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Abstract
This paper aims to propose two new algorithms that are developed by implementing
inertial and subgradient techniques to solve the problem of pseudomonotone
equilibrium problems. The weak convergence of these algorithms is well established
based on standard assumptions of a cost bi-function. The advantage of these
algorithms was that they did not need a line search procedure or any information on
Lipschitz-type bifunction constants for step-size evaluation. A practical explanation
for this is that they use a sequence of step-sizes that are updated at each iteration
based on some previous iterations. For numerical examples, we discuss two
well-known equilibrium models that assist our well-established convergence results,
and we see that the suggested algorithm has a competitive advantage over time of
execution and the number of iterations.
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1 Introduction
Equilibrium problem (shortly, EP) can be considered as a general problem in the sense that
it comprises many mathematical models such as variational inequality problems (shortly,
VIP), optimization problems, fixed point problems, complementarity problems, Nash
equilibrium of noncooperative games, saddle point, vector minimization problem and the
Kirszbraun problem (see e.g., [1–4]). To the best of our knowledge, the term “equilibrium
problem” was initiated in 1992 by Mu and Oettli [5] and has been further strengthened by
Blum and Oettli [1]. The equilibrium problem (EP) is also seen as the Ky Fan inequality,
since Fan [6] gives the first existence result regarding the solution of the EP. Many results
about the existence of the solution of equilibrium problems have been accomplished and
generalized by several authors (e.g., see [7, 8]). One of the most useful research directions
in the equilibrium problem theory is to develop the iterative methods to find a numeri-
cal solution of the equilibrium problems. The research in this direction is continuing to
develop new methods, leading weak convergence to strong convergence, providing mod-
ification and extension of existing algorithms which are suitable for a specific subclass of
equilibrium problems. In recent years, many methods have been developed to solve equi-
librium problems in finite and infinite-dimensional spaces (for instance, [9–20]).
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In this direction, two approaches are very well known, one of them is the proximal point
method (shortly, PPM) [21] and the other one is an auxiliary problem principle [22]. The
PPM was introduced by Martinet [23] for monotone variational inequality problems, and
later it was continued by Rockafellar [24] for monotone operators. Moudafi [21] extended
the PPM to EPs involving monotone bifunction. The PPM method is implemented to
monotone EPs, i.e. the bifunction of an equilibrium problem has to be monotone. Thus,
each regularized subproblem becomes strongly monotone, and a unique solution exists.
This method will not guarantee the existence of the solution if the bifunction is more gen-
eral monotone, like pseudomonotone. However, the auxiliary problem principle is based
on the idea to develop a new problem that is identical and usually simpler to solve com-
pared to the initial problem. This principle was early established by Cohen [25] for opti-
mization problems and later extended for variational inequality problems [26]. Moreover,
Mastroeni [22] uses the auxiliary problem principle for strongly monotone equilibrium
problems.

In this paper, we focus on the second direction, including projection methods that are
well known and practically easy to implement due to their easier numerical computation.
As is well known, the earliest well-known projection method for VIPs is the gradient pro-
jection method. After that, many other projection methods were developed such as the
extragradient method [27], the subgradient extragradient method [28], Popov’s extragra-
dient method [29], Tseng’s extragradient method [30], projection and contraction schemes
[31] and other hybrid and projected gradient methods [32–35]. In recent years, the equi-
librium problem theory has become an attractive field for many researchers and a lot of
numerical methods for solving equilibrium problems have been developed and analyzed
by many authors in Hilbert spaces. Thus, Quoc [20] and Flam [36] extended the extragra-
dient method for equilibrium problems. Recently, Hieu [37] extended the Halpern subgra-
dient extragradient method for variational inequality problem to an equilibrium problem
and also many other methods were extended and modified for variational inequality prob-
lems to equilibrium problems (see [38, 39]).

On the other hand, let us point out inertial-type algorithms, depending on the heavy
ball methods of the two-order time dynamical system, Polyak [40] firstly proposed an in-
ertial extrapolation as an acceleration process to solve the smooth convex minimization
problem. The inertial method is a two-step iterative method, and the next iteration is de-
termined by the use of two previous iterates and it can be considered as a procedure of
speeding up an iterative sequence (for more details, see [40, 41]). Various inertial-like al-
gorithms previously developed for special classes of the problem (EP) can be found (for
instance, in [42–44]). For the problem (EP), Moudafi [45] has done work in this direction
and proposed a new inertial-type method, namely the second-order differential proximal
method. This algorithm can be taken as a combination of the relaxed PPM [21] and in-
ertial effect [40]. Recently, another type of inertial algorithm has also been introduced by
Chbani and Riahi [46], by choosing a suitable inertial term and incorporating a viscosity-
like technique in their algorithm.

This paper proposes two modifications of Algorithm 1 (see [47]) for a class of pseu-
domonotone equilibrium problems motivated from some recent results (see [28, 48, 49]).
These resulting algorithms combine the explicit iterative extragradient method with the
subgradient method and the inertial term that is used to speed-up the iterative sequence
towrads the solution. The major advantage of these methods is that they are independent
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of line search procedures and also there is no need to have a prior knowledge of Lipschitz-
type constants of a bifunction. Instead of that, they use a sequence of step-sizes which is
updated at each iteration, based on some previous iterates. We establish the weak conver-
gence of the resulting algorithm under standard assumptions on a cost bifunction.

We organize the rest of this paper in the following manner: In Sect. 2, we give some
definitions and preliminary results that will be used throughout the paper. Section 3 com-
prises our first subgradient algorithm and provides the weak convergence theorem for
the proposed algorithm. Section 4 deals with proposing and analyzing the convergence
of the inertial subgradient algorithm, involving a pseudomonotone bifunction. Finally,
in Sect. 5, we study the numerical experiments to illustrate the computational perfor-
mance of our suggested algorithms on test problems, which are modeled from a Nash–
Cournot oligopolistic equilibrium model and Nash–Cournot equilibrium models of elec-
tricity markets.

2 Preliminaries
Let C be a closed and convex subset of a Hilbert space H with an inner product 〈·, ·〉 and
norm ‖ · ‖, respectively. Let R be the set of all real numbers and N be the set all positive
integers. While {xn} is a sequence in H, we denote the strong convergence by xn → x and
weak convergence by xn ⇀ x as n → ∞. Also, [t]+ = max{0, t} and EP(f , C) denote the
solution set of the equilibrium problem inside C and p is an element of EP(f , C).

