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Abstract
We prove that the integer part of the reciprocal of the tail of ζ (s) at a rational number
s = 1

p for any integer with p ≥ 5 or s = 2
p for any odd integer with p≥ 5 can be

described essentially as the integer part of an explicit quantity corresponding to it. To
deal with the case when s = 2

p , we use a result on the finiteness of integral points of
certain curves overQ.
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1 Introduction
Among various kind of zeta functions in mathematics, one of the most famous and im-
portant zeta functions is the Riemann zeta function. For s = σ + it ∈ C with σ > 1, the
Riemann zeta function is defined as the absolutely convergent infinite series

ζ (s) =
∞∑

n=1

1
ns .

It is well known that this function admits an analytic continuation to the whole complex
plane C, has an Euler product formula, and satisfies a functional equation.

Recently, Xin [6] initiated the study of a reciprocal sum related to ζ (2) and ζ (3), and
proved the following two equalities: for any positive integer n, we have

[( ∞∑

k=n

1
k2

)–1]
= n – 1

and

[( ∞∑

k=n

1
k3

)–1]
= 2n(n – 1),

where [x] denotes the greatest integer that is less than or equal to x. One basic observation
from this result is that both n – 1 and 2n(n – 1) are polynomials in the variable n. Xin [6]
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also proposed a natural problem of determining the existence of an explicit computational
formula for [(

∑∞
k=n

1
ks )–1] for an integer s ≥ 4. In an attempt to solve this problem, Xin and

Xiaoxue [7] came up with a computational formula for the case s = 4, and Xu [8] proved
two computational formulas that are related to the Riemann zeta function at s = 4, 5, using
a slightly different method from that of [7]. Also, the authors [3] introduced an explicit
formula for the case s = 6, which depends on the residue of n modulo 48.

Now, if we restrict our attention to some rational numbers 0 < s < 1, then we have the
following list of values of the Riemann zeta function:

ζ

(
1
2

)
= –1.46035 . . . , ζ

(
1
3

)
= –0.97336 . . . , ζ

(
1
4

)
= –0.813278 . . . ,

ζ

(
1
5

)
= –0.733921 . . . , ζ

(
2
3

)
= –2.44758 . . . , ζ

(
2
5

)
= –1.1348 . . . .

We may ask a similar question for the case when s is a rational number on the critical
strip. To this aim, for an integer n ≥ 1 and a real number s with 0 < s < 1, we let

ζn(s) =
1

1 – 21–s ·
∞∑

k=n

(–1)k+1

ks ,

An,s =
(

1
ns –

1
(n + 1)s

)
+

(
1

(n + 2)s –
1

(n + 3)s

)
+ · · · ,

and

Bn,s =
(

–
1
ns +

1
(n + 1)s

)
+

(
–

1
(n + 2)s +

1
(n + 3)s

)
+ · · · .

Note that we have

ζ1(s) = ζ (s)

and

ζn(s) =

⎧
⎨

⎩
– 1

1–21–s An,s, if n is even,

– 1
1–21–s Bn,s, if n is odd.

(1)

Along this line, Kim and Song [4] (resp. Song [5]) proved that

[
1

1 – 21–s · ζn(s)–1
]

=
[

(–1)n+1 · 2
(

n –
1
2

)s]

for every integer n ≥ 1, at s = 1
2 , 1

3 , 1
4 (resp. s = 2

3 ). In this paper, we extend the previous
results to the case when either s = 1

p for any integer with p ≥ 5 or s = 2
p for any odd integer

with p ≥ 5.
Our main result is summarized in the following.
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Theorem 1 Let s = 1
p for any integer with p ≥ 5 or s = 2

p for any odd integer with p ≥ 5.
Then there exists an integer N > 0 such that

[
1

1 – 21–s · ζn(s)–1
]

=
[

(–1)n+1 · 2
(

n –
1
2

)s]

for every integer n ≥ N .

For more details, see Corollaries 4 and 5.
This paper is organized as follows: In Sect. 2, we first introduce some properties of ζn(s).

Afterwards, we recall a theorem of Siegel on the integral points of a smooth algebraic
curve over a number field (see Theorem 4). In Sect. 3, we deal with the case of s = 1

p , using
Theorem 3 below. In Sect. 4, we give a proof of Theorem 1 for the case when s = 2

p by
invoking a version of the previously introduced theorem of Siegel (see Theorem 5).

