# On extended interpolative Ćirić-Reich-Rus type $F$-contractions and an application 

Babak Mohammadi', Vahid Parvaneh ${ }^{2}$ and Hassen Aydi ${ }^{3,4 *}$
"Correspondence:
hassen.aydi@isima.rnu.tn
${ }^{3}$ Institut Supérieur d'Informatique et des Techniques de Communication, Université de Sousse, H. Sousse, Tunisia
${ }^{4}$ China Medical University Hospital, China Medical University, Taichung, Taiwan
Full list of author information is available at the end of the article


#### Abstract

The goal of this work is to introduce an extended interpolative Ćirić-Reich-Rus type contraction by the approach of Wardowski. We establish some related fixed point results (for single and multivalued-mappings). Some examples are presented to illustrate the main result. Moreover, we give an application to integral equations.

MSC: Primary 47H10; secondary 54H25 Keywords: Interpolation; Fixed point; Ćirić-Reich-Rus type contraction


## 1 Introduction

A Banach couple is two Banach spaces $\mathcal{A}$ and $\mathcal{B}$ topologically and algebraically imbedded in a separated topological linear space, and denoted by $(\mathcal{A}, \mathcal{B})$. The Banach space $\mathcal{E}$ is called intermediate for the spaces of the Banach couple $(\mathcal{A}, \mathcal{B})$ if the imbedding $\mathcal{A} \cap \mathcal{B} \subset$ $\mathcal{E} \subset \mathcal{A}+\mathcal{B}$ holds.

Let $(\mathcal{A}, \mathcal{B})$ and $(\mathcal{C}, \mathcal{D})$ be two Banach couples. A linear mapping $T$ acting from the space $\mathcal{A}+\mathcal{B}$ into $\mathcal{C}+\mathcal{D}$ is said to be a bounded operator from $(\mathcal{A}, \mathcal{B})$ into $(\mathcal{C}, \mathcal{D})$ if the restrictions of $T$ to $\mathcal{A}$ and $\mathcal{B}$ are bounded operators from $\mathcal{A}$ into $\mathcal{C}$ and $\mathcal{B}$ into $\mathcal{D}$, respectively.
Let $L(\mathcal{A B}, \mathcal{C D})$ be the linear space of all bounded operators from $(\mathcal{A}, \mathcal{B})$ into $(\mathcal{C}, \mathcal{D})$. Consider,

$$
\|T\|_{L(\mathcal{A B}, \mathcal{C D})}=\max \left\{\|T\|_{\mathcal{A} \rightarrow \mathcal{B}},\|T\|_{\mathcal{C} \rightarrow \mathcal{D}}\right\} .
$$

Note that $(L(\mathcal{A B}, \mathcal{C D}),\| \|)$ is a Banach space.

Definition $1.1([1])$ Let $(\mathcal{A}, \mathcal{B})$ and $(\mathcal{C}, \mathcal{D})$ be two Banach couples, and $\mathcal{E}$ (respectively $\mathcal{F}$ ) be intermediate for the spaces of the Banach couple $(\mathcal{A}, \mathcal{B})$ (respectively $(\mathcal{C}, \mathcal{D})$ ). The triple $(\mathcal{A}, \mathcal{B}, \mathcal{E})$ is called an interpolation triple, relative to $(\mathcal{C}, \mathcal{D}, \mathcal{F})$, if every bounded operator from $(\mathcal{A}, \mathcal{B})$ to $(\mathcal{C}, \mathcal{D})$ maps $\mathcal{E}$ to $\mathcal{F}$.
A triple $(\mathcal{A}, \mathcal{B}, \mathcal{E})$ is said to be an interpolation triple of type $\alpha(0 \leq \alpha \leq 1)$ relative to $(\mathcal{C}, \mathcal{D}, \mathcal{F})$ if it is an interpolation triple and the following

$$
\|T\|_{\mathcal{E} \rightarrow \mathcal{F}} \leq c\|T\|_{\mathcal{A} \rightarrow \mathcal{B}}^{\alpha} \cdot\|T\|_{\mathcal{C} \rightarrow \mathcal{D}}^{1-\alpha}
$$

holds for some constant $c$.

