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Abstract
In this paper, we introduce and investigate composite inertial gradient-based
algorithms with a line-search process for solving a variational inequality problem (VIP)
with a pseudomonotone and Lipschitz continuous mapping and a common
fixed-point problem (CFPP) of finitely many nonexpansive mappings and a strictly
pseudocontractive mapping in the framework infinite-dimensional Hilbert spaces.
The proposed algorithms are based on an inertial subgradient–extragradient method
with the line-search process, hybrid steepest-descent methods, viscosity
approximation methods and Mann iteration methods. Under weak conditions, we
prove strong convergence of the proposed algorithms to the element in the
common solution set of the VIP and CFPP, which solves a certain hierarchical VIP
defined on this common solution set.
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1 Introduction
Throughout this work, H is assumed to be a real Hilbert space with norm ‖ · ‖ and inner
product 〈·, ·〉. We suppose that C is a convex and closed set in Hilbert space H and PC is
the metric projection from space H onto set C. Let S : C → H be a nonlinear operator.
We denote by Fix(S) the set of fixed points of operator S. A mapping T : C → C is called
strictly pseudocontractive if

‖Tx – Ty‖2 ≤ ζ
∥
∥(T – I)x – (T – I)y

∥
∥

2 + ‖x – y‖2, ∀x, y ∈ C, (1.1)

where ζ ∈ [0, 1) is some constant. With ζ = 0, T is called a nonexpansive operator. It is well
known that the class of strict pseudocontractions includes the class of nonexpansive map-
pings and is also continuous. From their direct and indirect applications to other branches
of mathematics and other engineering fields, to the the class of nonexpansive operators
and the class of strictly pseudocontractive operators are now under the spotlights; see,
e.g., [1–8] and the references therein.
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Let A : H → H be a mapping defined on the whole space. The known variational in-
equality problem (VIP), which find lots of applications in sparse reconstruction, image
reconstruction, traffic and transportation systems, is to get x∗ ∈ C with 〈Ax∗, x – x∗〉 ≥ 0
∀x ∈ C. The solution set of the VIP is presented with VI(C, A). At present, one of the most
effective methods for solving the VIP is the extragradient method introduced by Korpele-
vich [9] in 1976, that is, for any initial x0 ∈ C, the sequence {xn} is generated by

⎧

⎨

⎩

yn = PC(I – τA)xn,

xn+1 = PC(xn – τAyn) ∀n ≥ 0,
(1.2)

with τ is such that Lτ < 1. If VI(C, A) �= ∅, then the sequence {xn} generated by process (1.2)
converges weakly to a point, which lies in VI(C, A). The literature on the VIP is quite vast
and Korpelevich’s extragradient method, which is projection-based, has received great at-
tention given by many researchers working on nonlinear programming, who improved
it in various ways; see, e.g., [10–17] and the references therein. For the well-known ex-
tragradient method, one needs to compute two nearest point projections for every it-
erative step/process. Without question, the projection onto a feasibility (closed-convex)
set is closely related to a minimizer problem (min distance). If feasibility sets are gen-
eral, this might require a prohibitive amount of computation time; For recent efforts on
projection-based methods, see, e.g., [18–22]. In 2011, Censor et al. [21] deeply studied
Korpelevich’s extragradient method and first introduced the subgradient–extragradient
method, in which the second projection onto set C is replaced by a projection onto a half-
space:

⎧

⎪⎪⎨

⎪⎪⎩

yn = PC(I – τA)xn,

Cn = {x ∈ H : 〈xn – τAxn – yn, x – yn〉 ≤ 0},
xn+1 = PCn (xn – τAyn) ∀n ≥ 0,

(1.3)

with τ is a parameter such that Lτ < 1. In 2014, Kraikaew and Saejung [23] proposed the
Halpern subgradient–extragradient method for solving the VIP

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yn = PC(I – τA)xn,

Cn = {x ∈ H : 〈xn – τAxn – yn, x – yn〉 ≤ 0},
zn = PCn (xn – τAyn),

xn+1 = αnx0 + (1 – αn)zn ∀n ≥ 0,

(1.4)

where τ is a parameter such that Lτ < 1, {αn} is a sequence in (0, 1) with limn→∞ αn = 0,
and

∑∞
n=1 αn = +∞. They proved the strong convergence of the sequence {xn} generated

by (1.4) to PVI(C,A)x0.
In 2018, by virtue of the inertial technique, Thong and Hieu [24] first proposed the iner-

tial subgradient–extragradient method, that is, for any initial x0, x1 ∈ H , the sequence {xn}
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is generated by

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = xn + αn(xn – xn–1),

yn = PC(wn – τAwn),

Cn = {x ∈ H : 〈wn – τAwn – yn, x – yn〉 ≤ 0},
xn+1 = PCn (wn – τAyn) ∀n ≥ 1,

(1.5)

with τ is a parameter such that Lτ < 1. Under some suitable conditions, they proved the
weak convergence of {xn} to an element of VI(C, A). Very recently, Thong and Hieu [25]
introduced two inertial subgradient–extragradient algorithms with linear-search process
for solving the VIP with monotone and Lipschitz continuous mapping A and the fixed-
point problem (FPP) of a quasi-nonexpansive mapping T with a demiclosedness property
in a real Hilbert space.

Algorithm 1.1 (see [25, Algorithm 1])
Initialization: Let x0, x1 ∈ H be arbitrary. Given γ > 0, l ∈ (0, 1), μ ∈ (0, 1).
Iterative Steps: Compute xn+1 as follows:
Step 1. Set wn = αn(xn – xn–1) + xn and compute yn = PC(wn – τnAwn), where τn is chosen

to be the largest τ ∈ {γ ,γ l,γ l2, . . .} satisfying τ‖Awn – Ayn‖ ≤ μ‖wn – yn‖.
Step 2. Compute zn = PCn (wn – τnAyn) with Cn := {x ∈ H : 〈wn – τnAwn – yn, x – yn〉 ≤ 0}.
Step 3. Compute xn+1 = (1 –βn)wn +βnTzn. If wn = zn = xn+1 then wn ∈ Fix(T) ∩VI(C, A).

Set n := n + 1 and go to Step 1.

Algorithm 1.2 (see [25, Algorithm 2])
Initialization: Let x0, x1 ∈ H be arbitrary. Given γ > 0, l ∈ (0, 1), μ ∈ (0, 1).
Iterative Steps: Calculate xn+1 as follows:
Step 1. Set wn = αn(xn – xn–1) + xn and compute yn = PC(wn – τnAwn), where τn is chosen

to be the largest τ ∈ {γ ,γ l,γ l2, . . .} satisfying τ‖Awn – Ayn‖ ≤ μ‖wn – yn‖.
Step 2. Compute zn = PCn (wn – τnAyn) with Cn := {x ∈ H : 〈wn – τnAwn – yn, x – yn〉 ≤ 0}.
Step 3. Compute xn+1 = (1 – βn)xn + βnTzn. If wn = zn = xn = xn+1 then xn ∈ Fix(T) ∩

VI(C, A). Set n := n + 1 and go to Step 1.

Under some appropriate mild conditions, they proved the weak convergence of the pro-
posed algorithms to an element of Fix(T) ∩ VI(C, A). Inspired by the research work of
[23–28], we introduce two composite inertial subgradient–extragradient algorithms with
a line-search process for solving the VIP with pseudomonotone and Lipschitz continuous
mapping and the CFPP of finitely many nonexpansive mappings and a strictly pseudo-
contractive mapping in a real Hilbert space. The proposed algorithms are based on an
inertial subgradient–extragradient method with a line-search process, hybrid steepest-
descent methods, viscosity approximation methods and the Mann iteration method. We
prove strong convergence of the proposed algorithms to an element in the common so-
lution set of the VIP and CFPP, which solves a certain hierarchical VIP defined on this
common solution set. Finally, our main results are applied to solve the VIP and CFPP in
an illustrative example.