Definition 2.1 (Equilibrium problem [1]) Let C be a nonempty closed convex subset of
H. Let f be a bifunction from C × C to the set of real numbers R such that f (x, x) = 0 for
all x ∈ C. The equilibrium problem (EP) for the bifunction f on C is to

Find p ∈ C such that f (p, y) ≥ 0, ∀y ∈ C.

Definition 2.2 ([50]) Let C be a closed convex subset in H and we denote the metric
projection on C by PC(x), ∀x ∈H, i.e.

PC(x) = arg min
{‖y – x‖ : y ∈ C

}
.

Lemma 2.1 ([51]) Let PC : H → C be the metric projection from H onto C. Then
(i) For all x ∈ C, y ∈H,

∥∥x – PC(y)
∥∥2 +

∥∥PC(y) – y
∥∥2 ≤ ‖x – y‖2.

(ii) z = PC(x) if and only if

〈x – z, y – z〉 ≤ 0.

Now, we define concepts of monotonicity for a bifunction (see [1, 52] for more details).

Definition 2.3 A bifunction f : H×H →R is said to be
(i) strongly monotone on C if there exists a constant γ > 0 such that

f (x, y) + f (y, x) ≤ –γ ‖x – y‖2, ∀x, y ∈ C;
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(ii) monotone on C if

f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ C;

(iii) strongly pseudomonotone on C if there exists a constant γ > 0 such that

f (x, y) ≥ 0 �⇒ f (y, x) ≤ –γ ‖x – y‖2, ∀x, y ∈ C;

(iv) pseudomonotone on C if

f (x, y) ≥ 0 �⇒ f (y, x) ≤ 0, ∀x, y ∈ C;

(v) a Lipschitz-type condition on C if there exist two positive constants c1, c2 such that

f (x, z) ≤ f (x, y) + f (y, z) + c1‖x – y‖2 + c2‖y – z‖2, ∀x, y, z ∈ C.

Remark 2.1 From Definition 2.3, the following implications hold:

(i) �⇒ (ii) �⇒ (iv) and (i) �⇒ (iii) �⇒ (iv).

Remark 2.2 The converse of the above implications is not true in general.

Remark 2.3 If F : C → H is a Lipschitz continuous operator, then the bifunction f (x, y) =
〈F(x), y – x〉 satisfies Lipschitz-type condition with c1 = c2 = L

2 (see [53], Lemma 6(i)).

Further, we recall that the subdifferential of a convex function g : C → R at x ∈ C is
defined by

∂g(x) =
{

w ∈ C : g(y) – g(x) ≥ 〈w, y – x〉,∀y ∈ C
}

,

and the normal cone of C at x ∈ C is defined by

NC(x) =
{

w ∈H : 〈w, y – x〉 ≤ 0,∀y ∈ C
}

.

Lemma 2.2 ([54], p. 97) Let C be a nonempty closed convex subset of a real Hilbert space
H and g : C → R be a convex, subdifferentiable, lower semicontinuous function on C. Then
z is a solution to the following convex optimization problem min{g(x) : x ∈ C} if and only if
0 ∈ ∂g(z) + NC(z), where ∂g(z) and NC(z) denote the subdifferential of g at z and the normal
cone of C at z, respectively.

Lemma 2.3 ([55], p. 31) For all x, y ∈H with μ ∈R the following relation holds:

∥∥μx + (1 – μ)y
∥∥2 = μ‖x‖2 + (1 – μ)‖y‖2 – μ(1 – μ)‖x – y‖2.

Lemma 2.4 ([56]) Let φn, δn and βn be sequences in [0, +∞) such that

φn+1 ≤ φn + βn(φn – φn–1) + δn, ∀n ≥ 1,
+∞∑

n=1

δn < +∞,
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and there exists a real number β with 0 ≤ βn ≤ β < 1 for all n ∈ N. Then the following
relations hold:

(i)
∑+∞

n=1[φn – φn–1]+ < ∞ , where [t]+ := max{t, 0}.
(ii) There exists φ∗ ∈ [0, +∞) such that limn→+∞ φn = φ∗.

Lemma 2.5 ([57]) Let C be a nonempty set of H and {xn} be a sequence in H such that the
following two conditions hold:

(i) For every x ∈ C, limn→∞ ‖xn – x‖ exists.
(ii) Every sequentially weak cluster point of {xn} is in C.

Then {xn} converges weakly to a point in C.

Assumption 2.1 We have the following assumptions on the bifunction f : H × H → R

which are useful to prove the weak convergence of the iterative sequence {xn} generated
by our proposed algorithms.

(A1) f (x, x) = 0, ∀x ∈ C and f is pseudomonotone on C.
(A2) f satisfies the Lipschitz-type conditions on H with two constants c1 and c2.
(A3) limn→∞ sup f (xn, y) ≤ f (z, y) for each y ∈ C and {xn} ⊂ C with xn ⇀ z.
(A4) f (x, ·) is convex and subdifferentiable on C for every fixed x ∈ C.

3 Subgradient explicit iterative algorithm for a class of pseudomonotone EP
In this section, we suggest our first algorithm for finding a solution to a pseudomono-
tone problem (EP). This algorithm comprises two convex optimization problems with a
subgradient technique, used to make the computation easier, the so-called “subgradient
explicit iterative algorithm” for a class of pseudomonotone EP. The detailed algorithm is
given below.

Remark 3.1 From the definition of λn, we can see that this sequence is bounded, non-
increasing, and converges to some positive number λ > 0 (for more details see [47]).

Remark 3.2 It is definite that Hn is a half-space and C ⊂ Hn (see [37]). If we restrict our
constraint set to C in the above convex minimization problem then we have the same
algorithm (see Algorithm 1 [47]).

Lemma 3.1 From Algorithm 1, we have the following useful inequality:

λnf (yn, y) – λnf (yn, xn+1) ≥ 〈xn – xn+1, y – xn+1〉, ∀y ∈ Hn.

Proof It follows from Lemma 2.2 and the definition of xn+1 that we have

0 ∈ ∂2

{
λnf (yn, y) +

1
2
‖xn – y‖2

}
(xn+1) + NHn (xn+1).

