn) ∩ Lp+1

loc (Rn) is a stable solution of (1.1).

Lemma 6.1

lim
λ→∞E(u,λ) < ∞.

Proof From Theorem 3.2 we know that E is nondecreasing w.r.t. λ, so we only need to
show that E(u,λ) is bounded. Note that

E(u,λ) ≤ 1
λ

∫ 2λ

λ

E(u, t) dt ≤ 1
λ2

∫ 2λ

λ

∫ t+λ

t
E(u,γ ) dγ dt.
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Since uγ (x) = γ αu(γ x), we have the following:

γ
duγ

dγ
= γ α

[
αu(γ x) + rγ ∂ru(γ x)

]
,

γ 2 d2uγ

dγ 2 = γ α
[
α(α – 1)u(γ x) + 2αrγ ∂ru(γ x) + r2γ 2∂rru(γ x)

]

and

γ 3 d3uγ

dγ 3 = γ α
[
α(α – 1)(α – 2)u(γ x)

+ 3α(α – 1)rγ ∂ru(γ x) + 3αr2γ 2∂rru(γ x) + r3γ 3∂rrru(γ x)
]
.

Hence, by scaling we have

∫
B1

(
1
2
∣∣∇�uγ

∣∣2 –
1

p + 1
|x|a∣∣uγ

∣∣p+1
)

dx

= γ 6+2α–n
∫

Bγ

(
1
2
|∇�u|2 dx –

1
p + 1

|x|a|u|p+1
)

dx.

From Proposition 4.1, we obtain

1
λ2

∫ 2λ

λ

∫ t+λ

t
γ 6+2α–n

(∫
Bγ

1
2
|∇�u|2 dx –

1
p + 1

∫
Bγ

|x|a|u|p+1 dx
)

dγ dt ≤ C,

where C > 0 is independent of γ . We have

1
λ2

∫ 2λ

λ

∫ t+λ

t

∫
∂B1

γ 5 d3uγ

dγ 3
d2uγ

dγ 2

=
1
λ2

∫ 2λ

λ

∫ t+λ

t

∫
∂Bγ

γ 2α+1–n[α(α – 1)(α – 2)u

+ 3α(α – 1)γ ∂ru + 3αγ 2∂rru + γ 3∂rrru
]

× [
α(α – 1)u + 2αγ ∂ru + γ 2∂rru

]

≤ C
1
λ2

∫ 2λ

λ

∫ t+λ

t
t2α+1–n

∫
∂Bγ

[
u2 + γ 2(∂ru)2 + γ 4(∂rru)2 + γ 6(∂rrru)2]

≤ C
1
λ2

∫ 2λ

λ

t2α+1–n
∫

∂B3λ

[
u2 + γ 2(∂ru)2 + γ 4(∂rru)2 + γ 6(∂rrru)2]

≤ Cλn–2α 1
λ2

∫ 2λ

λ

t2α+1–n dt ≤ C (6.2)

and

∣∣∣∣ 1
λ2

∫ 2λ

λ

∫ t+λ

t

∫
∂B1

γ
d

dγ

[
�θ uγ

]2
∣∣∣∣

=
∣∣∣∣ 1
λ2

∫ 2λ

λ

∫ t+λ

t

∫
∂Bγ

γ 2α+2–n d
dγ

(
γ 2�u – γ 2∂rru – (n – 1)γ ∂ru

)2
∣∣∣∣
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≤ 1
λ2

∫ 2λ

λ

t2α+1–n
∫ t+λ

t

∫
∂Bγ

∣∣[2γ 2�u – 2γ 2∂rru – (n – 1)γ ∂ru
]

× [
γ 2�u – γ 2∂rru – (n – 1)γ ∂ru

]∣∣

≤ 1
λ2

∫ 2λ

λ

t2α+1–n
∫

B3λ

∣∣[2γ 2�u – 2γ 2∂rru – (n – 1)γ ∂ru
]

× [
γ 2�u – γ 2∂rru – (n – 1)γ ∂ru

]∣∣

≤ C
1
λ2

∫ 2λ

λ

t2α+1–n
∫

B3λ

[
γ 4(�u)2 + γ 4(∂rru)2 + γ 2∂ru

]

≤ Cλn–2α 1
λ2

∫ 2λ

λ

t2α+1–n dt ≤ C. (6.3)

The remaining terms can be treated similarly as the estimate (6.2) or (6.3). �

Lemma 6.2 u∞ is homogeneous.