This paper is organized as follows: In Sect. 2, we recall some definitions and prelimi-
nary results for further use. Section 3 deals with the convergence analysis of the proposed
algorithms. Some examples are presented to solve the VIP and CFPP.
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2 Preliminaries
Let C be a convex nonempty closed set in a real Hilbert space H . Let {xn} be a vector
sequence in H , then we denote by xn → x (resp., xn ⇀ x) the strong (resp., weak) conver-
gence of {xn} to x. A single-valued mapping T : C → H is called

(i) L-Lipschitz continuous (or L-Lipschitzian) if ∃L > 0 such that ‖Tx – Ty‖ ≤ L‖x – y‖
∀x, y ∈ C;

(ii) monotone if 〈Tx – Ty, x – y〉 ≥ 0 ∀x, y ∈ C;
(iii) pseudomonotone if 〈Tx, y – x〉 ≥ 0 ⇒ 〈Ty, y – x〉 ≥ 0 ∀x, y ∈ C;
(iv) α-strongly monotone if ∃α > 0 such that 〈Tx – Ty, x – y〉 ≥ α‖x – y‖2 ∀x, y ∈ C;
(v) sequentially weakly continuous if ∀{xn} ⊂ C, the relation holds:

xn ⇀ x ⇒ Txn ⇀ Tx.
It is easy to see that every monotone operator is pseudomonotone but the converse is not

true. Also, recall that the mapping T : C → C is a ζ -strict pseudocontraction for some ζ ∈
[0, 1) if and only if the inequality holds 〈Tx – Ty, x – y〉 ≤ ‖x – y‖2 – 1–ζ

2 ‖(I – T)x – (I – T)y‖2

∀x, y ∈ C. We know that if T is a ζ -strictly pseudocontractive mapping, then T satisfies
Lipschitz condition ‖Tx – Ty‖ ≤ 1+ζ

1–ζ
‖x – y‖∀x, y ∈ C. For each point x ∈ H , we know that

there exists a unique nearest point in C, denoted by PCx, such that ‖x – PCx‖ ≤ ‖x – y‖
∀y ∈ C. The mapping PC is called the metric projection of H onto C. The complementary
operator of the metric projection operator is monotone.

The following two lemmas are trivial.

Lemma 2.1 The following hold:
(i) 〈x – y, PCx – PCy〉 ≥ ‖PCx – PCy‖2 ∀x, y ∈ H ;

(ii) 〈PCx – x, y – PCx〉 ≥ 0 ∀x ∈ H , y ∈ C;
(iii) ‖x – y‖2 ≥ ‖x – PCx‖2 + ‖y – PCx‖2 ∀x ∈ H , y ∈ C;
(iv) ‖x – y‖2 + 2〈x – y, y〉 = ‖x‖2 – ‖y‖2 ∀x, y ∈ H ;
(v) ‖λx + μy‖2 + λμ‖x – y‖2 = λ‖x‖2 + μ‖y‖2 ∀x, y ∈ H , ∀λ,μ ∈ [0, 1] with λ + μ = 1.

Lemma 2.2 We have the inequality

‖x + y‖2 ≤ 2〈y, x + y〉 + ‖x‖2 ∀x, y ∈ H .

Lemma 2.3 ([21]) Let A : C → H be pseudomonotone and continuous. Then x∗ ∈ C is a
solution to the VIP 〈Ax∗, x – x∗〉 ≥ 0 ∀x ∈ C, if and only if 〈Ax, x – x∗〉 ≥ 0 ∀x ∈ C.

Lemma 2.4 ([29]) Let {an} be a sequence of nonnegative real numbers satisfying the con-
ditions: an+1 ≤ λnγn + (1 – λn)an ∀n ≥ 1, where {λn} and {γn} are sequences of real numbers
such that (i) {λn} ⊂ [0, 1] and

∑∞
n=1 λn = ∞, and (ii) lim supn→∞ γn ≤ 0 or

∑∞
n=1 |λnγn| < ∞.

Then limn→∞ an = 0.

Lemma 2.5 ([30]) Let T : C → C be a ζ -strict pseudocontraction. Then I – T is demiclosed
at zero, i.e., if {xn} is a sequence in C such that xn ⇀ x ∈ C and (T – I)xn → 0, then (I –T)x =
0, where I is the identity mapping of H .

Lemma 2.6 ([31]) Let T : C → C be a ζ -strictly pseudocontractive mapping. Let γ and δ

be two nonnegative real numbers. Then ‖γ (x – y) + δ(Tx – Ty)‖ ≤ (γ + δ)‖x – y‖ ∀x, y ∈ C
provided (γ + δ)ζ ≤ γ .
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The following lemma is a direct consequence of Yamada [32].

Lemma 2.7 Let λ ∈ (0, 1], T : C → H be a nonexpansive mapping, and the mapping Tλ :
C → H be defined by Tλx := Tx – λμF(Tx) ∀x ∈ C, where F : H → H is κ-Lipschitzian
and η-strongly monotone. Then Tλ is a contraction with the coefficient 1 – λτ provided
0 < μ < 2η

κ2 .

3 Main results
In this section, we use C to denote the the feasible set and assume always that the following
hold.

Ti : H → H is a nonexpansive mapping for i = 1, . . . , N and T : H → H is a ζ -strictly
pseudocontractive mapping.

A : H → H is Lipschitz continuous with the module L, pseudomonotone on H , and se-
quentially weakly continuous on C, such that Ω =

⋂N
i=0 Fix(Ti)∩VI(C, A) �= ∅ with T0 := T .

f : H → H is a contraction with constant δ ∈ [0, 1), and F : H → H is η-strongly mono-
tone and κ-Lipschitzian such that δ < τ := 1 –

√

1 – ρ(2η – ρκ2) for ρ ∈ (0, 2η

κ2 ).
{σn} ⊂ [0, 1] and {αn}, {βn}, {γn}, {δn} ⊂ (0, 1) such that

(i) supn≥1
σn
αn

< ∞ and βn + γn + δn = 1 ∀n ≥ 1;
(ii) ζ (γn + δn) ≤ γn ∀n ≥ 1;

(iii)
∑∞

n=1 αn = ∞ and limn→∞ αn = 0;
(iv) lim supn→∞ βn < 1, lim infn→∞ βn > 0 and lim infn→∞ δn > 0.
In terms of Xu and Kim [33], we write Tn := Tn mod N for integer n ≥ 1 with the mod

function taking values in the set {1, 2, . . . , N}, that is, if n = jN + q for some integers j ≥ 0
and 0 ≤ q < N , then Tn = TN if q = 0 and Tn = Tq if 0 < q < N .

Algorithm 3.1
Initialization: Given l ∈ (0, 1), γ > 0 and μ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Set wn = σn(Tnxn – Tnxn–1) + Tnxn and compute yn = PC(wn – τnAwn), where τn is

chosen to be the largest τ ∈ {γ ,γ l,γ l2, . . .} satisfying

τ‖Awn – Ayn‖ ≤ μ‖wn – yn‖. (3.1)

Step 2. Compute zn = (I – αnρF)PCn (wn – τnAyn) + αnf (xn) with Cn := {x ∈ H : 〈wn –
τnAwn – yn, x – yn〉 ≤ 0}.

Step 3. Compute

xn+1 = βnxn + γnzn + δnTzn. (3.2)

Again set n := n + 1 and go to Step 1.

Lemma 3.1 The Armijo-like search rule (3.1) is well defined, and min{γ , μl
L } ≤ τn ≤ γ .

Proof From the L-Lipschitz continuity of A we get μ‖wn – PC(wn – γ lmAwn)‖ ≥ μ

L ‖Awn –
APC(wn – γ lmAwn)‖. Thus, (3.1) holds for all γ lm ≤ μ

L and so τn is well defined. Obviously,
τn ≥ γ . If τn = γ , then the inequality is true. If τn < γ , then from (3.1) we get ‖Awn –
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APC(wn – τn
l Awn)‖ > μ

τn
l
‖wn – PC(wn – τn

l Awn)‖. Again from the L-Lipschitz continuity of

A we obtain τn > μl
L . Hence the inequality is valid. �

Lemma 3.2 Let {wn}, {yn}, {zn} be the sequences generated by Algorithm 3.1. Then

‖zn – p‖2 ≤ (1 – αnτ )‖wn – p‖2 – (1 – αnτ )(1 – μ)
[‖wn – yn‖2 + αnδ‖xn – p‖2

+ ‖un – yn‖2] + 2αn
〈

(f – ρF)p, zn – p
〉 ∀p ∈ Ω , (3.3)

where un := PCn (wn – τnAyn) ∀n ≥ 1.