Thus, for υ ∈ ∂f (yn, xn+1) there exists υ ∈ NHn(xn+1) such that

λnυ + xn+1 – xn + υ = 0,

which implies that

〈xn – xn+1, y – xn+1〉 = λn〈υ, y – xn+1〉 + 〈υ , y – xn+1〉, ∀y ∈ Hn.
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Algorithm 1 Subgradient explicit iterative algorithm for pseudomontone EP
Initialization: Choose x0 ∈ C, λ0 > 0 and μ ∈ (0, 1).
Iterative steps: Assume xn and λn are known for n ≥ 0.
Step 1: Compute

yn = arg min
{
λnf (xn, y) +

1
2
‖xn – y‖2 : y ∈ C

}
.

If yn = xn then stop and xn is the solution of problem (EP). Otherwise,
Step 2: construct a half-space first

Hn =
{

w ∈H : 〈xn – λnυn – yn, w – yn〉 ≤ 0
}

,

where υn ∈ ∂f (xn, yn) and then compute

xn+1 = arg min
{
λnf (yn, y) +

1
2
‖xn – y‖2 : y ∈ Hn

}
.

Step 3: Compute

λn+1 = min

{
λn,

μ(‖xn – yn‖2 + ‖xn+1 – yn‖2)
2[f (xn, xn+1) – f (xn, yn) – f (yn, xn+1)]+

}
.

Set n := n + 1 and go back Step 1.

Since υ ∈ NHn (xn+1) we have 〈υ, y – xn+1〉 ≤ 0 for all y ∈ Hn. This implies that

〈xn – xn+1, y – xn+1〉 ≤ λn〈υ, y – xn+1〉, ∀y ∈ Hn. (1)

From υ ∈ ∂f (yn, xn+1) and the definition of the subdifferential, we have

f (yn, y) – f (yn, xn+1) ≥ 〈υ, y – xn+1〉, ∀y ∈H. (2)

Combining (1) and (2) we obtain

λnf (yn, y) – λnf (yn, xn+1) ≥ 〈xn – xn+1, y – xn+1〉, ∀y ∈ Hn. (3)
�

Lemma 3.2 Let {xn} and {yn} be generated from the Algorithm 1, then the following relation
holds:

λn
{

f (xn, xn+1) – f (xn, yn)
} ≥ 〈xn – yn, xn+1 – yn〉.

Proof It follows from the definition of xn+1 in Algorithm 1 and by the definition of the
hyperplane Hn that 〈xn – λnυn – yn, xn+1 – yn〉 ≤ 0. Thus, we get

λn〈υn, xn+1 – yn〉 ≥ 〈xn – yn, xn+1 – yn〉. (4)
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Further, υn ∈ ∂f (xn, yn) and due to definition of the subdifferential, we have

f (xn, y) – f (xn, yn) ≥ 〈υn, y – yn〉, ∀y ∈H.

Substitute y = xn+1 in the above expression

f (xn, xn+1) – f (xn, yn) ≥ 〈υn, xn+1 – yn〉, ∀y ∈H. (5)

Combining (4) and (5) we obtain

λn
{

f (xn, xn+1) – f (xn, yn)
} ≥ 〈xn – yn, xn+1 – yn〉. �

Next, we prove an important inequality that is useful for understanding the pattern and
converging analysis of the sequence generated by Algorithm 1.

Lemma 3.3 Let f : H × H → R be a bifunction satisfying the conditions (A1)–(A4)
(Assumption 2.1). Assume that the solution set EP(f , C) is nonempty. Then for all p ∈
EP(f , C) we have

‖xn+1 – p‖2 ≤ ‖xn – p‖2 –
(

1 –
μλn

λn+1

)
‖xn – yn‖2 –

(
1 –

μλn

λn+1

)
‖xn+1 – yn‖2.

Proof By Lemma 3.1 and replacing y = p we obtain

λnf (yn, p) – λnf (yn, xn+1) ≥ 〈xn – xn+1, p – xn+1〉. (6)

Since f (p, yn) ≥ 0 and from assumption (A1) we have f (yn, p) ≤ 0, which implies that

〈xn – xn+1, xn+1 – p〉 ≥ λnf (yn, xn+1). (7)

From the definition of λn+1 we get

f (xn, xn+1) – f (xn, yn) – f (yn, xn+1) ≤ μ(‖xn – yn‖2 + ‖xn+1 – yn‖2)
2λn+1

. (8)

From Eqs. (7) and (8) we get the following:

〈xn – xn+1, xn+1 – p〉 ≥ λn
{

f (xn, xn+1) – f (xn, yn)
}

–
μλn

2λn+1
‖xn – yn‖2 –

μλn

2λn+1
‖xn+1 – yn‖2. (9)

Next, by Lemma 3.2 and Eq. (9) we obtain

〈xn – xn+1, xn+1 – p〉 ≥ 〈xn – yn, xn+1 – yn〉

–
μλn

2λn+1
‖xn – yn‖2 –

μλn

2λn+1
‖xn+1 – yn‖2. (10)
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We have the following facts:

‖a ± b‖2 = ‖a‖2 + ‖b‖2 ± 2〈a, b〉,
–2〈xn – xn+1, xn+1 – p〉 = –‖xn – p‖2 + ‖xn+1 – xn‖2 + ‖xn+1 – p‖2,

2〈yn – xn, yn – xn+1〉 = ‖xn – yn‖2 + ‖xn+1 – yn‖2 – ‖xn – xn+1‖2.

Through the above expressions and Eq. (10) we have

‖xn+1 – p‖2 ≤ ‖xn – p‖2 –
(

1 –
μλn

λn+1

)
‖xn – yn‖2 –

(
1 –

μλn

λn+1

)
‖xn+1 – yn‖2. �

Let us formulate the first main convergence result of this work.

Theorem 3.1 Under the hypotheses (A1)–(A4) (Assumption 2.1) the sequences {xn}, {yn}
generated from Algorithm 1 converge weakly to an element p of EP(f , C). Moreover,
limn→∞ PEP(f ,C)(xn) = p.

Proof By the definition of λn+1 the sequence λn
λn+1

→ 1 and μ ∈ (0, 1), which implies that

(
1 –

μλn

λn+1

)
→ 1 – μ > 0.