2 Preliminaries
2.1 Properties of ζn(s)
In this section, we give some useful properties of ζn(s) in terms of the size of its reciprocal.
To achieve our goal, we first need the following.

Theorem 2 Let s be a real number with 0 < s < 1. Then we have

2
(

n –
1
2

)s

< A–1
n,s < 2

(
n –

1
4

)s

for every even integer n ≥ 2, and

–2
(

n –
1
4

)s

< B–1
n,s < –2

(
n –

1
2

)s

for every odd integer n ≥ 1.

Proof For a proof, see [4, Theorem 1]. �

In view of Eq. (1), Theorem 2 has a nice consequence.

Corollary 1 For any real number s with 0 < s < 1, we have

–2
(
1 – 21–s)

(
n –

1
2

)s

< ζn(s)–1 < –2
(
1 – 21–s)

(
n –

1
4

)s

for every even integer n ≥ 2, and

2
(
1 – 21–s)

(
n –

1
4

)s

< ζn(s)–1 < 2
(
1 – 21–s)

(
n –

1
2

)s

for every odd integer n ≥ 1.

If we do not require the inequality of Theorem 2 to hold for every even or odd integer, as
indicated above, then we can obtain a slightly better upper bound of the value of ζn(s)–1:



Hwang and Song Journal of Inequalities and Applications        (2019) 2019:270 Page 4 of 12

Theorem 3 Let ε > 0 be given. Then, for any real number s with 0 < s < 1, we have

2
(

n –
1
2

)s

< A–1
n,s < 2

(
n –

1
2

+ ε

)s

for every sufficiently large even integer n, and

–2
(

n –
1
2

+ ε

)s

< B–1
n,s ≤ –2

(
n –

1
2

)s

for every sufficiently large odd integer n.

Proof For a proof, see [4, Theorem 2]. �

As before, combining Eq. (1) and Theorem 3 yields the following.

Corollary 2 Let ε > 0 be given. Then, for any real number s with 0 < s < 1, we have

–2
(
1 – 21–s)

(
n –

1
2

)s

< ζn(s)–1 < –2
(
1 – 21–s)

(
n –

1
2

+ ε

)s

for every sufficiently large even integer n, and

2
(
1 – 21–s)

(
n –

1
2

+ ε

)s

< ζn(s)–1 < 2
(
1 – 21–s)

(
n –

1
2

)s

for every sufficiently large odd integer n.

2.2 Siegel’s theorem on integral points
In this section, we briefly review a theorem of Siegel on the integral points of certain curves
that are defined over a number field.

In the sequel, let K be a number field, S a finite set of places of K , and RS the ring of
S-integers in K . Also, let K be an algebraic closure of K . Then we have the following fun-
damental result.

Theorem 4 Let C be a smooth projective curve of genus g over K , and let f ∈ K(C) be a
nonconstant function. If g ≥ 1, then the set

{
P ∈ C(K) | f (P) ∈ RS

}

is finite.

Proof For a proof, see [2, Theorem D.9.1]. �

In fact, this theorem is more general than what we actually need. We need to use a
version of Theorem 4 regarding a hyperelliptic curve, which we describe now: suppose
that S includes all the infinite places.

Theorem 5 Let f (X) ∈ K[X] be a polynomial of degree at least 3 with distinct roots in K .
Then the equation Y 2 = f (X) has only finitely many solutions X, Y ∈ RS .
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Proof For a proof, see [2, Theorem D.8.3]. �

Example 1 Let K = Q, S = {2,∞}, and let f (X) = 1
32 X5 + 17

32 . Then the equation Y 2 = f (X)
has only finitely many solutions in RS = Z[ 1

2 ]. This example is closely related to the case of
s = 2

5 and m = 1 in Lemma 5 below.

3 The case of s = 1
p

Throughout this section, let p ≥ 5 be a fixed integer and let s = 1
p .

Lemma 1 Let n ≥ 1 be an integer. Then there is no integer between 2(n – 1
2 )s and 2(n – 1

2 +
1

2p+1 )s.

Proof Suppose on the contrary that there is an integer x with 2(n– 1
2 )s < x < 2(n– 1

2 + 1
2p+1 )s.

It follows that

2pn – 2p–1 < xp < 2pn – 2p–1 +
1
2

,

which is absurd.
This completes the proof. �

By a similar argument, we can also have the following.