Inspired by the definition above, the interpolative Kannan contraction has been described in [2] as follows: Given a metric space ( $X, d$ ), the mapping $\Upsilon: X \rightarrow X$ is called an interpolative Kannan contraction if

$$
\begin{equation*}
d(\Upsilon \theta, \Upsilon \vartheta) \leq \lambda[d(\theta, \Upsilon \theta)]^{\alpha} \cdot[d(\vartheta, \Upsilon \vartheta)]^{1-\alpha} \tag{1.1}
\end{equation*}
$$

for all $\theta, \vartheta \in X$ with $\theta \neq \Upsilon \theta$, where $\lambda \in[0,1)$ and $\alpha \in(0,1)$. The main result in [2] is stated as follows.

Theorem 1.2 ([2]) Let $(X, d)$ be a complete metric space and $\Upsilon$ be an interpolative Kannan type contraction. Then $\Upsilon$ possesses a unique fixed point in $X$.

Karapınar, Agarwal and Aydi [3] gave a counter-example to Theorem 1.2, showing that the fixed point may be not unique. The following result is the corrected version of Theorem 1.2.

Theorem 1.3 ([3]) Let $\Upsilon$ be a self-mapping on the complete metric space ( $X, d$ ). Suppose that

$$
d(\Upsilon \theta, \Upsilon \vartheta) \leq \lambda[d(\theta, \Upsilon \theta)]^{\alpha} \cdot[d(\vartheta, \Upsilon \vartheta)]^{1-\alpha},
$$

for all $\theta, \vartheta \in X \backslash \operatorname{Fix}(\Upsilon)$, where $\operatorname{Fix}(\Upsilon)=\{\eta \in X, \Upsilon \eta=\eta\}$. Then there is a unique fixed point of $\Upsilon$.

On the other hand, Ćirić-Reich-Rus [4-9] generalized the Banach contraction principle [10].

Theorem 1.4 Let $(X, d)$ be a complete metric space. Let $\Upsilon: X \rightarrow X$ so that the following:

$$
d(\Upsilon \theta, \Upsilon \vartheta) \leq \alpha d(\theta, \vartheta)+\beta d(\theta, \Upsilon \theta)+\gamma d(\vartheta, \Upsilon \vartheta)
$$

holds, for all $\theta, \vartheta \in X$, where $\alpha, \beta, \gamma \geq 0$ such that $\alpha+\beta+\gamma<1$. Then $\Upsilon$ admits a unique fixed point.

Recently, Karapinar et al. [3] initiated the notion of interpolative Ćirić-Reich-Rus type contractions.

Definition 1.5 ([11]) Let $(X, d)$ be a metric space. We say that the self-mapping $\Upsilon$ on $X$ is an interpolative Cirić-Reich-Rus type contraction if there are $\lambda \in[0,1)$ and $\alpha, \beta>0$ with $\alpha+\beta<1$ so that

$$
\begin{equation*}
d(\Upsilon \theta, \Upsilon \vartheta) \leq \lambda[d(\theta, \vartheta)]^{\alpha} \cdot[d(\theta, \Upsilon \theta)]^{\beta} \cdot[d(\vartheta, \Upsilon \vartheta)]^{1-\alpha-\beta} \tag{1.2}
\end{equation*}
$$

for all $\theta, \vartheta \in X \backslash \operatorname{Fix}(\Upsilon)$.

Theorem 1.6 ([3]) An interpolative Cirić-Reich-Rus type contraction mapping on the complete metric space $(X, d)$ possesses a fixed point in $X$.

For other results dealing with interpolate approach, see [11-14]. On the other hand in 2012, Wardowski [15] gave a new generalization of the Banach contraction by introducing the notion of $F$-contractions. For related results, see [16-20]. Throughout this paper, $\mathbb{N}, \mathbb{R}$ and $\mathbb{R}^{+}$stand for the set of all natural numbers, real numbers and positive real numbers, respectively. $\mathcal{F}$ represents the collection of all functions $F:(0, \infty) \rightarrow \mathbb{R}$ so that:
(F1) $F$ is strictly increasing.
(F2) For each sequence $\left\{\alpha_{n}\right\}$ in $(0, \infty), \lim _{n \rightarrow \infty} \alpha_{n}=0$ iff $\lim _{n \rightarrow \infty} F\left(\alpha_{n}\right)=-\infty$.
(F3) There is $k \in(0,1)$ so that $\lim _{\alpha \rightarrow 0^{+}} \alpha^{k} F(\alpha)=0$.