Next, we can easily choose ε ∈ (0, 1 – μ) such that (1 – μλn
λn+1

) > ε, ∀n ≥ n0. Due to this fact
and Lemma 3.3, we obtain

‖xn+1 – p‖2 ≤ ‖xn – p‖2, ∀n ≥ n0. (11)

Furthermore, we fix an arbitrary number m ≥ n0 and consider Lemma 3.3, for all numbers
n0, n0 + 1, . . . , m. Summing, we obtain

‖xm+1 – p‖2 ≤ ‖xn0 – p‖2 –
m∑

k=n0

(
1 –

μλk

λk+1

)
‖xk – yk‖2

–
m∑

k=n0

(
1 –

μλk

λk+1

)
‖xk+1 – yk‖2

≤ ‖xn0 – p‖2. (12)

Taking k → ∞ in Eq. (12), we can deduce the following results:

∑

n
‖xn – yn‖2 < +∞ �⇒ lim

n→∞‖xn – yn‖ = 0 (13)

and

∑

n
‖xn+1 – yn‖2 < +∞ �⇒ lim

n→∞‖xn+1 – yn‖ = 0. (14)
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Further, Eqs. (11) and (12) imply that

lim
n→∞‖xn – p‖ = b, for some finite b > 0. (15)

Moreover, from Eqs. (13), (14) and the Cauchy inequality, we get

lim
n→∞‖xk+1 – xk‖ �⇒ 0. (16)

Next, we show that a very sequential weak cluster point of the sequence {xn} is in EP(f , C).
Assume that z is a weak cluster point of {xn}, i.e. there exists a subsequence, denoted by
{xnk } of {xn}, weakly converging to z. Then {ynk } also weakly converges to z and z ∈ C. Let
us show that z ∈ EP(f , C). By Lemma 3.1, the definition of λn+1 and Lemma 3.2, we have

λnk f (ynk , y) ≥ λnk f (ynk , xnk +1) + 〈xnk – xnk +1, y – xnk +1〉

≥ λnk f (xnk , xnk+1 ) – λnk f (xnk , ynk ) –
μλnk

2λnk +1
‖xnk – ynk ‖2

–
μλnk

2λnk +1
‖ynk – xnk +1‖2 + 〈xnk – xnk +1, y – xnk +1〉

≥ 〈xnk – ynk , xnk +1 – ynk 〉 –
μλnk

2λnk +1
‖xnk – ynk ‖2

–
μλnk

2λnk +1
‖ynk – xnk +1‖2 + 〈xnk – xnk +1, y – xnk +1〉, (17)

where y is any element in Hn. It follows from (13), (14), (16) and the boundedness of {xn}
that the right-hand side of the last inequality tends to zero. Using λnk > 0, condition (A3)
and ynk ⇀ z we have

0 ≤ lim sup
k→∞

f (ynk , y) ≤ f (z, y), ∀y ∈ C.

Since C ⊂ Hn and z ∈ C we have f (z, y) ≥ 0, ∀y ∈ C. This shows that z ∈ EP(f , C). Thus
Lemma 2.5, ensures that {xn} and {yn} converge weakly to p as n → ∞.

Next, we show that limn→∞ PEP(f ,C)(xn) = p. Define tn := PEP(f ,C)(xn) for all n ∈ N. Since
p ∈ EP(f , C), we have

‖tn‖ ≤ ‖tn – xn‖ + ‖xn‖ ≤ ‖p – xn‖ + ‖xn‖. (18)

Thus, {tn} is bounded. In fact, by Lemma 3.3 for n ≥ n0, we deduce that

‖xn+1 – tn+1‖2 ≤ ‖xn+1 – tn‖2 ≤ ‖xn – tn‖2, ∀n ≥ n0. (19)

Equations (18) and (19) imply the existence of the limn→∞ ‖xn – tn‖. By using Lemma 3.3,
for all m > n ≥ n0, we have

‖tn – xm‖2 ≤ ‖tn – xm–1‖2 ≤ · · · ≤ ‖tn – xn‖2. (20)
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Next, we show that {tn} is a Cauchy sequence. Let us take tm, tn ∈ EP(f , C), for m > n ≥ n0,
and Lemma 2.1(i) with (20) gives

‖tn – tm‖2 ≤ ‖tn – xm‖2 – ‖tm – xm‖2 ≤ ‖tn – xn‖2 – ‖tm – xm‖2. (21)

The existence of limn→∞ ‖tn – xn‖ implies that limm,n→∞ ‖tn – tm‖ = 0, for all m > n. Con-
sequently, {tn} is a Cauchy sequence. Since EP(f , C) is closed, we find that {tn} converges
strongly to p∗ ∈ EP(f , C). Now, we prove that p∗ = p. It follows from Lemma 2.1(ii) and
p, p∗ ∈ EP(f , C) that

〈xn – tn, p – tn〉 ≤ 0. (22)

Since tn → p∗ and xn ⇀ p, we have

〈
p – p∗, p – p∗〉 ≤ 0,

which implies that p = p∗ = limn→∞ PEP(f ,C)(xn). Further, ‖xn – yn‖ → 0, implies
limn→∞ PEP(f ,C)(yn) = p. �

Remark 3.3 In the case when the bifunction f is strongly pseudomonotone and satisfies
the Lipschitz-type condition, the linear rate of convergence can be achieved for Algo-
rithm 1 (for more details see [47]).

4 Modified subgradient explicit iterative algorithm for a class of
pseudomonotone EP

In this section, we propose an iterative scheme that involves two strong convex optimiza-
tion problems with an inertial term that is used to speed up the iterative sequence, so
we refer to it as a “modified explicit iterative algorithm” for a class of pseudomonotone
equilibrium problems. This algorithm is a modification of Algorithm 1 that performs bet-
ter than the earlier algorithm due to the inertial term. The detailed Algorithm 2 is given
belowthes.

Lemma 4.1 From Algorithm 2 we have the following useful inequality:

λnf (yn, y) – λnf (yn, xn+1) ≥ 〈wn – xn+1, y – xn+1〉, ∀y ∈ Hn.