Proof Due to the scaling invariance of the functional E (i.e., E(u, Rλ) = E(uλ, R)) and the
monotonicity formula, for any given R2 > R1 > 0, we see that

0 = lim
i→∞

(
E(u, R2λi) – E(u, R1λi)

)

= lim
i→∞

(
E
(
uλi , R2

)
– E

(
uλi , R1

))

≥ C(n, p) lim inf
i→∞

∫
BR2 \BR1

r2α–n
(

αuλi + r
∂uλi

∂r

)2

dx

≥ C(n, p)
∫

BR2 \BR1

r2α–n
(

αu∞ + r
∂u∞

∂r

)2

dx. (6.4)

In the last inequality we have used the weak convergence of the sequence (uλi ) to the
function u∞ in W 1,2

loc (Rn) as i → ∞. This implies that

α
u∞

r
+

∂u∞

∂r
= 0, a.e. in R

n,

integrating over r shows that

u∞(x) = |x|–αu∞
(

x
|x|

)
.

That is, u∞ is homogeneous. �

Lemma 6.3

lim
r→∞ E(u, r) = 0.

Proof From Lemma 3.2, it implies that u∞ is a homogeneous, stable solution of (1.1).
Therefore, from Theorem 5.1, we have

u∞ ≡ 0.



Harrabi and Zaidi Journal of Inequalities and Applications        (2019) 2019:281 Page 20 of 29

Combining with (6.1), we find that

lim
λ→+∞ uλ = 0, strongly in L2(B4(0)

)

implies

lim
λ→+∞

∫
B4(0)

(
uλ

)2 dx = 0.

By (4.7)

lim
λ→+∞

∫
B3(0)

(∣∣∇(
�uλ

)∣∣2 + |x|a∣∣uλ
∣∣p+1)dx ≤ C lim

λ→+∞

∫
B4(0)

(
uλ

)2 dx = 0. (6.5)

By the interior L2 estimate, we get

lim
λ→+∞

∫
B2(0)

∑
k≤3

∣∣∇kuλ
∣∣2 dx = 0.

In particular, we can choose a sequence λi → +∞ such that

∫
B2(0)

∑
k≤3

∣∣∇kuλi
∣∣2 dx ≤ 2–i.

By this choice we have

∫ 2

1

∞∑
i=1

∫
∂Br

∑
k≤3

∣∣∇kuλi
∣∣2 dr ≤

∞∑
i=1

∫ 2

1

∫
∂Br

∑
k≤3

∣∣∇kuλi
∣∣2 dr ≤ 1,

that is, the function

g(r) :=
∞∑
i=1

∫
∂Br

∑
k≤3

∣∣∇kuλi
∣∣2 ∈ L1((1, 2)

)
.

There exists an r0 ∈ (1, 2) such that g(r0) < +∞. From this we get

lim
i→+∞

∥∥uλi
∥∥

W 3,2(∂Br0 ) = 0.

Combining this with (6.5) and the scaling invariance of E(u, r), we get

lim
i→+∞ E(u,λir0) = lim

i→+∞ E
(
uλi , r0

)
= 0.

Since λir0 → +∞ and E(u, r) is nondecreasing in r, we get

lim
r→+∞ E(u, r) = 0. �

The smoothness of u implies that

lim
r→0

E(u, r) = 0.
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From the monotonicity of E(u, r) and Lemma 6.3, it implies that

E(u, r) = 0, for all r > 0.

Therefore, by the monotonicity formula we know that u is homogeneous, then u ≡ 0 by
Theorem 5.1. �

7 Classification of the finite Morse index solutions
We proceed based on a Pohozaev-type identity, the decay estimates from the doubling
lemma [14], the monotonicity formula and the classification of the homogeneous solutions
and stable solutions we obtained before.