Lemma 2 Let n ≥ 1 be an integer. Then there is no integer between –2(n – 1
2 + 1

2p+1 )s and
–2(n – 1

2 )s.

Combining all these results, we have the following.

Corollary 3 There exist integers n0, n1 > 0 such that

[
A–1

n,s
]

=
[

2
(

n –
1
2

)s]

for every even integer n ≥ n0, and

[
B–1

n,s
]

=
[

–2
(

n –
1
2

)s]

for every odd integer n ≥ n1.

Proof Let ε = 1
2p+1 . By Theorem 3, there exist integers n0, n1 > 0 such that

2
(

n –
1
2

)s

< A–1
n,s < 2

(
n –

1
2

+
1

2p+1

)s

for every even integer n ≥ n0, and

–2
(

n –
1
2

+
1

2p+1

)s

< B–1
n,s < –2

(
n –

1
2

)s
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for every odd integer n ≥ n1. Then, by Lemmas 1 and 2, it follows that [A–1
n,s] = [2(n – 1

2 )s]
for every even integer n ≥ n0, and [B–1

n,s] = [–2(n – 1
2 )s] for every odd integer n ≥ n1, as

desired.
This completes the proof. �

An immediate consequence of Corollary 3 is the following.

Corollary 4 There exists an integer N > 0 such that we have

[
1

1 – 21–s · ζn(s)–1
]

=
[

(–1)n+1 · 2
(

n –
1
2

)s]

for every integer n ≥ N .

Proof This follows from Eq. (1) and Corollary 3. �

Remark 1 If p ∈ {2, 3, 4}, then we may take N = 1 in view of [4, Corollary 6].

4 The case of s = 2
p

Throughout this section, let p ≥ 5 be a fixed odd integer and let s = 2
p .

To begin with, we introduce one useful inequality.

Lemma 3 For any real number x ≥ 2, we have

((
1 –

1
4x

)2

+
1

8x2

)–1/p–1

·
(

1 –
1

4x

)
+

((
1 +

1
4x

)2

+
1

8x2

)–1/p–1

·
(

1 +
1

4x

)
< 2.

Proof For convenience, let α = 4x and h(α) = ((1– 1
α

)2 + 2
α2 )–1/p–1 · (1– 1

α
). (Note that α ≥ 8.)

Then it suffices to show that h(α) + h(–α) is a strictly increasing function because we have

lim
α→∞

(((
1 –

1
α

)2

+
2
α2

)–1/p–1

·
(

1 –
1
α

)
+

((
1 +

1
α

)2

+
2
α2

)–1/p–1

·
(

1 +
1
α

))
= 2.

Indeed, we will use the first derivative test, as follows: note first that we have

d(h(α) + h(–α))
dα

=
d(((1 – 1

α
)2 + 2

α2 )–1/p–1 · (1 – 1
α

) + ((1 + 1
α

)2 + 2
α2 )–1/p–1 · (1 + 1

α
))

dα

=
1

α4p

(
α2p

((
α2 – 2α + 3

α2

)–1–1/p

–
(

α2 + 2α + 3
α2

)–1–1/p)

– 2(p + 1)
(

(α – 1)(α – 3)
(

α2 – 2α + 3
α2

)–2–1/p

– (α + 1)(α + 3)
(

α2 + 2α + 3
α2

)–2–1/p))
.
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Since α4p > 0, we need to show that

α2p
((

α2 – 2α + 3
α2

)–1–1/p

–
(

α2 + 2α + 3
α2

)–1–1/p)

– 2(p + 1)
(

(α – 1)(α – 3)
(

α2 – 2α + 3
α2

)–2–1/p

– (α + 1)(α + 3)
(

α2 + 2α + 3
α2

)–2–1/p)

> 0,

or equivalently (by multiplying α–4–2/p and rearranging)

(
α2 – 2α + 3

)–2–1/p(p
(
α2 – 2α + 3

)
– 2(p + 1)(α – 1)(α – 3)

)

>
(
α2 + 2α + 3

)–2–1/p(p
(
α2 + 2α + 3

)
– 2(p + 1)(α + 1)(α + 3)

)
,

which is equivalent to

(–p – 2)α2 + (6p + 8)α + (–3p – 6)
(–p – 2)α2 + (–6p – 8)α + (–3p – 6)