Proof The proof is very similar to Lemma 3.1. �

Lemma 4.2 Let {xn} and {yn} generated from the Algorithm 2, then the following relation
holds:

λn
{

f (wn, xn+1) – f (wn, yn)
} ≥ 〈wn – yn, xn+1 – yn〉.

Proof The proof is similar to Lemma 3.2. �
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Algorithm 2 Modified subgradient explicit iterative algorithm for pseudomontone EP
Initialization: Choose x–1, x0 ∈H, λ0 > 0 and αn ∈ [0,

√
5 – 2). Set

w0 = x0 + α0(x0 – x–1).

Iterative steps: Assume that xn, xn–1 and λn > 0 are known for n ≥ 0.
Step 1: Compute

yn = arg min
{
λnf (wn, y) +

1
2
‖wn – y‖2 : y ∈ C

}
,

where wn = xn + αn(xn – xn–1). If yn = wn then stop and wn is the solution of problem
(EP). Otherwise,
Step 2: first construct a half-space

Hn =
{

w ∈H : 〈wn – λnυn – yn, w – yn〉 ≤ 0
}

,

where υn ∈ ∂f (wn, yn) and then compute

xn+1 = arg min
{
λnf (yn, y) +

1
2
‖wn – y‖2 : y ∈ Hn

}
.

Step 3: Assume μ(α) ∈ (0, 1) and compute

λn+1 = min

{
λn,

μ(‖wn – yn‖2 + ‖xn+1 – yn‖2)
2[f (wn, xn+1) – f (wn, yn) – f (yn, xn+1)]+

}
.

Set n := n + 1 and go back Step 1.

Lemma 4.3 Let f : H × H → R be a bifunction satisfying the conditions (A1)–(A4) as in
Assumption 2.1. Assume that the solution set EP(f , C) is nonempty. Then for all p ∈ EP(f , C)
we have

‖xn+1 – p‖2 ≤ ‖wn – p‖2 –
(

1 –
μλn

λn+1

)
‖wn – yn‖2 –

(
1 –

μλn

λn+1

)
‖xn+1 – yn‖2.

Proof By Lemma 4.1 and replacing y = p, we obtain

λnf (yn, p) – λnf (yn, xn+1) ≥ 〈wn – xn+1, p – xn+1〉. (23)

Since f (p, yn) ≥ 0 and from (A1) we have f (yn, p) ≤ 0, which implies that

〈wn – xn+1, xn+1 – p〉 ≥ λnf (yn, xn+1). (24)

From the definition of λn+1 we get

f (wn, xn+1) – f (wn, yn) – f (yn, xn+1) ≤ μ(‖wn – yn‖2 + ‖xn+1 – yn‖2)
2λn+1

. (25)
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Combining (24) and (25) we get

〈wn – xn+1, xn+1 – p〉 ≥ λn
{

f (wn, xn+1) – f (wn, yn)
}

–
μλn

2λn+1
‖wn – yn‖2 –

μλn

2λn+1
‖xn+1 – yn‖2. (26)

Next, by Lemma 4.2 and Eq. (26) we have

〈wn – xn+1, xn+1 – p〉 ≥ 〈wn – yn, xn+1 – yn〉

–
μλn

2λn+1
‖wn – yn‖2 –

μλn

2λn+1
‖xn+1 – yn‖2. (27)

Furthermore, we have the following facts:

2〈wn – xn+1, xn+1 – p〉 = ‖wn – p‖2 – ‖xn+1 – wn‖2 – ‖xn+1 – p‖2,

2〈wn – yn, xn+1 – yn〉 = ‖wn – yn‖2 + ‖xn+1 – yn‖2 – ‖wn – xn+1‖2.

Using the above facts and Eq. (27) after multiplying by 2, we get the desired result. �

Now, let us formulate the second main convergence result for Algorithm 2.

Theorem 4.1 The sequences {wn}, {yn} and {xn} generated by Algorithm 2 converge weakly
to the solution p of the problem (EP), where

0 < μ <
1
2 – 2α – 1

2α2

1
2 – α + 1

2α2
and 0 ≤ αn ≤ α <

√
5 – 2.

Proof From Lemma 4.3, we have

‖xn+1 – p‖2 ≤ ‖wn – p‖2 –
(

1 –
μλn

λn+1

)
‖wn – yn‖2 –

(
1 –

μλn

λn+1

)
‖xn+1 – yn‖2

≤ ‖wn – p‖2 –
1
2

(
1 –

μλn

λn+1

)
‖xn+1 – wn‖2. (28)

By the definition of wn in Algorithm 2, we get

‖wn – p‖2 =
∥∥xn + αn(xn – xn–1) – p

∥∥2

=
∥∥(1 + αn)(xn – p) – αn(xn–1 – p)

∥∥2

= (1 + αn)‖xn – p‖2 – αn‖xn–1 – p‖2 + αn(1 + αn)‖xn – xn–1‖2. (29)

Further, by the definition wn and using the Cauchy inequality, we have

‖xn+1 – wn‖2 =
∥∥xn+1 – xn – αn(xn – xn–1)

∥∥2

= ‖xn+1 – xn‖2 + α2
n‖xn – xn–1‖2 – 2αn〈xn+1 – xn, xn – xn–1〉 (30)

≥ ‖xn+1 – xn‖2 + α2
n‖xn – xn–1‖2 – 2αn‖xn+1 – xn‖‖xn – xn–1‖
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≥ ‖xn+1 – xn‖2 + α2
n‖xn – xn–1‖2 – αn‖xn+1 – xn‖2 – αn‖xn – xn–1‖2

≥ (1 – αn)‖xn+1 – xn‖2 +
(
α2

n – αn
)‖xn – xn–1‖2. (31)

Next, combining (28), (29) and (31), we obtain

‖xn+1 – p‖2 ≤ (1 + αn)‖xn – p‖2 – αn‖xn–1 – p‖2 + αn(1 + αn)‖xn – xn–1‖2

– �n(1 – αn)‖xn+1 – xn‖2 – �n
(
α2

n – αn
)‖xn – xn–1‖2 (32)

= (1 + αn)‖xn – p‖2 – αn‖xn–1 – p‖2 – �n(1 – αn)‖xn+1 – xn‖2

+
[
αn(1 + αn) – �n

(
α2

n – αn
)]‖xn – xn–1‖2

= (1 + αn)‖xn – p‖2 – αn‖xn–1 – p‖2 – Qn‖xn+1 – xn‖2

+ Rn‖xn – xn–1‖2, (33)

where

�n :=
1
2

(
1 –

μλn

λn+1

)
,

Qn := �n(1 – αn),

and

Rn := αn(1 + αn) – �n
(
α2

n – αn
)
.