Definition 1.7 ([15]) Let $(X, d)$ be a metric space. A mapping $\Upsilon: X \rightarrow X$ is said to be an $F$-contraction if there exist $\tau>0$ and $F \in \mathcal{F}$ such that for all $\Omega, \omega \in X$,

$$
\begin{equation*}
d(\Upsilon \Omega, \Upsilon \omega)>0 \quad \Longrightarrow \quad \tau+F(d(\Upsilon \Omega, \Upsilon \omega)) \leq F(d(\Omega, \omega)) \tag{1.3}
\end{equation*}
$$

Example 1.8 ([15]) The functions $F:(0, \infty) \rightarrow \mathbb{R}$ defined by
(1) $F(\alpha)=\ln \alpha$,
(2) $F(\alpha)=\ln \alpha+\alpha$,
(3) $F(\alpha)=\frac{-1}{\sqrt{\alpha}}$,
(4) $F(\alpha)=\ln \left(\alpha^{2}+\alpha\right)$,
belong to $\mathcal{F}$.

Wardowski [15] introduced a new proper generalization of Banach contraction as follows.

Theorem 1.9 ([15]) Let $(X, d)$ be a complete metric space and let $T: X \rightarrow X$ be an $F$ contraction. Then $\Upsilon$ has a unique fixed point, say $z$, in $X$ and for any point $\sigma \in X$, the sequence $\left\{\Upsilon^{j} \sigma\right\}$ converges to $z$.

By using the approach of Wardowski [15] (for single and multi-valued mappings), we initiate the concept of extended interpolative Ćirić-Reich-Rus type contractions. Some related fixed point results are also presented.

## 2 Main results

First, we introduce the notion of extended interpolative Ćirić-Reich-Rus type Fcontractions.

Definition 2.1 Let $(X, d)$ be a metric space. We say that the self-mapping $\Upsilon$ on $X$ is an extended interpolative Ćirić-Reich-Rus type $F$-contraction if there exist $\alpha, \beta \in(0,1)$ with $\alpha+\beta<1, \tau>0$ and $F \in \mathcal{F}$ such that

$$
\begin{equation*}
\tau+F(d(\Upsilon \theta, \Upsilon \vartheta)) \leq \alpha F(d(\theta, \vartheta))+\beta F(d(\theta, \Upsilon \theta))+(1-\alpha-\beta) F(d(\vartheta, \Upsilon \vartheta)) \tag{2.1}
\end{equation*}
$$

for all $\theta, \vartheta \in X \backslash \operatorname{Fix}(\Upsilon)$ with $d(\Upsilon \theta, \Upsilon \vartheta)>0$.

Theorem 2.2 An extended interpolative Ćirić-Reich-Rus type F-contraction selfmapping on a complete metric space admits a fixed point in $X$.

Proof Starting from $\theta_{0} \in X$, consider $\left\{\theta_{n}\right\}$, given as $\theta_{n}=T^{n}\left(\theta_{0}\right)$ for each positive integer $n$. If there is $n_{0}$ so that $\theta_{n_{0}}=\theta_{n_{0}+1}$, then $\theta_{n_{0}}$ is a fixed point of $T$. Suppose that $\theta_{n} \neq \theta_{n+1}$ for all $n \geq 0$. Taking $\theta=\theta_{n}$ and $\vartheta=\theta_{n-1}$ in (2.1), one writes

$$
\begin{align*}
\tau & +F\left(d\left(\theta_{n+1}, \theta_{n}\right)\right) \\
& =\tau+F\left(d\left(\Upsilon \theta_{n}, \Upsilon \theta_{n-1}\right)\right) \\
& \leq \alpha F\left(d\left(\theta_{n}, \theta_{n-1}\right)+\beta F\left(d\left(\theta_{n}, \Upsilon \theta_{n}\right)\right)+(1-\alpha-\beta) F\left(d\left(\theta_{n-1}, \Upsilon \theta_{n-1}\right)\right)\right. \\
& =\alpha F\left(d\left(\theta_{n}, \theta_{n-1}\right)\right)+\beta F\left(d\left(\theta_{n}, \theta_{n+1}\right)\right)+(1-\alpha-\beta) F\left(d\left(\theta_{n-1}, \theta_{n}\right)\right) \tag{2.2}
\end{align*}
$$