<
(

α2 + 2α + 3
α2 – 2α + 3

)–2–1/p

,

because (–p – 2)α2 + (–6p – 8)α + (–3p – 6) < 0 for any α, p. We prove the last inequality.
Indeed, we may assume that (–p – 2)α2 + (6p + 8)α + (–3p – 6) < 0 because if (–p – 2)α2 +
(6p + 8)α + (–3p – 6) ≥ 0, then the desired inequality follows trivially. Hence, we have to
show that

(
α2 + 2α + 3
α2 – 2α + 3

)2+1/p

<
(p + 2)α2 + (6p + 8)α + (3p + 6)

(p + 2)α2 + (–6p – 8)α + (3p + 6)
. (2)

Since

(
α2 + 2α + 3
α2 – 2α + 3

)2+1/p

<
(

α2 + 2α + 3
α2 – 2α + 3

)7/3

and

(
α2 + 2α + 3

)7((p + 2)α2 + (–6p – 8)α + (3p + 6)
)3

–
(
α2 – 2α + 3

)7((p + 2)α2 + (6p + 8)α + (3p + 6)
)3

=
(
–8p3 – 24p2 + 32

)
α19 +

(
–88p3 – 1032p2 – 2304p – 1056

)
α17

+
(
5472p3 + 21,792p2 + 16,128p + 2304

)
α15

+
(
–25,952p3 + 62,688p2 + 126,720p + 52,224

)
α13

+
(
–656,496p3 – 1,239,120p2 – 856,320p – 217,024

)
α11

+
(
–1,969,488p3 – 3,717,360p2 – 2,568,960p – 651,072

)
α9

+
(
–700,704p3 + 1,692,576p2 + 3,421,440p + 1,410,048

)
α7
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+
(
1,329,696p3 + 5,295,456p2 + 3,919,104p + 559,872

)
α5

+
(
–192,456p3 – 2,256,984p2 – 5,038,848p – 2,309,472

)
α3

+
(
–157,464p3 – 472,392p2 + 629,856

)
α

<
(
–8α4 + 5472

)
p3α15 +

(
–20α4 + 21,792

)
p2α15 +

(
–4p2α6 + 32α6 + 52,224

)
α13

+
(
–2304α2 + 16,128

)
pα15 +

(
–1056α2 + 2304

)
α15

+
(
–1032pα4 + 62,688p + 126,720

)
pα13

+
(
–656,496α6 + 1,329,696

)
p3α5 +

(
–1,239,120α6 + 5,295,456

)
p2α5

+
(
–856,320α6 + 3,919,104

)
pα5 +

(
–217,024α6 + 559,872

)
α5

+
(

–700,704 +
1,692,576

5
+

3,421,440
52 +

1,410,048
53

)
p3α7

+
(
–192,456p3 – 2,256,984p2 – 5,038,848p – 2,309,472

)
α3

+
(
–157,464p3 – 472,392p2 + 629,856

)
α

< 0

for every p ≥ 5 and α ≥ 8, we find that the inequality (2) holds for α ≥ 8, which in turn,
implies that h(α) + h(–α) is increasing for α ≥ 8.

This completes the proof. �

An important consequence of the above lemma is the following.

Lemma 4 For any even integer n ≥ 4, we have

2
(

n –
1
2

)s

= 2
(

n2 – n +
1
4

)s/2

< A–1
n,s < 2

(
n2 – n +

3
4

)s/2

and for any odd integer n ≥ 3, we have

–2
(

n2 – n +
3
4

)s/2

< B–1
n,s < –2

(
n2 – n +

1
4

)s/2

= –2
(

n –
1
2

)s

. (3)

Proof Let n ≥ 4 be an even integer. By Theorem 2, we have

2
(

n –
1
2

)2/p

< A–1
n,2/p < 2

(
n –

1
4

)2/p

.

Hence, it suffices to show that

1
n2/p –

1
(n + 1)2/p –

1
2

((
n –

1
2

)2

+
1
2

)–1/p

+
1
2

((
n +

3
2

)2

+
1
2

)–1/p

> 0

for any even integer n ≥ 4. Let f , g : R≥2 →R be two functions defined by

f (x) =
1

(2x)2/p –
1

(2x + 1)2/p –
1
2

((
2x –

1
2

)2

+
1
2

)–1/p

+
1
2

((
2x +

3
2

)2

+
1
2

)–1/p
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and

g(x) = (2x)–2/p –
1
2

((
2x –

1
2

)2

+
1
2

)–1/p

–
1
2

((
2x +

1
2

)2

+
1
2

)–1/p

= (2x)–2/p –
1
2

(
4x2 – 2x +

3
4

)–1/p

–
1
2

(
4x2 + 2x +

3
4

)–1/p

.