Next, we take

Λn = ‖xn – p‖2 – αn‖xn–1 – p‖2 + Rn‖xn – xn–1‖2,

and compute

Λn+1 – Λn = ‖xn+1 – p‖2 – αn+1‖xn – p‖2 + Rn+1‖xn+1 – xn‖2

– ‖xn – p‖2 + αn‖xn–1 – p‖2 – Rn‖xn – xn–1‖2

≤ ‖xn+1 – p‖2 – (1 + αn)‖xn – p‖2 + αn‖xn–1 – p‖2

+ Rn+1‖xn+1 – xn‖2 – Rn‖xn – xn–1‖2. (34)

Using Eq. (33) in (34), we obtain

Λn+1 – Λn ≤ –Qn‖xn+1 – xn‖2 + Rn+1‖xn+1 – xn‖2

= –(Qn – Rn+1)‖xn+1 – xn‖2. (35)
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Furthermore, we have to compute

Qn – Rn+1 = �n(1 – αn) – αn+1(1 + αn+1) + �n+1
(
α2

n+1 – αn+1
)

≥ �n(1 – αn+1) – αn+1(1 + αn+1) + �n
(
α2

n+1 – αn+1
)

= �n(1 – αn+1)2 – αn+1(1 + αn+1)

≥ �n(1 – α)2 – α(1 + α)

=
(
�n – α – α2) + �nα

2 – 2�nα

=
(

1
2

– α – α2 +
α2

2
– α

)
– μ

(
λn

2λn+1
+

λn

2λn+1
α2 –

λn

λn+1
α

)

=
(

1
2

– 2α –
1
2
α2

)
– μ

(
λn

2λn+1
–

λn

λn+1
α +

λn

2λn+1
α2

)
. (36)

We have

0 < μ <
1
2 – 2α – 1

2α2

1
2 – α + 1

2α2
and 0 ≤ α <

√
5 – 2.

This implies that, for every 0 ≤ α <
√

5 – 2, there exist n0 ≥ 1 and a fixed number

ε ∈
(

0,
1
2

– 2α –
1
2
α2 – μ

(
1
2

– α +
1
2
α2

))
,

such that

Qn – Rn+1 ≥ ε, ∀n ≥ n0. (37)

Equations (35) and (37) imply that, for all n ≥ n0, we have

Λn+1 – Λn ≤ –(Qn – Rn+1)‖xn+1 – xn‖2 ≤ 0. (38)

Hence the sequence {Λn} is nonincreasing for n ≥ n0. Further, from the definition of Λn+1

we have

Λn+1 = ‖xn+1 – p‖2 – αn+1‖xn – p‖2 + Rn+1‖xn+1 – xn‖2

≥ –αn+1‖xn – p‖2. (39)

Also, from Λn we have

Λn = ‖xn – p‖2 – αn‖xn–1 – p‖2 + Rn‖xn – xn–1‖2

≥ ‖xn – p‖2 – αn‖xn–1 – p‖2. (40)
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Equation (40) implies that, for n ≥ n0, we have

‖xn – p‖2 ≤ Λn + αn‖xn–1 – p‖2

≤ Λn0 + α‖xn–1 – p‖2

≤ · · · ≤ Λn0

(
αn–n0 + · · · + 1

)
+ αn–n0‖xn0 – p‖2

≤ Λn0

1 – α
+ αn–n0‖xn0 – p‖2. (41)

Combining (39) and (41) we obtain

–Λn+1 ≤ αn+1‖xn – p‖2

≤ α‖xn – p‖2

≤ α
Λn0

1 – α
+ αn–n0+1‖xn0 – p‖2. (42)

It follows from (38) and (42) that

ε

k∑

n=n0

‖xn+1 – xn‖2 ≤ Λn0 – �k+1

≤ Λn0 + α
�n0

1 – α
+ αk–n0+1‖xn0 – p‖2

≤ Λn0

1 – α
+ ‖xn0 – p‖2. (43)

Letting k → ∞ in (43) we have
∑∞

n=1 ‖xn+1 – xn‖2 < +∞. This implies that

‖xn+1 – xn‖ → 0 as n → ∞. (44)

From Eqs. (30) and (44) we have

‖xn+1 – wn‖ → 0 as n → ∞. (45)

Moreover, by Lemma 2.4, Eq. (32) and
∑∞

n=1 ‖xn+1 – xn‖2 < +∞,

lim
n→∞‖xn – p‖2 = b. (46)

Thus, from Eqs. (29), (44) and (46),

lim
n→∞‖wn – p‖2 = b, (47)

also

0 ≤ ‖xn – wn‖ = ‖xn – xn+1‖ + ‖xn+1 – wn‖ → 0 as n → ∞. (48)
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To show limn→∞ ‖yn – p‖2 = b, we use Lemma 4.3 for n ≥ n0, which gives

(
1 –

μλn

λn+1

)
‖wn – yn‖2

≤ ‖wn – p‖2 – ‖xn+1 – p‖2

≤ (‖wn – p‖ + ‖xn+1 – p‖)(‖wn – p‖ – ‖xn+1 – p‖)

≤ (‖wn – p‖ + ‖xn+1 – p‖)‖xn+1 – wn‖ → 0 as n → ∞ (49)

and

0 ≤ ‖xn – yn‖ = ‖xn – wn‖ + ‖wn – yn‖ → 0 as n → ∞. (50)

Further, (44), (46) and (50) imply that

‖xn+1 – yn‖ → 0 as n → ∞, and lim
n→∞‖yn – p‖2 = b. (51)

This implies that the sequences {xn}, {wn} and {yn} are bounded, and for every p ∈ EP(f , C),
the limn→∞ ‖xn – p‖2 exists. Now, further we show that for very sequential weak cluster
point of the sequence {xn} is in EP(f , C). Assume that z is a weak cluster point of {xn}, i.e.,
there exists a subsequence, denoted by {xnk }, of {xn} weakly converging to z. Then {ynk }
also weakly converges to z and z ∈ C. Let us show that z ∈ EP(f , C). By Lemma 4.1, the
definition of λn+1 and Lemma 4.2, we have