Proof First, take an arbitrary p ∈ Ω ⊂ C ⊂ Cn. We note that

‖un – p‖2 =
∥
∥PCn p – PCn (wn – τnAyn)

∥
∥

2 ≤ 〈wn – τnAyn – p, un – p〉

=
1
2
‖un – p‖2 +

1
2
‖wn – p‖2 –

1
2
‖un – wn‖2 – 〈un – p, τnAyn〉.

So, it follows that ‖un – p‖2 ≤ ‖wn – p‖2 – ‖un – wn‖2 – 2〈un – p, τnAyn〉, from which,
together with (3.1) and the pseudomonotonicity of A, we deduce that 〈Ayn, p – yn〉 ≤ 0 and

‖un – p‖2 ≤ 2τn
(〈Ayn, p – yn〉 + 〈Ayn, yn – un〉

)

– ‖un – wn‖2 + ‖wn – p‖2

≤ 2τn〈Ayn, yn – un〉 – ‖un – wn‖2 + ‖wn – p‖2

= 2〈wn – τnAyn – yn, un – yn〉 – ‖yn – wn‖2 – ‖un – yn‖2 + ‖wn – p‖2. (3.4)

Since un = PCn (wn – τnAyn) with Cn := {x ∈ H : 〈wn – τnAwn – yn, x – yn〉 ≤ 0}, we have
〈wn – τnAwn – yn, un – yn〉 ≤ 0, which, together with (3.1), implies that

2〈wn – τnAyn – yn, un – yn〉 = 2〈wn – τnAwn – yn, un – yn〉 + 2τn〈Awn – Ayn, un – yn〉
≤ 2μ‖wn – yn‖‖un – yn‖ ≤ μ

(‖wn – yn‖2 + ‖un – yn‖2).

Therefore, substituting the last inequality for (3.4), we infer that

‖un – p‖2 ≤ ‖wn – p‖2 – (1 – μ)‖wn – yn‖2 – (1 – μ)‖un – yn‖2 ∀p ∈ Ω . (3.5)

In addition, from Algorithm 3.1 we have

zn – p = αn(f – ρF)p + αn
(

f (xn) – f (p)
)

+ (I – αnρF)un – (I – αnρF)p.

Using Lemma 2.2, Lemma 2.7, and the convexity of the function h(t) = t2 ∀t ∈ R, from
(3.5) we get

‖zn – p‖2

≤ 2αn
〈

p – zn, (ρF – f )p
〉

+
∥
∥(I – αnρF)un – (I – αnρF)p + αn

(

f (xn) – f (p)
)∥
∥

2

≤ 2αn
〈

p – zn, (ρF – f )p
〉

+
[

αnδ‖xn – p‖ + (1 – αnτ )‖un – p‖]2

≤ 2αn
〈

p – zn, (ρF – f )p
〉

+ αnδ‖xn – p‖2 + (1 – αnτ )‖un – p‖2
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≤ (1 – αnτ )
[‖wn – p‖2 – (1 – μ)‖wn – yn‖2 – (1 – μ)‖un – yn‖2]

+ 2αn
〈

p – zn, (ρF – f )p
〉

+ αnδ‖xn – p‖2

= (1 – αnτ )‖wn – p‖2 – (1 – αnτ )(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2]

+ 2αn
〈

p – zn, (ρF – f )p
〉

+ αnδ‖xn – p‖2.

This completes the proof. �

Lemma 3.3 Let {wn}, {xn}, {yn}, {zn} be bounded sequences generated by Algorithm 3.1.
If xn – xn+1 → 0, wn – xn → 0, wn – yn → 0, wn – zn → 0 and ∃{wnk } ⊂ {wn} such that
wnk ⇀ z ∈ H , then z ∈ Ω .

Proof From Algorithm 3.1, we get Tnxn – xn + αn(Tnxn – Tnxn–1) = wn – xn ∀n ≥ 1, and
hence ‖Tnxn – xn‖ ≤ ‖wn – xn‖ + αn‖Tnxn – Tnxn–1‖ ≤ ‖wn – xn‖ + ‖xn – xn–1‖. Utilizing
the assumptions xn – xn+1 → 0 and wn – xn → 0, we obtain

lim
n→∞‖xn – Tnxn‖ = 0. (3.6)

Combining the assumptions wn – xn → 0 and wn – zn → 0 implies that, as n → ∞,

‖zn – xn‖ ≤ ‖wn – zn‖ + ‖wn – xn‖ → 0.

Moreover, by Algorithm 3.1 we get zn – xn = un – xn –αnρFun +αnf (xn) with un := PCn (wn –
τnAyn). So it follows from the boundedness of {xn}, {un} that, as n → ∞,

‖un – xn‖ =
∥
∥zn – xn – αnf (xn) + αnρFun

∥
∥ ≤ ‖zn – xn‖ + αn

(∥
∥f (xn)

∥
∥ + ‖ρFun‖

) → 0.

Also, by Algorithm 3.1 we get βn(xn – zn) + δn(Tzn – zn) = xn+1 – zn, which immediately
yields

δn‖Tzn – zn‖ =
∥
∥xn+1 – zn – βn(xn – zn)

∥
∥ ≤ ‖xn+1 – xn‖ + 2‖xn – zn‖.

Since xn – xn+1 → 0, zn – xn → 0 and lim infn→∞ δn > 0, we obtain

lim
n→∞‖zn – Tzn‖ = 0. (3.7)

Noticing yn = PC(I – τnA)wn, we have 〈wn – τnAwn – yn, x – yn〉 ≤ 0 ∀x ∈ C, and hence

〈wn – yn, x – yn〉 + τn〈Awn, yn – wn〉 ≤ τn〈Awn, x – wn〉 ∀x ∈ C. (3.8)

Being weakly convergent, {wnk } is bounded. Then, according to the Lipschitz continu-
ity of A, {Awnk } is bounded. Since wn – yn → 0, {ynk } is bounded as well. Note that
Lτn ≥ min{Lγ ,μl}. So, from (3.8) we get lim infk→∞〈Awnk , x – wnk 〉 ≥ 0∀x ∈ C. Mean-
while, observe that 〈x – yn, Ayn〉 = 〈Ayn – Awn, x – wn〉 + 〈Awn, x – wn〉 + 〈Ayn, wn – yn〉. Since
wn – yn → 0, from L-Lipschitz continuity of A we obtain Ayn – Awn → 0, which together
with (3.8) yields lim infk→∞〈Aynk , x – ynk 〉 ≥ 0 ∀x ∈ C.
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Next we show that limn→∞ ‖xn – Trxn‖ = 0 for r = 1, . . . , N . Indeed, note that, for i =
1, . . . , N ,

2‖xn – xn+i‖ + ‖xn+i – Tn+ixn+i‖
≥ ‖xn – xn+i‖ + ‖Tn+ixn+i – Tn+ixn‖ + ‖xn+i – Tn+ixn+i‖
≥ ‖xn – Tn+ixn‖.

Hence from (3.6) and the assumption xn – xn+1 → 0 we get limn→∞ ‖xn – Tn+ixn‖ = 0 for
i = 1, . . . , N . This immediately implies that

lim
n→∞

∥
∥(Tr – I)xn

∥
∥ = 0 for r = 1, . . . , N . (3.9)

We now take a sequence {εk} ⊂ (0, 1) satisfying εk ↓ 0 as k → ∞. For all k ≥ 1, we denote
by mk the smallest positive integer such that

εk + 〈Aynj , x – ynj〉 ≥ 0 ∀j ≥ mk . (3.10)

Since {εk} is decreasing, it is clear that {mk} is increasing. Noticing that {ymk } ⊂ C guaran-
tees Aymk �= 0 ∀k ≥ 1, we set umk = Aymk

‖Aymk ‖2 , we get 〈Aymk , umk 〉 = 1 ∀k ≥ 1. So, from (3.10)
we get 〈Aymk , x + εkumk – ymk 〉 ≥ 0 ∀k ≥ 1. Again from the pseudomonotonicity of A we
have 〈A(x + εkumk ), x + εkumk – ymk 〉 ≥ 0 ∀k ≥ 1. This immediately leads to

〈Ax, x – ymk 〉 ≥ 〈

Ax – A(x + εkumk ), x + εkumk – ymk

〉

– εk〈Ax, umk 〉 ∀k ≥ 1. (3.11)