7.1 Subcritical and critical case
We need the following Pohozaev identity.

Lemma 7.1 Let u ∈ C6(Rn) be a solution of (1.1) and ψ ∈ C3
c (B2R). Then

2(n + a)
(n – 6)(p + 1)

∫
B2R

|x|a|u|p+1ψ dx –
∫

B2R

∣∣∇(�u)
∣∣2

ψ dx

= –
1

n – 6

∫
B2R

∣∣∇(�u)
∣∣2(∇ψ · x) dx –

4
n – 6

∫
B2R

∇(�u)∇ψ�u dx

–
4

n – 6

∫
B2R

∇(�u)∇ψ∇2(∇u · x) dx –
4

n – 6

∫
B2R

∇(�u)∇(∇u · x)∇2ψ dx

–
2

n – 6

∫
B2R

∇(�u)∇(�ψ)(∇u · x) dx –
2

n – 6

∫
B2R

(∇(�u) · x
)∇2u�ψ dx

–
2

n – 6

∫
B2R

∇(�u)∇u�ψ dx –
2

(n – 6)(p + 1)

∫
B2R

|x|a|u|p+1(x · ∇ψ) dx. (7.1)

Proof Multiplying Eq. (1.1) by (∇u · x)ψ and integrating in B2R, we get

∫
B2R

|x|a|u|p–1u(∇u · x)ψ dx =
∫

B2R

–�3u(∇u · x)ψ dx

= –
∫

B2R

�2u(∇u · x)�ψ dx

– 2
∫

B2R

�2u∇(∇u · x)∇ψ dx

–
∫

B2R

�2u�(∇u · x)ψ dx

:= J1 + J2 + J3. (7.2)
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By integrating by parts, we get

J1 = –
∫

B2R

�2u(∇u · x)�ψ dx

=
∫

B2R

∇(�u)∇�ψ(∇u · x) dx +
∫

B2R

∇(�u)∇(∇u · x)�ψ dx

=
∫

B2R

∇(�u)∇�ψ(∇u · x) dx +
∫

B2R

(∇(�u) · x
)∇2u�ψ dx

+
∫

B2R

∇(�u)∇u�ψ dx, (7.3)

J2 = –2
∫

B2R

�2u∇(∇u · x)∇ψ dx

= 2
∫

B2R

∇(�u)∇2(∇u · x)∇ψ dx + 2
∫

B2R

∇(�u)∇(∇u · x)∇2ψ dx, (7.4)

and

J3 = –
∫

B2R

�2u�(∇u · x)ψ dx

= –
∫

B2R

�2u
n∑

i=1

∂2

∂x2
i

( n∑
j=1

∂u
∂xj

xj

)
ψ dx

= –
∫

B2R

�2u
(∇(�u) · x

)
ψ – 2

∫
BR

�2u�uψ dx

=
6 – n

2

∫
B2R

∣∣∇(�u)
∣∣2

ψ dx +
1
2

∫
B2R

∣∣∇(�u)
∣∣2(x · ∇ψ) dx

+ 2
∫

B2R

∇(�u)∇ψ�u dx. (7.5)

Now, we calculate the left hand side of Eq. (7.2). A direct calculation shows that

J4 =
∫

B2R

|x|a|u|p–1u(∇u · x)ψ dx

= –
n + a
p + 1

∫
B2R

|x|a|u|p+1ψ dx –
1

p + 1

∫
B2R

|x|a|u|p+1(x · ∇ψ) dx. (7.6)

From the identities, (7.3)–(7.6), we obtain the identity (7.1). �

Lemma 7.2 Let u ∈ C6(Rn) be a solution of (1.1) which is stable outside a compact set of
R

n. If p ∈ (1, n+6+2a
n–6 ), then

(a)

∫
Rn

∣∣∇(�u)
∣∣2 dx =

2(n + a)
(n – 6)(p + 1)

∫
Rn

|x|a|u|p+1 dx;

(b)
∫
Rn

|∇�u|2 dx =
∫
Rn

|x|a|u|p+1 dx < +∞.
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Proof Let u ∈ C6(Rn) be a solution of Eq. (1.1) which is stable outside a compact set of Rn.
Proposition 4.1 still holds if the support of ψ is outside BR0 . Take φ ∈ C∞

0 (B2R \ B2R0 ) such
that φ ≡ 1 in BR \ B3R0 and

∑
k≤5 |x|k|∇kφ| ≤ C. Then, by choosing ψ = φm, where m is

bigger than 1, we get |x| a
p+1 u ∈ Lp+1(Rn) and ∇(�u) ∈ L2(Rn), ∀p ∈ (1, n+6+2a

n–6 ).
So,

∫
B2R\BR

(|x|a|u|p+1 +
∣∣∇(�u)

∣∣2) → 0, as R → +∞. (7.7)

Replace ψ by ψ4
R ∈ C3

c (Rn) in Lemma 7.1 where ψR(x) = 1 on BR and ψR(x) = 0 on R
n \B2R.