Then we have f (x) = g(x)–g(x+ 1
2 ), and hence, we only need to show that g(x) is decreasing.

Since

g ′(x) =
(

–
4
p

)
· (2x)–2/p–1

+
1

2p

(
4x2 – 2x +

3
4

)–1/p–1

· (8x – 2) +
1

2p

(
4x2 + 2x +

3
4

)–1/p–1

· (8x + 2),

we have to show that

(2x)–2/p–1 –
(

4x2 – 2x +
3
4

)–1/p–1

·
(

x –
1
4

)
–

(
4x2 + 2x +

3
4

)–1/p–1

·
(

x +
1
4

)
> 0,

which is equivalent to saying that

((
1 –

1
4x

)2

+
1

8x2

)–1/p–1

·
(

1 –
1

4x

)
+

((
1 +

1
4x

)2

+
1

8x2

)–1/p–1

·
(

1 +
1

4x

)
< 2.

Then it follows from Lemma 3 that g(x) is decreasing for x ≥ 2. Also, a similar argument
can be used to show that (3) holds for any odd integer n ≥ 3.

This completes the proof. �

Remark 2 The inequalities in the statement of Lemma 4 also hold when n = 1, 2. For ex-
ample, we have

B–1
1,2/5 + 2 ·

(
3
4

)1/5

= 0.179457 . . . > 0 and A–1
2,2/5 – 2 ·

(
11
4

)1/5

= –0.0374817 . . . < 0.

Now, we give a result on the finiteness of the integer points of certain affine curves,
which will be used later.

Lemma 5 The affine curve Cm : xp – 2py2 – 2py + 2p–2 + m = 0 defined over Q has only
finitely many integer points for each 1 ≤ m ≤ 2p–1 – 1.

Proof Let 1 ≤ m ≤ 2p–1 – 1 be fixed. By completing the square and rearranging, the defin-
ing equation of Cm can be written as

(
y +

1
2

)2

=
1
2p · xp +

2p–1 + m
2p . (4)

By letting Y = y + 1
2 , Eq. (4) becomes

Y 2 =
1
2p · xp +

2p–1 + m
2p . (5)
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Let S = {2,∞} be a finite set of places of Q, and let f (x) = 1
2p · xp + 2p–1+m

2p . Then the equa-
tion Y 2 = f (x) has only finitely many solutions in RS = Z[ 1

2 ] by Theorem 5, which in turn,
implies that Cm(Z) is also finite. (Note that if (a, b) is an integer point of Cm, then (a, b + 1

2 )
is a solution of Eq. (5) in RS = Z[ 1

2 ].) Since m was arbitrary, the proof is complete. �

In the sequel, let Cm denote the affine curve defined as in Lemma 5 for 1 ≤ m ≤ 2p–1 – 1.
Using the above finiteness result on integral points, we have the following.

Lemma 6 There exists an integer n0 > 0 with the property that there is no integer between
2(n2 – n + 1

4 ) s
2 and 2(n2 – n + 3

4 ) s
2 for every integer n ≥ n0.

Proof Let S be the set of integers n such that there is an integer between 2(n2 – n + 1
4 ) s

2

and 2(n2 – n + 3
4 ) s

2 . Let n ∈ S and suppose that a is an integer with 2(n2 – n + 1
4 ) s

2 < a <
2(n2 – n + 3

4 ) s
2 . (Note that, in view of [4, page 9], there is exactly one such a.) It follows that

2pn2 – 2pn + 2p–2 < ap < 2pn2 – 2pn + 3 · 2p–2.

We may write ap = 2pn2 – 2pn + 2p–2 + l for some 1 ≤ l ≤ 2p–1 – 1 so that we have
(a, n) ∈ Cl(Z). (Note also that the uniqueness of a guarantees the uniqueness of such l.)
This observation gives rise to a well-defined set map ϕ : S → ⋃2p–1–1

m=1 Cm(Z) given by
ϕ(n) = (a, n), where a is uniquely determined as above. It is easy to see that ϕ is injective,
by construction. Now, by Lemma 5, the set

⋃2p–1–1
m=1 Cm(Z) is finite, and hence, it follows

that S is also finite. Let n0 = max S + 1. Then, for any integer n ≥ n0, we have n /∈ S, which
is the desired result.