We claim limk→∞ εkumk = 0. As fact, from wnk ⇀ z and wn – yn → 0, we obtain ynk ⇀ z.
So, {yn} ⊂ C guarantees z ∈ C. Again from the sequentially weak continuity of A, one
knows Aynk ⇀ Az. Thus, one has Az �= 0 (otherwise, z is a solution). Taking into ac-
count the sequentially weak lower semicontinuity of the norm ‖ · ‖, one gets 0 < ‖Az‖ ≤
lim infk→∞ ‖Aynk ‖. Note that {ymk } ⊂ {ynk } and εk ↓ 0 as k → ∞. So it follows that 0 ≤
lim supk→∞ ‖εkumk ‖ = lim supk→∞

εk
‖Aymk ‖ ≤ lim supk→∞ εk

lim infk→∞ ‖Aynk ‖ = 0. Hence εkumk → 0.
Next one claims z ∈ Ω . Indeed, from wn – xn → 0 and wnk ⇀ z, we get xnk ⇀ z. From

(3.9) we have (xnk – Trxnk ) → 0 for r = 1, . . . , N . Note that Lemma 2.5 guarantees the demi-
closedness of I – Tr at zero for r = 1, . . . , N . Thus z ∈ Fix(Tr). Since r is an arbitrary element
in the finite set {1, . . . , N}, we get z ∈ ⋂N

r=1 Fix(Tr). Meanwhile, from (wn – zn) → 0 and
wnk ⇀ z, we get znk ⇀ z. From (3.7) we have (znk – Tznk ) → 0. From Lemma 2.5 it follows
that I – T is demiclosed at zero, and hence we get (I – T)z = 0, i.e., z ∈ Fix(T). On the other
hand, letting k → ∞, we deduce that the right hand side of (3.11) tends to zero by the uni-
form continuity of A, the boundedness of {wmk }, {umk } and the limit limk→∞ εkumk = 0.
Thus, we get 〈Ax, x – z〉 = lim infk→∞〈Ax, x – ymk 〉 ≥ 0 ∀x ∈ C. By Lemma 2.3 we have
z ∈ VI(C, A). Therefore, z ∈ ⋂N

i=0 Fix(Ti) ∩ VI(C, A) = Ω . This completes the proof. �

Theorem 3.1 Let the sequence {xn} be generated by Algorithm 3.1. Then

xn → x∗ ∈ Ω ⇔
⎧

⎨

⎩

xn – xn+1 → 0,

xn – yn → 0,

where x∗ ∈ Ω is a unique solution to the VIP: 〈(ρF – f )x∗, p – x∗〉 ≥ 0 ∀p ∈ Ω .
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Proof First of all, since lim supn→∞ βn < 1 and lim infn→∞ βn > 0, we may assume, without
loss of generality, that {βn} ⊂ [a, b] ⊂ (0, 1). one asserts that PΩ (f + I –ρF) is a contraction.
This sends to the situation that PΩ (f + I – ρF) is a contraction. Then PΩ (f + I – ρF) has
a unique fixed point. Say x∗ ∈ H , that is, x∗ = PΩ (f + I – ρF)x∗. Thus, there is a unique
solution x∗ ∈ Ω =

⋂N
i=0 Fix(Ti) ∩ VI(C, A) to the VIP

〈

(ρF – f )x∗, p – x∗〉 ≥ 0 ∀p ∈ Ω . (3.12)

It is now easy to see that the necessity of the theorem is valid. Indeed, if xn → x∗ ∈ Ω =
⋂N

i=0 Fix(Ti) ∩ VI(C, A), then x∗ = Tix∗ for i = 0, 1, . . . , N and x∗ = PC(x∗ – τnAx∗), which,
together with Algorithm 3.1, imply that

∥
∥wn – x∗∥∥ =

∥
∥Tnxn – x∗ + αn(Tnxn – Tnxn–1)

∥
∥

≤ ∥
∥xn – x∗∥∥ + αn‖xn – xn–1‖ → 0 (n → ∞),

and hence

‖yn – xn‖ ≤ ∥
∥yn – x∗∥∥ +

∥
∥xn – x∗∥∥

=
∥
∥PC(wn – τnAwn) – PC

(

x∗ – τnAx∗)∥∥ +
∥
∥xn – x∗∥∥

≤ ∥
∥wn – x∗∥∥ + τn

∥
∥Awn – Ax∗∥∥ +

∥
∥xn – x∗∥∥

≤ (1 + γ L)
∥
∥wn – x∗∥∥ +

∥
∥xn – x∗∥∥ → 0 (n → ∞).

In addition, it is clear that

‖xn – xn+1‖ ≤ ∥
∥xn – x∗∥∥ +

∥
∥xn+1 – x∗∥∥ → 0 (n → ∞).

Next we show the sufficiency of the theorem. To this aim, we assume limn→∞(‖xn –
xn+1‖ + ‖xn – yn‖) = 0 and divide the proof of the sufficiency into several steps.

Step 1. We show that {xn} is bounded. Indeed, take an arbitrary p ∈ Ω =
⋂N

i=0 Fix(Ti) ∩
VI(C, A). Then Tp = p, Tnp = p ∀n ≥ 1, and (3.5) holds, i.e.,

‖un – p‖2 + (1 – μ)‖wn – yn‖2 + (1 – μ)‖un – yn‖2 ≤ ‖wn – p‖2. (3.13)

This immediately implies that

‖un – p‖ ≤ ‖wn – p‖ ∀n ≥ 1. (3.14)

From the definition of wn, we get

‖wn – p‖ ≤ ‖Tnxn – p‖ + σn‖Tnxn – Tnxn–1‖ ≤ ‖xn – p‖ + αn · σn

αn
‖xn – xn–1‖. (3.15)

Since supn≥1
σn
αn

< ∞ and supn≥1 ‖xn – xn–1‖ < ∞, supn≥1
σn
αn

‖xn – xn–1‖ < ∞, which hence
guarantees that there is M1 > 0 such that

σn

αn
‖xn – xn–1‖ ≤ M1 ∀n ≥ 1. (3.16)
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Combining (3.14), (3.15) and (3.16), we obtain

‖un – p‖ ≤ ‖wn – p‖ ≤ αnM1 + ‖xn – p‖ ∀n ≥ 1. (3.17)

So, from Algorithm 3.1, Lemma 2.7 and (3.17) it follows that

‖zn – p‖ ≤ (1 – αnτ )‖un – p‖ + αn
∥
∥(f – ρF)p

∥
∥ + αnδ‖xn – p‖

≤ (1 – αnτ )
(‖xn – p‖ + αnM1

)

+ αn
∥
∥(f – ρF)p

∥
∥ + αnδ‖xn – p‖

≤ (

1 – αn(τ – δ)
)‖xn – p‖ + αn

(

M1 +
∥
∥(f – ρF)p

∥
∥
)

,

which, together with Lemma 2.6 and (γn + δn)ζ ≤ γn, yields

‖xn+1 – p‖ ≤ (1 – βn)
∥
∥
∥
∥

1
1 – βn

[

γn(zn – p) + δn(Tzn – p)
]
∥
∥
∥
∥

+ βn‖xn – p‖

≤ (1 – βn)‖zn – p‖ + βn‖xn – p‖
≤ (1 – βn)

[(

1 – αn(τ – δ)
)‖xn – p‖ + αn

(

M1 +
∥
∥(f – ρF)p

∥
∥
)]

+ βn‖xn – p‖
= αn(1 – βn)

(

M1 +
∥
∥(f – ρF)p

∥
∥
)

+
[

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖

= αn(1 – βn)(τ – δ)
M1 + ‖(f – ρF)p‖

τ – δ
+

[

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖

≤ max

{
M1 + ‖(f – ρF)p‖

τ – δ
,‖xn – p‖

}

.

By induction, we obtain ‖xn – p‖ ≤ max{‖x1 – p‖, M1+‖(ρF–f )p‖
τ–δ

} ∀n ≥ 1. Thus, {xn} is a
bounded point sequence, and so are the sequences {un}, {wn}, {yn}, {zn}, {f (xn)}, {Tzn},
{Fun}, {Tnxn}.