First, observe that, since p is subcritical,

R–6
∫

B2R\BR

u2 → 0, as R → +∞. (7.8)

In fact, by Hölder’s inequality, we get

R–6
∫

B2R\BR

u2 ≤ CR(n– 6(p+1)+2a
p–1 ) p–1

p+1

(∫
B2R\BR

|x|a|u|p+1 dy
) 2

p+1
.

Now, to prove Lemma 7.2, we will show that any terms on the right hand side of (7.1) tend
to 0 as R → +∞. For the first and second terms on the right hand side of (7.1), applying
Hölder’s inequality, we derive

∫
B2R

∣∣∇(�u)
∣∣2(x · ∇(

ψ4
R
))

dx =
∫

B2R\BR

∣∣∇(�u)
∣∣2(x · ∇(

ψ4
R
))

dx

≤ C
∫

B2R\BR

∣∣∇(�u)
∣∣2 dx

and
∫

B2R

∇(�u)∇(
ψ4

R
)
�u dx =

∫
B2R\BR

∇(�u)∇(
ψ4

R
)
�u dx

≤ C
(∫

B2R\BR

∣∣∇(�u)
∣∣2 dx

) 1
2

×
(∫

B2R\BR

∣∣∇(�u)
∣∣2 dx + R–6

∫
B2R\BR

u2 dx
) 1

2
.

Taking into account that p is subcritical, (7.7) and (7.8), we derive that the above terms tend
to 0 as R → +∞. Except the third term, the remaining terms on the right hand side of (7.1)
can be treated similarly as above. The third term needs more analysis. By an application
of Hölder’s inequality and using Proposition 4.1, we obtain

∫
B2R

∇(�u)∇(
ψ4

R
)∇2(∇u · x) dx ≤ C

(∫
B2R\BR

∣∣∇(�u)
∣∣2 dx

) 1
2

×
(∫

B2R

∣∣∇(�u)
∣∣2 dx + R–6

∫
B2R\BR

u2 dx
) 1

2
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(for more details see [10]). As above the third term on the right hand side of (7.1) tends to
0 as R → +∞.

Finally, we deduce that

∫
Rn

∣∣∇(�u)
∣∣2 dx =

2(n + a)
(n – 6)(p + 1)

∫
Rn

|x|a|u|p+1 dx.

By the interior elliptic estimates and Hölder’s inequality, we have

R–4
∫

B2R\BR

|∇u|2 dx ≤ C
∫

B3R\BR/2

|∇�u|2 dx + C
(∫

B3R\BR/2

|x|a|u|p+1 dx
) 2

p+1
,

R–2
∫

B2R\BR

|�u|2 dx ≤ C
∫

B3R\BR/2

|∇�u|2 dx + C
(∫

B3R\BR/2

|x|a|u|p+1 dx
) 2

p+1
,

R–6
∫

B2R\BR

|u|2 dx ≤ C
∫

B3R\BR/2

|∇�u|2 dx + C
(∫

B3R\BR/2

|x|a|u|p+1 dx
) 2

p+1
.

Therefore, we have

max

(
R–4

∫
B2R\BR

|∇u|2, R–2
∫

B2R\BR

|�u|2, R–6
∫

B2R\BR

u2
)

→ 0, as R → +∞.

On the other hand, testing (1.1) with a compact support function ψ2, we get

∫
Rn

(|∇�u|2ψ2 – |x|a|u|p+1ψ2)dx = –
(∫

Rn

(∇�u.�u∇ψ2 + ∇�u · ∇�ψ2.u

+ ∇�u∇u�ψ2 + ∇�u∇(
2∇u∇ψ2))dx

)
.

By selecting ψ(x) = ζ ( x
R )3m, m > 1 and ζ ∈ C∞

c (B2) and ζ ≡ 1 in B1 and
∑

k≤3 |∇kζ | ≤ C,
we get

∣∣∣∣
∫
Rn

(
|∇�u|2ζ

(
x
R

)6m

– |x|a|u|p+1ζ

(
x
R

)6m)
dx

∣∣∣∣
≤ C

(
R–4

∫
B2R\BR

|∇u|2 dx + R–2
∫

B2R\BR

|�u|2 dx + R–6
∫

B2R\BR

u2 dx
)

.

Now letting R → +∞, we obtain

∫
Rn

(|∇�u|2 – |x|a|u|p+1)dx = 0.