λnk f (ynk , y) ≥ λnk f (ynk , xnk +1) + 〈wnk – xnk +1, y – xnk +1〉

≥ λnk f (wnk , xnk+1 ) – λnk f (wnk , ynk ) –
μλnk

2λnk +1
‖wnk – ynk ‖2

–
μλnk

2λnk +1
‖ynk – xnk +1‖2 + 〈wnk – xnk +1, y – xnk +1〉

≥ 〈wnk – ynk , xnk +1 – ynk 〉 –
μλnk

2λnk +1
‖wnk – ynk ‖2

–
μλnk

2λnk +1
‖ynk – xnk +1‖2 + 〈wnk – xnk +1, y – xnk +1〉, (52)

where y is any element in Hn. It follows from (45), (49), (51) and the boundedness of {xn}
that the right-hand side of the last inequality tends to zero. Using λnk > 0, condition (A3)
and ynk ⇀ z, we have

0 ≤ lim sup
k→∞

f (ynk , y) ≤ f (z, y), ∀y ∈Hn.

Since C ⊂ Hn and z ∈ C, we have f (z, y) ≥ 0, ∀y ∈ C. This shows that z ∈ EP(f , C). Thus
Lemma 2.5, ensures that {wn}, {xn} and {yn} converge weakly to p as n → ∞. �

Remark 4.1 The knowledge of the Lipschitz-type constants is not mandatory to build up
the sequence {xn} in Algorithm 2 and to get the convergence result in Theorem 4.1.
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5 Computational experiment
In this section, some numerical results will be presented in order to test Algorithms 1
and 2 with the recent Heiu algorithm in [47]. The MATLAB codes run on a PC (with
Intel(R) Core(TM)i3-4010U CPU @ 1.70 GHz 1.70 GHz, RAM 4.00 GB) under MATLAB
version 9.5 (R2018b).

5.1 Nash–Cournot oligopolistic equilibrium model
We consider an extension of a Nash–Cournot oligopolistic equilibrium model [2]. Assume
that there are m companies that are producing the same commodity. Let x denote the
vector whose entry xj stands for the quantity of the commodity produced by company j.
We suppose that the price pj(s) is a decreasing affine function of s with s =

∑m
j=1 xj i.e.

pj(s) = αj – βjs, where αj > 0, βj > 0. Then the profit made by company j is given by fj(x) =
pj(s)xj – cj(xj), where cj(xj) is the tax and fee for generating xj. Suppose that Cj = [xmin

j , xmax
j ]

is the strategy set of company j. Then the strategy set of the model is C := C1 × C2 × · · · ×
Cm. Actually, each company wants to maximize its profit by choosing the corresponding
production level under the presumption that the production of the other companies is a
parameter input. A frequently used approach to dealing with this model is based upon the
well-known Nash equilibrium concept. We recall that a point x∗ ∈ C = C1 × C2 ×· · ·× Cm

is an equilibrium point of the model if

fj
(
x∗) ≥ fj

(
x∗[xj]

)
, ∀xj ∈ Cj,∀j = 1, 2, . . . , m.

where the vector x∗[xj] stands for the vector attain from x∗ by replacing x∗
j with xj. By

taking f (x, y) := ψ(x, y) – ψ(x, x) with ψ(x, y) := –
∑m

j=1 fj(x[yj]), the problem of finding a
Nash equilibrium point of the model can be formulated as

Find x∗ ∈ C : f
(
x∗, y

) ≥ 0, ∀y ∈ C.

Now, assume that the tax-fee function cj(xj) is increasing and affine for every j. This as-
sumption means that both of the tax and fee for producing a unit are increasing as the
quantity of the production gets larger. As in [20, 53], the bifunction f can be formulated
in the form of f (x, y) = 〈Px + Qy + q, y – x〉, where q ∈ R

m and P, Q are two matrices of
order m such that Q is symmetric positive semidefinite and Q – P is symmetric negative
semidefinite.

For Experiment 5.1 we take x–1 = (10, 0, 10, 1, 10)T , x0 = (1, 3, 1, 1, 2)T , C = {x : –2 ≤
xi ≤ 5} and y-axes represent for the value of Dn = ‖wn – yn‖ while the x-axes represent
for the number of iterations or elapsed time (in seconds).

5.1.1 Algorithm 2 nature in terms of different values of αn

Figures 1 and 2 illustrate the numerical results for the first 120 iterations of Algorithm 2
(shortly, MSgEIA) with respect to using different values of αn. For these results, we use pa-
rameters αn = 0.22, 0.16, 0.11, 0.07, 0.03, λ0 = 1 and μ = 0.11. These two figures are useful
for choosing the best possible value of αn.

5.1.2 Algorithm 2 comparison with existing algorithms
Figures 3 and 4 describe the numerical results for the first 100 iterations of Algorithm 2
[Modified subgradient explicit iterative algorithm (shortly, MSgEIA)] compared with Al-
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Figure 1 Experiment 5.1: Algorithm 2 behavior in terms of iterations relative to different values of αn

Figure 2 Experiment 5.1: Algorithm 2 behavior in terms of elapsed time relative to different values of αn

gorithm 1 [Subgradient explicit iterative algorithm (shortly, SgEIA)] and explicit Algo-
rithm 1 [Explicit iterative algorithm (shortly, EIA) [47]] in terms of no. of iterations and
elapsed time in seconds.

(i) For Explicit iterative algorithm (EIA) we use the parameters μ = 0.11, λ0 = 1 and
Dn = ‖xn – yn‖.

(ii) For Subgradient explicit iterative algorithm (SgEIA) we use the parameters
μ = 0.11, λ0 = 1 and Dn = ‖xn – yn‖.

(iii) For Modified subgradient explicit iterative algorithm (MSgEIA) we use the
parameters αn = 0.12, μ = 0.11, λ0 = 1 and Dn = ‖wn – yn‖.