Step 2. We show that

(1 – αnτ )(1 – βn)(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] ≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + αnM4,

for some M4 > 0. Indeed, utilizing Lemma 2.6, Lemma 3.2 and the convexity of ‖ · ‖2, from
(γn + δn)ζ ≤ γn we get

‖xn+1 – p‖2

≤ (1 – βn)
∥
∥
∥
∥

1
1 – βn

[

γn(zn – p) + δn(Tzn – p)
]
∥
∥
∥
∥

2

+ βn‖xn – p‖2

≤ (1 – βn)‖zn – p‖2 + βn‖xn – p‖2

≤ (1 – βn)
{

αnδ‖xn – p‖2 + (1 – αnτ )‖wn – p‖2 + βn‖xn – p‖2

– (1 – αnτ )(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] + 2αn

〈

(f – ρF)p, zn – p
〉}

≤ (1 – βn)
{

αnδ‖xn – p‖2 + (1 – αnτ )‖wn – p‖2

– (1 – αnτ )(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] + αnM2

}

+ βn‖xn – p‖2, (3.18)
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where supn≥1 2‖(f – ρF)p‖‖zn – p‖ ≤ M2 for some M2 > 0. Also, from (3.17) we have

‖wn – p‖2 ≤ (‖xn – p‖ + αnM1
)2

= αn
(

2M1‖xn – p‖ + αnM2
1
)

+ ‖xn – p‖2

≤ αnM3 + ‖xn – p‖2, (3.19)

where supn≥1(2M1‖xn – p‖ + βnM2
1) ≤ M3 for some M3 > 0. Substituting (3.19) for (3.18),

we obtain

‖xn+1 – p‖2

≤ (1 – βn)
{

αnδ‖xn – p‖2 + (1 – αnτ )
[‖xn – p‖2 + αnM3

]

+ βn‖xn – p‖2

– (1 – αnτ )(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] + αnM2

}

= (1 – βn)
{(

1 – αn(τ – δ)
)‖xn – p‖2 + (1 – αnτ )αnM3 + βn‖xn – p‖2

– (1 – αnτ )(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] + αnM2

}

=
[

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖2 + (1 – βn)(1 – αnτ )αnM3

– (1 – αnτ )(1 – βn)(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] + (1 – βn)αnM2

≤ ‖xn – p‖2 – (1 – αnτ )(1 – βn)(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] + αnM4, (3.20)

where M4 := M2 + M3. This immediately implies that

(1 – αnτ )(1 – βn)(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2]

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + αnM4. (3.21)

Step 3. We show that

‖xn+1 – p‖2 ≤ [

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖2 + αn(1 – βn)(τ – δ)

×
[

2
τ – δ

〈

(f – ρF)p, zn – p
〉

+
M

τ – δ
· σn

αn
· 3‖xn – xn–1‖

]

for some M > 0. Indeed, we have

‖wn – p‖2 ≤ (‖xn – p‖ + σn‖xn – xn–1‖
)2

= ‖xn – p‖2 + σn‖xn – xn–1‖
(

2‖xn – p‖ + σn‖xn – xn–1‖
)

. (3.22)

Combining (3.18) and (3.22), we have

‖xn+1 – p‖2

≤ βn‖xn – p‖2 + (1 – βn)
[

αnδ‖xn – p‖2

+ (1 – αnτ )‖wn – p‖2 + 2αn
〈

(f – ρF)p, zn – p
〉]

≤ βn‖xn – p‖2 + (1 – βn)
{

αnδ‖xn – p‖2 + (1 – αnτ )
[‖xn – p‖2
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+ σn‖xn – xn–1‖
(

2‖xn – p‖ + σn‖xn – xn–1‖
)]

+ 2αn
〈

(f – ρF)p, zn – p
〉}

≤ βn‖xn – p‖2 + (1 – βn)
{(

1 – αn(τ – δ)
)‖xn – p‖2

+ σn‖xn – xn–1‖
(

2‖xn – p‖ + σn‖xn – xn–1‖
)

+ 2αn
〈

(f – ρF)p, zn – p
〉}

=
[

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖2 + (1 – βn)σn‖xn – xn–1‖

× (

2‖xn – p‖ + σn‖xn – xn–1‖
)

+ 2αn(1 – βn)
〈

(f – ρF)p, zn – p
〉

≤ [

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖2 + αn(1 – βn)(τ – δ)

[
2

τ – δ

〈

(f – ρF)p, zn – p
〉

+
M

τ – δ
· σn

αn
· 3‖xn – xn–1‖

]

, (3.23)

where supn≥1{‖xn – p‖,αn‖xn – xn–1‖} ≤ M for some M > 0.
Step 4. We show that {xn} converges strongly to a unique solution x∗ ∈ Ω to the VIP

(3.12). Indeed, putting p = x∗, we deduce from (3.23) that

∥
∥xn+1 – x∗∥∥2 ≤ [

1 – αn(1 – βn)(τ – δ)
]∥
∥xn – x∗∥∥2

+ αn(1 – βn)(τ – δ)
[

2
τ – δ

〈

(f – ρF)x∗, zn – x∗〉 +
M

τ – δ
· σn

αn
· 3‖xn – xn–1‖

]

. (3.24)

By Lemma 2.4, it suffices to show that lim supn→∞〈(f – ρF)x∗, zn – x∗〉 ≤ 0. From (3.21),
xn – xn+1 → 0, αn → 0 and {βn} ⊂ [a, b] ⊂ (0, 1), we obtain

lim sup
n→∞

(1 – αnτ )(1 – b)(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2]

≤ lim sup
n→∞

(1 – αnτ )(1 – βn)(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2]

≤ lim sup
n→∞

[‖xn – p‖2 + αnM4 – ‖xn+1 – p‖2]

≤ lim sup
n→∞

[‖xn – p‖2 – ‖xn+1 – p‖2] + lim sup
n→∞

αnM4

≤ lim sup
n→∞

(‖xn – p‖ + ‖xn+1 – p‖)‖xn – xn+1‖ = 0.

This immediately implies that

lim
n→∞‖wn – yn‖ = 0 and lim

n→∞‖un – yn‖ = 0. (3.25)

Since zn = (I – αnρF)un + αnf (xn) with un := PCn (wn – τnAyn), from (3.25) and the bound-
edness of {xn}, {un}, we get

‖zn – yn‖ =
∥
∥αnf (xn) – αnρFun + un – yn

∥
∥

≤ ‖un – yn‖ + αn
(∥
∥f (xn)

∥
∥ + ‖ρFun‖

) → 0 (n → ∞), (3.26)

and hence

‖zn – xn‖ ≤ ‖zn – yn‖ + ‖yn – xn‖ → 0 (n → ∞) (3.27)
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(due to the assumption ‖xn – yn‖ → 0). Obviously, the assumption ‖xn – yn‖ → 0 together
with (3.25) and (3.26), guarantees that, as n → ∞, ‖wn – xn‖ ≤ ‖wn – yn‖ + ‖yn – xn‖ → 0
and ‖wn – zn‖ ≤ ‖wn – yn‖ + ‖yn – zn‖ → 0. From the property of {zn}, it follows that there
is a subsequence {znk } of {zn} such that

lim sup
n→∞

〈

(f – ρF)x∗, zn – x∗〉 = lim
k→∞

〈

(f – ρF)x∗, znk – x∗〉. (3.28)

Since H is reflexive and {zn} is bounded, it is guaranteed that znk ⇀ z̃. Hence from (3.28)
one gets

lim sup
n→∞

〈

(f – ρF)x∗, zn – x∗〉 = lim
k→∞

〈

(f – ρF)x∗, znk – x∗〉 =
〈

(f – ρF)x∗, z̃ – x∗〉. (3.29)

It is easy to see from wn – zn → 0 and znk ⇀ z̃ that wnk ⇀ z̃. Since xn – xn+1 → 0, wn – xn →
0, wn – yn → 0, wn – zn → 0 and wnk ⇀ z̃, by Lemma 3.3 we infer that z̃ ∈ Ω . Therefore,
from (3.12) and (3.29) we conclude that

lim sup
n→∞

〈

(f – ρF)x∗, zn – x∗〉 =
〈

(f – ρF)x∗, z̃ – x∗〉 ≤ 0. (3.30)

Note that {βn} ⊂ [a, b] ⊂ (0, 1), {αn(1 – βn)(τ – δ)} ⊂ [0, 1],
∑∞

n=1 αn(1 – βn)(τ – δ) = ∞, and

lim sup
n→∞

[
2

τ – δ

〈

(f – ρF)x∗, zn – x∗〉 +
M

τ – δ
· σn

αn
· 3‖xn – xn–1‖

]

≤ 0. (3.31)

Consequently, applying Lemma 2.4 to (3.24), we have limn→0 ‖xn – x∗‖ = 0. This completes
the proof. �

Next, we introduce another composite inertial subgradient–extragradient algorithms
with a line-search process.