Therefore, we obtain the conclusions. �

Proof of Theorem 1.2 Let u be a solution to (1.1), which is stable outside a compact set
of Rn.
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Subcritical case: 1 < p < n+6+2a
n–6 .

By Lemma 7.2, we have

(
1 –

2(n + a)
(n – 6)(p + 1)

)∫
BR

|x|a|u|p+1 dx = 0. (7.9)

Since 1 – 2(n+a)
(n–6)(p+1) �= 0, ∀p ∈ (1, n+6+2a

n–6 ), then

∫
Rn

|x|a|u|p+1 = 0,

which yields u ≡ 0 in R
n.

Critical case: p = n+6+2a
n–6 .

We can proceed as in the proof of Item (b) of Lemma 7.2, to derive that

∫
Rn

|∇�u|2 dx =
∫
Rn

|x|a|u|p+1 dx < +∞. �

7.2 Supercritical case
To classify finite Morse index solutions in the supercritical case, applying the doubling
lemma in [14], we get the following estimates.

Lemma 7.3 Let n ≥ 1, 1 < p < p0(n, 6) and τ ∈ (0, 1]. Let c ∈ Cτ (B1) satisfy

‖c‖Cτ (B1) ≤ C1 and c(x) ≥ C2, x ∈ B1, (7.10)

for some constants C1, C2 > 0. There exists a constant C, depending only on α, C1, C2, p, n,
such that, for any classical solution u of

–�3u = c(x)|u|p–1u, x ∈ B1, (7.11)

u satisfies

∣∣u(x)
∣∣ p–1

6 ≤ C
(
1 + dist–1(x, ∂B1)

)
.

Proof Arguing by contradiction, we suppose that there exist sequences ck , uk verifying
(7.10), (7.11) and points yk , such that the functions

Mk = |uk| p–1
6

satisfy

Mk(yk) > 2k
(
1 + dist–1(yk , ∂B1)

) ≥ 2k dist–1(yk , ∂B1).

By the doubling lemma in [14], there exists xk such that

Mk(xk) ≥ Mk(yk), Mk(xk) ≥ 2k dist–1(xk , ∂B1),
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and

Mk(z) ≤ 2Mk(xk), for all z such that |z – xk| ≤ kM–1
k (xk). (7.12)

We have

λk = M–1
k (xk) → 0, k → ∞, (7.13)

due to Mk(xk) ≥ Mk(yk) > 2k.
Next we let

vk = λ
6

p–1
k uk(xk + λky), c̃k(y) = ck(xk + λky).

We note that |vk| p–1
6 (0) = 1,

|vk| p–1
6 (y) ≤ 2, |y| ≤ k, (7.14)

due to (7.12), and we see that vk satisfies

–�3vk = c̃k(y)|vk|p–1vk , |y| ≤ k. (7.15)

On the other hand, due to (7.10), we have C2 ≤ c̃k ≤ C1 and, for each R > 0 and k ≥ k0(R)
large enough,

∣∣c̃k(y) – c̃k(z)
∣∣ ≤ C1

∣∣λk(y – z)
∣∣τ ≤ C1|y – z|τ , |y|, |z| ≤ R. (7.16)

Therefore, by Ascoli’s theorem, there exists c̃ in C(Rn), with c̃ ≥ C2 such that, after
extracting a subsequence, c̃k → c̃ in Cloc(Rn). Moreover, (7.16) and (7.12) imply that
|c̃k(y) – c̃k(z)| → 0 as k → ∞, so that the function c̃ is actually a constant C > 0. Now,
for each R > 0 and 1 < q < ∞, by (7.14), (7.13) and interior elliptic Lq estimates, the se-
quence vk is uniformly bounded in W 3,q(BR). Using standard embeddings and interior
elliptic Schauder estimates, after extracting a subsequence, we may assume that vk → v in
C6

loc(Rn). It follows that v is a classical solution of

–�3v = C|v|p–1v, y ∈R
n,

and |v| p–1
6 (0) = 1. This contradicts the Liouville-type result [10] and concludes the proof.�

Proposition 7.1 Let u be a (positive or sign-changing) solution to (1.1) which is stable
outside a compact set of Rn. There exist constants C and R0 such that

∣∣u(x)
∣∣ ≤ C|x|–α , for all x ∈ BR0 (0)c, (7.17)

∑
k≤5

|x|α+k∣∣∇ku(x)
∣∣ ≤ C, for all x ∈ B3R0 (0)c. (7.18)
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Proof Assume that u is stable outside BR0 and |x0| > 2R0. We denote

R =
1
2
|x0|

and observe that, for all y ∈ B1, |x0|
2 < |x0 + Ry| < 3|x0|

2 , so that x0 + Ry ∈ BR0 (0)c. Let us thus
define

U(y) = Rαu(x0 + Ry).