This completes the proof. �

By a similar argument, we can also have the following.

Lemma 7 There exists an integer n1 > 0 with the property that there is no integer between
–2(n2 – n + 3

4 ) s
2 and –2(n2 – n + 1

4 ) s
2 for every integer n ≥ n1.

Using Lemmas 4, 6, and 7, we can prove the following.

Theorem 6 There exist integers n0, n1 > 0 such that

[
A–1

n,s
]

=
[

2
(

n –
1
2

)s]

for every even integer n ≥ n0, and

[
B–1

n,s
]

=
[

–2
(

n –
1
2

)s]

for every odd integer n ≥ n1.

Proof By Lemmas 4 and 6, there exists an integer n0 > 0 such that

2
(

n –
1
2

)s

< A–1
n,s < 2

(
n2 – n +

3
4

) s
2
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and there is no integer between 2(n – 1
2 )s and 2(n2 – n + 3

4 ) s
2 for every even integer n ≥ n0.

Then it follows that [A–1
n,s] = [2(n – 1

2 )s] for every even integer n ≥ n0. Similarly, by Lemmas
4 and 7, there exists an integer n1 > 0 such that

–2
(

n2 – n +
3
4

) s
2

< B–1
n,s < –2

(
n –

1
2

)s

and there is no integer between –2(n2 –n+ 3
4 ) s

2 and –2(n– 1
2 )s for every odd integer n ≥ n1.

Then it follows that [B–1
n,s] = [–2(n – 1

2 )s] for every odd integer n ≥ n1.
This completes the proof. �

As an immediate consequence of Theorem 6, we have the following.

Corollary 5 There exists an integer N > 0 such that we have

[
1

1 – 21–s · ζn(s)–1
]

=
[

(–1)n+1 · 2
(

n –
1
2

)s]

for every integer n ≥ N .

Proof This follows from Eq. (1) and Theorem 6. �

Remark 3 If p = 3, then we may take N = 1 in view of [5, Theorem 3.12].

We conclude this paper with the following.

Remark 4 In light of [2, Remark D.9.5], it might be possible to find such a suitable N > 0
in Corollaries 4 and 5 by adopting a theorem of Baker (see [1]).

Acknowledgements
The authors would like to thank the editors and anonymous referees who reviewed the manuscript. Kyunghwan Song
was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by
the Ministry of Education (Grant No. 2019R1A6A1A11051177).

Funding
We do not receive any funding.

Availability of data and materials
We declare that the materials described in the manuscript, including all relevant raw data, will be freely available to any
scientist wishing to use them for non-commercial purposes, without breaching participant confidentiality.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors equally contributed to the manuscript. All authors read and approved the final manuscript.

Author details
1School of Mathematics, Korea Institute for Advanced Study, Seoul, Republic of Korea. 2Institute of Mathematical
Sciences, Ewha Womans University, Seoul, Republic of Korea.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 June 2019 Accepted: 17 October 2019



Hwang and Song Journal of Inequalities and Applications        (2019) 2019:270 Page 12 of 12

References
1. Baker, A.: Transcendental Number Theory. Cambridge University Press, Cambridge (1975)
2. Hindry, M., Silverman, J.: Diophantine Geometry: An Introduction. Springer, Berlin (2000)
3. Hwang, W., Song, K.: A reciprocal sum related to the Riemann zeta function at s = 6. arXiv:1709.07994
4. Kim, D., Song, K.: The inverses of tails of the Riemann zeta function. J. Inequal. Appl. 2018(1), 157 (2018)
5. Song, K.: The inverses of tails of the Riemann zeta function for some real and natural numbers. Ph.D. thesis (2019)
6. Xin, L.: Some identities related to Riemann zeta-function. J. Inequal. Appl. 2016(1), 32 (2016)
7. Xin, L., Xiaoxue, L.: A reciprocal sum related to the Riemann ζ -function. J. Math. Inequal. 11(1), 209–215 (2017)
8. Xu, H.: Some computational formulas related to the Riemann zeta-function tails. J. Inequal. Appl. 2016(1), 132 (2016)

http://arxiv.org/abs/arXiv:1709.07994

	On the integer part of the reciprocal of the Riemann zeta function tail at certain rational numbers in the critical strip
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Properties of zetan (s)
	Siegel's theorem on integral points

	The case of s = 1/p
	The case of s = 2/p
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