Algorithm 3.2
Initialization: Given γ > 0, l ∈ (0, 1), μ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Set wn = σn(Tnxn – Tnxn–1) + Tnxn and compute yn = PC(wn – τnAwn), where τn is

chosen to be the largest τ ∈ {γ ,γ l,γ l2, . . .} satisfying

τ‖Awn – Ayn‖ ≤ μ‖wn – yn‖. (3.32)

Step 2. Compute zn = (I – αnρF)PCn (wn – τnAyn) + αnf (xn) with Cn := {x ∈ H : 〈wn –
τnAwn – yn, x – yn〉 ≤ 0}.

Step 3. Compute

xn+1 = βnwn + γnzn + δnTzn. (3.33)

Again set n := n + 1 and go to Step 1.

It is worth pointing out that Lemmas 3.1, 3.2 and 3.3 are still valid for Algorithm 3.2.
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Theorem 3.2 Let the sequence {xn} be generated by Algorithm 3.2. Then

xn → x∗ ∈ Ω ⇔
⎧

⎨

⎩

xn – xn+1 → 0,

xn – yn → 0,

where x∗ ∈ Ω is a unique solution to the VIP: 〈(ρF – f )x∗, p – x∗〉 ≥ 0 ∀p ∈ Ω .

Proof Utilizing the same arguments as in the proof of Theorem 3.1, we deduce that there
exists a unique solution x∗ ∈ Ω =

⋂N
i=0 Fix(Ti) ∩ VI(C, A) to the VIP (3.12), and that the

necessity of the theorem is valid.
Next we show the sufficiency of the theorem. To the aim, we assume limn→∞(‖xn –

xn+1‖ + ‖xn – yn‖) = 0 and divide the proof of the sufficiency into several steps.
Step 1. We show that {xn} is bounded. Indeed, utilizing the same arguments as in Step 1

of the proof of Theorem 3.1, we obtain inequalities (3.13)–(3.17). So, from Algorithm 3.2,
Lemma 2.7 and (3.17) it follows that

‖zn – p‖ =
∥
∥(I – αnρF)un – (I – αnρF)p + αn(f – ρF)p + αn

(

f (xn) – f (p)
)∥
∥

≤ αn
(∥
∥(f – ρF)p

∥
∥ + M1

)

+
(

1 – αn(τ – δ)
)‖xn – p‖,

which, together with Lemma 2.6 and (γn + δn)ζ ≤ γn, yields

‖xn+1 – p‖ =
∥
∥γn(zn – p) + δn(Tzn – p) + βn(wn – p)

∥
∥

≤ (1 – βn)
∥
∥
∥
∥

1
1 – βn

[

γn(zn – p) + δn(Tzn – p)
]
∥
∥
∥
∥

+ βn‖wn – p‖

≤ (1 – βn)‖zn – p‖ + βn
(

αnM1 + ‖xn – p‖)

≤ (1 – βn)
[(

1 – αn(τ – δ)
)‖xn – p‖ + αn

(

M1 +
∥
∥(f – ρF)p

∥
∥
)]

+ βn
(

αnM1 + ‖xn – p‖)

= αn(1 – βn)
(

M1

1 – βn
+

∥
∥(f – ρF)p

∥
∥

)

+
[

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖

≤ αn(1 – βn)(τ – δ) ·
M1
1–b + ‖(f – ρF)p‖

τ – δ
+

[

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖

≤ max

{ M1
1–b + ‖(f – ρF)p‖

τ – δ
,‖xn – p‖

}

.

By induction, we obtain ‖xn – p‖ ≤ max{
M1
1–b +‖(f –ρF)p‖

τ–δ
,‖x1 – p‖}∀n ≥ 1. Thus, {xn} is

bounded point sequence. Hence the sequences {un}, {wn}, {yn}, {zn}, {f (xn)}, {Tzn}, {Fun},
{Tnxn} are also bounded sequences.

Step 2. We show that

(1 – αnτ )(1 – βn)(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2]

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + αnM4,
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for some M4 > 0. Indeed, utilizing Lemma 2.6, Lemma 3.2 and the convexity of ‖ · ‖2, from
(γn + δn)ζ ≤ γn we get

‖xn+1 – p‖2

=
∥
∥γn(zn – p) + δn(Tzn – p) + βn(wn – p)

∥
∥

2

≤ (1 – βn)
∥
∥
∥
∥

1
1 – βn

[

γn(zn – p) + δn(Tzn – p)
]
∥
∥
∥
∥

2

+ βn‖wn – p‖2

≤ (1 – βn)‖zn – p‖2 + βn‖wn – p‖2

≤ (1 – βn)
{

αnδ‖xn – p‖2 + (1 – αnτ )‖wn – p‖2 + βn‖wn – p‖2

– (1 – αnτ )(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] + 2αn

〈

(f – ρF)p, zn – p
〉}

≤ (1 – βn)
{

αnδ‖xn – p‖2 + (1 – αnτ )‖wn – p‖2 + βn‖wn – p‖2

– (1 – αnτ )(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] + αnM2

}

, (3.34)

where supn≥1 2‖(f – ρF)p‖‖zn – p‖ ≤ M2 for some M2 > 0. Also, from (3.17) we have

‖wn – p‖2 ≤ (‖xn – p‖ + αnM1
)2

= αn
(

2M1‖xn – p‖ + αnM2
1
)

+ ‖xn – p‖2

≤ αnM3 + ‖xn – p‖2, (3.35)

where supn≥1(2M1‖xn – p‖ + βnM2
1) ≤ M3 for some M3 > 0. Substituting (3.35) for (3.34)

guarantees

‖xn+1 – p‖2

≤ βn
[‖xn – p‖2 + αnM3

]

+ (1 – βn)
{

αnδ‖xn – p‖2 + (1 – αnτ )
[‖xn – p‖2

+ αnM3
]

– (1 – αnτ )(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] + αnM2

}

= βn‖xn – p‖2 + βnαnM3 + (1 – βn)
{(

1 – αn(τ – δ)
)‖xn – p‖2

+ (1 – αnτ )αnM3 – (1 – αnτ )(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] + αnM2

}

=
[

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖2 + βnαnM3 + (1 – βn)(1 – αnτ )αnM3

– (1 – αnτ )(1 – βn)(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] + (1 – βn)αnM2

≤ ‖xn – p‖2 – (1 – αnτ )(1 – βn)(1 – μ)
[‖wn – yn‖2 + ‖un – yn‖2] + αnM4, (3.36)

where M4 := M2 + M3. This immediately implies that

(1 – αnτ )(1 – μ)(1 – βn)
[‖wn – yn‖2 + ‖un – yn‖2]

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + αnM4. (3.37)
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Step 3. We show that

‖xn+1 – p‖2 ≤ [

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖2 + αn(1 – βn)(τ – δ)

×
[

2
τ – δ

〈

(f – ρF)p, zn – p
〉

+
M

τ – δ
· σn

αn
· 3

1 – b
‖xn – xn–1‖

]

for some M > 0. Indeed, we have

‖wn – p‖2 ≤ (

σn‖xn – xn–1‖ + ‖xn – p‖)2

= σn‖xn – xn–1‖
(

2‖xn – p‖ + σn‖xn – xn–1‖
)

+ ‖xn – p‖2. (3.38)

Combining (3.34) and (3.38), we have

‖xn+1 – p‖2

≤ (1 – βn)
[

αnδ‖xn – p‖2 + (1 – αnτ )‖wn – p‖2

+ 2αn
〈

(f – ρF)p, zn – p
〉]

+ βn‖wn – p‖2

≤ βn
[‖xn – p‖2 + σn‖xn – xn–1‖

(

2‖xn – p‖ + σn‖xn – xn–1‖
)]