Then U is a solution of

–�3U = c(y)|U|p–1U , y ∈ B1, with c(y) =
∣∣∣∣y +

x0

R

∣∣∣∣
a

.

Notice that |y + x0
R | ∈ [1, 3] for all y ∈ B1. Moreover ‖c‖C1(B1) ≤ C(a). Then applying

Lemma 7.3, we have |U(0)| ≤ C, hence

∣∣u(x0)
∣∣ ≤ CR–α ,

which yields the inequality (7.17).
Next, we only prove the inequality (7.18). For any x0 with |x0| > 3R0, take λ = |x0|

2 and
define

u(x) = λαu(x0 + λx).

From (7.17), |u| ≤ C0 in B1(0). Standard elliptic estimates give

∑
k≤5

∣∣∇ku(0)
∣∣ ≤ C.

Rescaling back we get (7.18). �

Proof of Theorem 1.2. Supercritical case: p > n+6+2a
n–6 and p < p0(n, 6).

Lemma 7.4 There exists a constant C such that, for all r > 3R0, E(u, r) ≤ C.

Proof From the monotonicity formula, combining the derivative estimates (7.18), we have
the following estimates:

E(u, r) ≤ r2α+6–n
(∫

Br

(|∇�u|2 + |x|a|u|p+1)dx
)

+
∑

j,k≤4,j+k≤5

r2α+1–n+j+k
∫

∂Br

∣∣∇ ju
∣∣∣∣∇ku

∣∣dσ

≤ C. (7.19)

This constant only depends on the constant in (7.18). �

As a consequence, we have the following.
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Corollary 7.1

∫
Bc

3R0

(α|x|–1u(x) + ∂u
∂r (x))2

|x|n–2α
dx < +∞. (7.20)

As before, we define a blowing down sequence

uλ(x) = λαu(λx).

By Proposition 7.1, uλ are uniformly bounded in C7(Br(0) \ B1/r(0)) for any fixed r > 1.
uλ is stable outside BR0/λ(0). There exists a function u∞ ∈ C6(Rn \ {0}), such that up to a
subsequence of λ → +∞, uλ converges to u∞ ∈ C6

loc(Rn \ {0}). u∞ is a stable solution of
(1.1) in R

n \ {0}.
For any r > 1, we get from (7.20)

∫
Br\B1/r

(α|x|–1u∞(x) + ∂u∞
∂r (x))2

|x|n–2α
dx = lim

λ→+∞

∫
Br\B1/r

(α|x|–1uλ(x) + ∂uλ

∂r (x))2

|x|n–2α
dx

= lim
λ→+∞

∫
Bλr\Bλ/r

(α|x|–1u(x) + ∂u
∂r (x))2

|x|n–2α
dx

= 0.

Hence, u∞ is homogeneous, and from Theorem 5.1, u∞ ≡ 0. This holds for every limit of
uλ as λ → +∞, thus we have

lim|x|→+∞|x|α∣∣u(x)
∣∣ = 0.

From (7.18), we get

lim|x|→+∞
∑
k≤6

|x|α+k∣∣∇ku(x)
∣∣ = 0.

For ε > 0, take an R such that, for |x| > R,

∑
k≤6

|x|α+k∣∣∇ku(x)
∣∣ ≤ ε.

Then, for r � R,

E(u, r) ≤ Cr2α+6–n
∫

BR(0)

(∣∣∇(�u)
∣∣2 + |x|a|u|p+1)dx

+ Cεr2α+6–n
∫

Br (0)\BR(0)
|x|–2α–6 dx + Cεr2α+7–n

∫
∂Br (0)

|x|–2α–6 dσ

≤ C(R)
(
r2α+6–n + ε

)
.

Since 2α + 6 – n < 0 and ε can be arbitrarily small, we derive limr→+∞ E(u, r) = 0. Because
limr→0 E(r, u) = 0 (by the smoothness of u ), the same argument for stable solutions implies
that u ≡ 0. �
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