5.2 Nash–Cournot equilibrium models of electricity markets
In this experiment, we apply our proposed algorithm to a Nash–Cournot equilibrium
model of electricity markets as in [13]. In this model, it is considered that there are three
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Figure 3 Experiment 5.1: Algorithm 2 comparison in terms of iterations

Figure 4 Experiment 5.1: Algorithm 2 comparison in terms of elapsed time

electricity companies i (i = 1, 2, 3). Each company i has its own, several generating units
with index set Ii. In this experiment, suppose that I1 = {1}, I2 = {2, 3} and I3 = {4, 5, 6}. Let
xj be the power generation of units j (j = 1, . . . , 6) and suppose that the electricity price p
can be expressed as by p = 378.4 – 2

∑6
j=1 xj. The cost of a generating unit j is illustrated

by

cj(xj) := max
{ ◦

cj(xj),
•
cj(xj)

}
,

with

◦
cj(xj) :=

◦
αj

2
x2

j +
◦
βjxj + ◦

γj
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Table 1 The parameter values used in this experiment

j
◦
αj

◦
βj

◦
γj

•
αj

•
βj

•
γj

1 0.0400 2.00 0.00 2.0000 1.0000 25.0000
2 0.0350 1.75 0.00 1.7500 1.0000 28.5714
3 0.1250 1.00 0.00 1.0000 1.0000 8.0000
4 0.0116 3.25 0.00 3.2500 1.0000 86.2069
5 0.0500 3.00 0.00 3.0000 1.0000 20.0000
6 0.0500 3.00 0.00 3.0000 1.0000 20.0000

Table 2 The parameter values used in this experiment

j

1 2 3 4 5 6

xmin
j 0 0 0 0 0 0
xmax
j 80 80 50 55 30 40

and

•
cj(xj) := •

αjxj +
•
βj

•
βj + 1

•
γj

–1•
βj (xj)

(
•
βj+1)

•
βj ,

where the parameter values are given in ◦
αj,

◦
βj,

◦
γj,

•
αj,

•
βj and •

γj are given in Table 1. Suppose
the profit of company i is given by

fi(x) := p
∑

j∈Ii

xj –
∑

j∈Ii

cj(xj) =

(

378.4 – 2
6∑

l=1

xl

)
∑

j∈Ii

xj –
∑

j∈Ii

cj(xj),

where x = (x1, . . . , x6)T subject to the constraint x ∈ C := {x ∈ R
6 : xmin

j ≤ xj ≤ xmax
j }, with

xmin
j and xmax

j given in Table 2.
Next, we define the equilibrium function f by

f (x, y) :=
3∑

i=1

(
φi(x, x) – φi(x, y)

)
,

where

φi(x, y) :=
[

378.4 – 2
(∑

j /∈Ii

xj +
∑

j∈Ii

yj

)]∑

j∈Ii

yj –
∑

j∈Ii

cj(yj).

The Nash–Cournot equilibrium models of electricity markets can be reformulated as an
equilibrium problem (see [58]):

Find x∗ ∈ C such that f
(
x∗, y

) ≥ 0, ∀y ∈ C.

For Experiment 5.2, we take x–1 = (10, 0, 10, 1, 10, 1)T , x0 = (48, 48, 30, 27, 18, 24)T , and
the y-axes represent for the value of Dn while the x-axes represent the number of iterations
or elapsed time (in seconds).
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Figure 5 Experiment 5.2: Algorithm 2 behavior in terms of iterations relative to different values of λ0

Figure 6 Experiment 5.2: Algorithm 2 behavior in terms of elapsed time relative to different values of λ0

5.2.1 Algorithm 2 nature in terms of different values of λ0

Figures 5 and 6 describe the numerical results of Algorithm 2 (MSgEIA) with respect
to using different values of λ0, in terms of no. of iterations and elapsed time in sec-
onds relative to Dn = ‖xn+1 – xn‖. For these results, we use the parameters αn = 0.20
λ0 = 1, 0.8, 0.6, 0.4, 0.2, μ = 0.24 and ε = 10–2.

5.2.2 Algorithm 2 comparison with existing algorithms
Figures 7 and 8 describe the numerical results of Algorithm 2 [Modified subgradient ex-
plicit iterative algorithm (MSgEIA)] compared with Algorithm 1 [Subgradient explicit it-
erative algorithm (SgEIA)] and Algorithm 1 [Explicit iterative algorithm (EIA) [47]] in
terms of no. of iterations and elapsed time in seconds.

(i) For the Explicit iterative algorithm (EIA) we use the parameters μ = 0.2, λ0 = 0.6
and Dn = ‖xn+1 – xn‖.
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Figure 7 Experiment 5.2: Algorithm 2 compared in terms of iterations

Figure 8 Experiment 5.2: Algorithm 2 compared in terms of elapsed time

(ii) For Subgradient explicit iterative algorithm (SgEIA) we use the parameters μ = 0.2,
λ0 = 0.6 and Dn = ‖xn+1 – xn‖.

(iii) For Modified subgradient explicit iterative algorithm (MSgEIA) we use the
parameters αn = 0.20, μ = 0.2, λ0 = 0.6 and Dn = ‖xn+1 – xn‖.

5.3 Two-dimensional (2-D) pseudomonotone EP
Let us consider the following bifunction:

f (x, y) =
〈
F(x), y – x

〉
,

where

F(x) =

(
(x2

1 + (x2 – 1)2)(1 + x2)
–x3

1 – x1(x2 – 1)2

)

with C =
{

x ∈R
2 : –10 ≤ xi ≤ 10

}
.
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Figure 9 Algorithm 2 compared in terms of no. of iterations and elapsed time

The bifunction is not monotone on C but pseudomonotone (for more details see p. 10,
[59, 60]). Figure 9 illustrates the numerical results of comparison of Algorithm 2 with two
other algorithms, with x–1 = (5, 5)T and x0 = (10, 10)T .

6 Conclusion
In this paper, we propose two algorithms by incorporating the subgradient and inertial
technique with an explicit iterative algorithm, which can solve the problem of a pseu-
domonotone equilibrium. The evaluation of the step-size did not require a line search
procedure or information on the Lipchitz-type constants of the bifunction. Rather, one
uses a step-size sequence that can be updated on each iteration with the help of previous
iterations. We have presented various numerical results to show the computational per-
formance of our algorithm in comparison with other algorithms. These numerical results
have also explained that the algorithm with inertial effects seems to perform better than
without inertial effects.
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