+ (1 – βn)
{

αnδ‖xn – p‖2

+ (1 – αnτ )
[‖xn – p‖2 + σn‖xn – xn–1‖

(

2‖xn – p‖ + σn‖xn – xn–1‖
)]

+ 2αn
〈

(f – ρF)p, zn – p
〉}

≤ βnσn‖xn – xn–1‖
(

2‖xn – p‖ + σn‖xn – xn–1‖
)

+ βn‖xn – p‖2

+ (1 – βn)
{(

1 – αn(τ – δ)
)‖xn – p‖2 + σn‖xn – xn–1‖

(

2‖xn – p‖ + σn‖xn – xn–1‖
)

+ 2αn
〈

(f – ρF)p, zn – p
〉}

=
[

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖2 + σn‖xn – xn–1‖

× (

2‖xn – p‖ + σn‖xn – xn–1‖
)

+ 2αn(1 – βn)
〈

(f – ρF)p, zn – p
〉

≤ [

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖2 + αn(1 – βn)(τ – δ)

[
2

τ – δ

〈

p – zn, (ρF – f )p
〉

+
M

(1 – βn)(τ – δ)
· σn

αn
· 3‖xn – xn–1‖

]

≤ [

1 – αn(1 – βn)(τ – δ)
]‖xn – p‖2 + αn(1 – βn)(τ – δ)

[
2

τ – δ

〈

p – zn, (ρF – f )p
〉

+
M

τ – δ
· σn

αn
· 3

1 – b
‖xn – xn–1‖

]

, (3.39)

where supn≥1{‖xn – p‖,αn‖xn – xn–1‖} ≤ M for some M > 0.
Step 4. We show that {xn} converges strongly to a unique solution x∗ ∈ Ω to the VIP

(3.12). Indeed, utilizing the same argument as in Step 4 of the proof of Theorem 3.1, we
obtain the desired assertion. This completes the proof. �

Remark 3.1 Compared with the corresponding results in Kraikaew and Saejung [23],
Thong and Hieu [24, 25], our results improve and extend them in the following aspects.
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(i) The problem of finding an element of VI(C, A) in [23] is extended to develop
our problem of finding an element of

⋂N
i=0 Fix(Ti) ∩ VI(C, A) where Ti is nonexpan-

sive for i = 1, . . . , N and T0 = T is strictly pseudocontractive. The Halpern subgradient–
extragradient method for solving the VIP in [23] is extended to develop our composite
inertial subgradient–extragradient method with line-search process for solving the VIP
and CFPP, which is based on an inertial subgradient–extragradient method with a line-
search process, a hybrid steepest-descent method, a viscosity approximation method and
a Mann iteration method.

(ii) The problem of finding an element of VI(C, A) in [24] is extended to develop
our problem of finding an element of

⋂N
i=0 Fix(Ti) ∩ VI(C, A) where Ti is nonexpan-

sive for i = 1, . . . , N and T0 = T is strictly pseudocontractive. The inertial subgradient–
extragradient method with weak convergence for solving the VIP in [24] is extended to
develop our composite inertial subgradient–extragradient method with line-search pro-
cess (which is strongly convergent) for solving the VIP and CFPP, which is based on an
inertial subgradient–extragradient method with line-search process, a hybrid steepest-
descent method, a viscosity approximation method and a Mann iteration method.

(iii) The problem of finding an element of VI(C, A) ∩ Fix(T) (where A is monotone and
T is quasi-nonexpansive) in [23] is extended to develop our problem of finding an element
of

⋂N
i=0 Fix(Ti) ∩ VI(C, A) where A is pseudomonotone, Ti is nonexpansive for i = 1, . . . , N

and T0 = T is strictly pseudocontractive. The inertial subgradient–extragradient method
with line-search (which is weakly convergent) for solving the VIP and FPP in [24] is ex-
tended to develop our composite inertial subgradient–extragradient method with line-
search process (which is strongly convergent) for solving the VIP and CFPP, which is
based on an inertial subgradient–extragradient method with a line-search process, a hy-
brid steepest-descent method, a viscosity approximation method and a Mann iteration
method. It is worth pointing out that the inertial subgradient–extragradient method with
a line-search process in [23] combines the inertial subgradient–extragradient method [24]
with the Mann iteration method.

4 An example
In this section, our main results are applied to solve the VIP and CFPP in an illustrated
example. The initial point x0 = x1 is randomly chosen in R. Take f (x) = F(x) = 1

2 x, γ = l =
μ = 1

2 , σn = αn = 1
n+1 , βn = 1

3 , γn = 1
2 , δn = 1

6 and ρ = 2. Then we know that δ = κ = η = 1
2 ,

and

τ = 1 –
√

1 – ρ
(

2η – ρκ2
)

= 1 –

√

1 – 2
(

2 · 1
2

– 2
(

1
2

)2)

= 1 ∈ (0, 1].

We first provide an example of Lipschitz continuous and pseudomonotone mapping A,
strictly pseudocontractive mapping T and nonexpansive mapping T1 with Ω = Fix(T1) ∩
Fix(T) ∩ VI(C, A) �= ∅. Let C = [–1, 0] and H = R with the inner product 〈a, b〉 = ab and
induced norm ‖ · ‖ = | · |. Let A, T , T1 : H → H be defined as Ax := 1

1+| sin x| – 1
1+|x| , Tx :=

1
2 x + 3

8 sin x and T1x := sin x for all x ∈ H . Now, we first show that A is pseudomonotone
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and Lipschitz continuous with L = 2. Indeed, for all x, y ∈ H we have

‖Ax – Ay‖ =
∣
∣
∣
∣

1
1 + ‖ sin x‖ –

1
1 + ‖x‖ –

1
1 + ‖ sin y‖ +

1
1 + ‖y‖

∣
∣
∣
∣

≤
∣
∣
∣
∣

1
1 + ‖x‖ –

1
1 + ‖y‖

∣
∣
∣
∣

+
∣
∣
∣
∣

1
1 + ‖ sin x‖ –

1
1 + ‖ sin y‖

∣
∣
∣
∣

=
∣
∣
∣
∣

1 + ‖y‖ – 1 – ‖x‖
(1 + ‖x‖)(1 + ‖y‖)

∣
∣
∣
∣

+
∣
∣
∣
∣

1 + ‖ sin y‖ – 1 – ‖ sin x‖
(1 + ‖ sin x‖)(1 + ‖ sin y‖)

∣
∣
∣
∣

=
∣
∣
∣
∣

‖y‖ – ‖x‖
(1 + ‖x‖)(1 + ‖y‖)

∣
∣
∣
∣

+
∣
∣
∣
∣

‖ sin y‖ – ‖ sin x‖
(1 + ‖ sin x‖)(1 + ‖ sin y‖)

∣
∣
∣
∣

≤ ‖x – y‖
(1 + ‖x‖)(1 + ‖y‖)

+
‖ sin x – sin y‖

(1 + ‖ sin x‖)(1 + ‖ sin y‖)

≤ ‖x – y‖ + ‖ sin x – sin y‖
≤ 2‖x – y‖.

This implies that A is Lipschitz continuous with L = 2. Next, we show that A is pseu-
domonotone. For any given x, y ∈ H , it is clear that

〈Ax, y – x〉 =
(

1
1 + | sin x| –

1
1 + |x|

)

(y – x) ≥ 0

⇒ 〈Ay, y – x〉 =
(

1
1 + | sin y| –

1
1 + |y|

)

(y – x) ≥ 0.

Furthermore, it is easy to see that T is strictly pseudocontractive with constant ζ = 1
2 .

Indeed, we observe that, for all x, y ∈ H ,

‖Tx – Ty‖ ≤ 1
2
‖x – y‖ +

3
8
‖ sin x – sin y‖ ≤ ‖x – y‖ +

1
2
∥
∥(I – T)x – (I – T)y

∥
∥.

It is clear that (γn + δn)ζ = ( 1
2 + 1

6 ) · 1
2 ≤ 1

2 = γn for all n ≥ 1. In addition, it is clear that T1 is
nonexpansive and Fix(T1) = {0}. Therefore, Ω = Fix(T1) ∩ Fix(T) ∩ VI(C, A) = {0} �= ∅. In
this case, Algorithm 3.1 can be rewritten as follows:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = T1xn + 1
n+1 (T1xn – T1xn–1),

yn = PC(wn – τnAwn),

zn = 1
n+1 · 1

2 xn + n
n+1 PCn (wn – τnAyn),

xn+1 = 1
3 xn + 1

2 zn + 1
6 Tzn ∀n ≥ 1,

(4.1)

where for each n ≥ 1, Cn and τn are chosen as in Algorithm 3.2. Then, by Theorem 3.2, we
know that {xn} converges to 0 ∈ Ω = Fix(T1) ∩ Fix(T) ∩ VI(C, A) if and only if |xn – xn+1| +
|xn – yn| → 0 as n → ∞.



Ceng and Yuan Journal of Inequalities and Applications        (2019) 2019:274 Page 19 of 20

On the other hand, Algorithm 3.2 can be rewritten as follows:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = T1xn + 1
n+1 (T1xn – T1xn–1),

yn = PC(wn – τnAwn),

zn = 1
n+1 · 1

2 xn + n
n+1 PCn (wn – τnAyn),

xn+1 = 1
3 wn + 1

2 zn + 1
6 Tzn ∀n ≥ 1,

(4.2)

where for each n ≥ 1, Cn and τn are chosen as in Algorithm 3.2. Then, by Theorem 3.2, we
know that {xn} converges to 0 ∈ Ω = Fix(T1) ∩ Fix(T) ∩ VI(C, A) if and only if |xn – xn+1| +
|xn – yn| → 0 as n → ∞.

Acknowledgements
We thank the two anonymous referees for useful suggestions, which improved the presentation of this paper a lot.

Funding
This research was supported by the Natural Science Foundation of Shandong Province of China (ZR2017LA001) and
Youth Foundation of Linyi University (LYDX2016BS023). The first author was partially supported by the Innovation
Program of Shanghai Municipal Education Commission (15ZZ068), Ph.D. Program Foundation of Ministry of Education of
China (20123127110002) and Program for Outstanding Academic Leaders in Shanghai City (15XD1503100).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The two authors contributed equally. Both authors read and approved the final version of the manuscript.

Author details
1Department of Mathematics, Shanghai Normal University, Shanghai, China. 2School of Mathematics and Statistics, Linyi
University, Linyi, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 May 2019 Accepted: 17 October 2019

References
1. Wang, Z.M.: Convergence theorems based on the shrinking projection method for hemi-relatively nonexpansive

mappings, variational inequalities and equilibrium problems. Nonlinear Funct. Anal. Appl. 22, 459–483 (2017)
2. Qin, X., Yao, J.C.: Weak and strong convergence of splitting algorithms in Banach spaces. Optimization (2019).

https://doi.org/10.1080/02331934.2019.1654475
3. Kim, J.K., Tuyen, T.M.: Alternating resolvent algorithms for finding a common zero of two accretive operators in

Banach spaces. J. Korean Math. Soc. 54, 1905–1926 (2017)
4. Qin, X., Yao, J.C.: A viscosity iterative method for a split feasibility problem. J. Nonlinear Convex Anal. 20, 1497–1506

(2019)
5. Takahahsi, W., Yao, J.C.: The split common fixed point problem for two finite families of nonlinear mappings in Hilbert

spaces. J. Nonlinear Convex Anal. 20, 173–195 (2019)
6. Ceng, L.C., et al.: Hybrid viscosity extragradient method for systems of variational inequalities, fixed points of

nonexpansive mappings, zero points of accretive operators in Banach spaces. Fixed Point Theory 19, 487–501 (2018)
7. Qin, X., An, N.T.: Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets. Comput.

Optim. Appl. (2019). https://doi.org/10.1007/s10589-019-00124-7
8. Cho, S.Y.: Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space. J. Appl. Anal.

Comput. 8, 19–31 (2018)
9. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Èkon. Mat. Metody 12,

747–756 (1976)
10. Qin, X., Yao, J.C.: Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators. J. Inequal.

Appl. 2016, 232 (2016)
11. Qin, X., Petrusel, A., Yao, J.C.: CQ iterative algorithms for fixed points of nonexpansive mappings and split feasibility

problems in Hilbert spaces. J. Nonlinear Convex Anal. 19, 157–165 (2018)
12. Bin Dehaish, B.A., et al.: Weak and strong convergence of algorithms for the sum of two accretive operators with

applications. J. Nonlinear Convex Anal. 16, 1321–1336 (2015)

https://doi.org/10.1080/02331934.2019.1654475
https://doi.org/10.1007/s10589-019-00124-7


Ceng and Yuan Journal of Inequalities and Applications        (2019) 2019:274 Page 20 of 20

13. Dehaish, B.A.B.: Weak convergence of a splitting algorithm in Hilbert spaces. J. Appl. Anal. Comput. 7, 427–438 (2017)
14. Qin, X., Yao, J.C.: Projection splitting algorithms for nonself operators. J. Nonlinear Convex Anal. 18, 925–935 (2017)
15. Chang, S.S., Wen, C.F., Yao, J.C.: Common zero point for a finite family of inclusion problems of accretive mappings in

Banach spaces. Optimization 67, 1183–1196 (2018)
16. Takahashi, W.: The shrinking projection method for a finite family of demimetric mappings with variational inequality

problems in a Hilbert space. Fixed Point Theory 19, 407–419 (2018)
17. Qin, X., Cho, S.Y., Wang, L.: Strong convergence of an iterative algorithm involving nonlinear mappings of

nonexpansive and accretive type. Optimization 67, 1377–1388 (2018)
18. Ansari, Q.H., Babu, F., Yao, J.C.: Regularization of proximal point algorithms in Hadamard manifolds. J. Fixed Point

Theory Appl. 21, 25 (2019)
19. Zhao, X., et al.: Linear regularity and linear convergence of projection-based methods for solving convex feasibility

problems. Appl. Math. Optim. 78, 613–641 (2018)
20. Nguyen, L.V., Qin, X.: Some results on strongly pseudomonotone quasi-variational inequalities. Set-Valued Var. Anal.

(2019). https://doi.org/10.1007/s11228-019-00508-1
21. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert

space. J. Optim. Theory Appl. 148, 318–335 (2011)
22. Cho, S.Y., Qin, X.: On the strong convergence of an iterative process for asymptotically strict pseudocontractions and

equilibrium problems. Appl. Math. Comput. 235, 430–438 (2014)
23. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving

variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)
24. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient method for variational inequality problems. Numer.

Algorithms 79, 597–610 (2018)
25. Thong, D.V., Hieu, D.V.: Inertial subgradient extragradient algorithms with line-search process for solving variational

inequality problems and fixed point problems. Numer. Algorithms 80, 1283–1307 (2019)
26. Qin, X., Cho, S.Y., Wang, L.: Iterative algorithms with errors for zero points of m-accretive operators. Fixed Point Theory

Appl. 2013, Article ID 148 (2013)
27. Ceng, L.C., Ansari, Q.H., Yao, J.C.: Some iterative methods for finding fixed points and for solving constrained convex

minimization problems. Nonlinear Anal. 74, 5286–5302 (2011)
28. An, N.T., Nam, N.M., Qin, X.: Solving k-center problems involving sets based on optimization techniques. Comput.

Optim. Appl. (2019). https://doi.org/10.1007/s10898-019-00834-6
29. Xue, Z., Zhou, H., Cho, Y.J.: Iterative solutions of nonlinear equations for m-accretive operators in Banach spaces. J.

Nonlinear Convex Anal. 1, 313–320 (2000)
30. Zhou, H.: Convergence theorems of fixed points for κ -strict pseudo-contractions in Hilbert spaces. Nonlinear Anal.

69, 456–462 (2008)
31. Yao, Y., Liou, Y.C., Kang, S.M.: Approach to common elements of variational inequality problems and fixed point

problems via a relaxed extragradient method. Comput. Math. Appl. 59, 3472–3480 (2010)
32. Yamada, Y.: The hybrid steepest-descent method for variational inequalities problems over the intersection of the

fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in
Feasibility and Optimization and Their Applications, pp. 473–504. North-Holland, Amsterdam (2001)

33. Xu, H.K., Kim, T.H.: Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory
Appl. 119, 185–201 (2003)

https://doi.org/10.1007/s11228-019-00508-1
https://doi.org/10.1007/s10898-019-00834-6

	Composite inertial subgradient extragradient methods for variational inequalities and ﬁxed point problems
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	An example
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