Suppose that $d\left(\theta_{n-1}, \theta_{n}\right)<d\left(\theta_{n}, \theta_{n+1}\right)$ for some $n \geq 1$. The inequality (2.2) yields

$$
\begin{equation*}
\tau+F\left(d\left(\theta_{n}, \theta_{n+1}\right)\right) \leq F\left(d\left(\theta_{n}, \theta_{n+1}\right)\right) \tag{2.3}
\end{equation*}
$$

which is a contradiction. Therefore, $d\left(\theta_{n}, \theta_{n+1}\right) \leq d\left(\theta_{n-1}, \theta_{n}\right)$ for all $n \geq 1$. Again from (2.2), we get

$$
\begin{equation*}
\tau+F\left(d\left(\theta_{n}, \theta_{n+1}\right)\right) \leq F\left(d\left(\theta_{n-1}, \theta_{n}\right)\right) \tag{2.4}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
F\left(d\left(\theta_{n}, \theta_{n+1}\right)\right) \leq F\left(d\left(\theta_{n-1}, \theta_{n}\right)\right)-\tau \leq \cdots \leq F\left(d\left(\theta_{0}, \theta_{1}\right)\right)-n \tau \tag{2.5}
\end{equation*}
$$

for all $n \geq 1$. Therefore $d\left(\theta_{n}, \theta_{n+1}\right)<d\left(\theta_{n-1}, \theta_{n}\right)$ for all $n \geq 1$. Taking $n \rightarrow \infty$ in (2.5) yields $\lim _{n \rightarrow \infty} F\left(d\left(\theta_{n}, \theta_{n+1}\right)\right)=-\infty$. From (F2), we get $\lim _{n \rightarrow \infty} d\left(\theta_{n}, \theta_{n+1}\right)=0$. Put $\gamma_{n}=d\left(\theta_{n}, \theta_{n+1}\right)$. Thus, $\lim _{n \rightarrow \infty} \gamma_{n}=0$. Then for any $n \in \mathbb{N}$, we have $\gamma_{n}{ }^{k}\left(F\left(\gamma_{n}\right)-F\left(\gamma_{0}\right)\right) \leq-\gamma_{n}{ }^{k} n \tau<0$. Thus, $\lim _{n \rightarrow \infty} \gamma_{n}{ }^{k} n=0$. So, there is $N \in \mathbb{N}$ so that $\gamma_{n} \leq \frac{1}{n^{\frac{1}{k}}}$ for all $n \geq N$. Now, for any $m, n \in \mathbb{N}$ with $m>n$, we get

$$
d\left(\theta_{n}, \theta_{m}\right) \leq \sum_{i=n}^{m-1} d\left(\theta_{i}, \theta_{i+1}\right)=\sum_{i=n}^{m-1} \gamma_{i} \leq \sum_{i=n}^{m-1} \frac{1}{i^{\frac{1}{k}}} .
$$

Since the last term of the above inequality tends to zero as $m, n \rightarrow \infty$, we have $d\left(\theta_{n}, \theta_{m}\right) \rightarrow$ 0 as $m, n \rightarrow \infty$, that is, $\left\{\theta_{n}\right\}$ is a Cauchy sequence, and so $\theta_{n} \rightarrow \theta$ as $n \rightarrow \infty$. Suppose to the contrary $\theta \neq \Upsilon \theta$.

We consider two cases.
Case 1: There is a subsequence $\left\{\theta_{n_{k}}\right\}$ such that $\Upsilon \theta_{n_{k}}=\Upsilon \theta$ for all $k \in \mathbb{N}$. In this case,

$$
d(\theta, \Upsilon \theta)=\lim _{k \rightarrow \infty} d\left(\theta_{n_{k}+1}, \Upsilon \theta\right)=\lim _{k \rightarrow \infty} d\left(\Upsilon \theta_{n_{k}}, \Upsilon \theta\right)=0
$$

Case 2: There is a natural number $N$ such that $\Upsilon \theta_{n} \neq \Upsilon \theta$ for all $n \geq N$. In this case, applying (2.1), for $\theta=\theta_{n}$ and $\vartheta=\theta$, we have

$$
\begin{align*}
\tau+F\left(d\left(\theta_{n+1}, \Upsilon \theta\right)\right) & =\tau+F\left(d\left(\Upsilon \theta_{n}, \Upsilon \theta\right)\right) \\
& \leq \alpha F\left(d\left(\theta_{n}, \theta\right)\right)+\beta F\left(d\left(\theta_{n}, \theta_{n+1}\right)\right)+(1-\alpha-\beta) F(d(\theta, \Upsilon \theta)) \tag{2.6}
\end{align*}
$$

Letting $n \rightarrow \infty$ in the inequality (2.6), we find that $\lim _{n \rightarrow \infty} F\left(d\left(\theta_{n+1}, \Upsilon \theta\right)\right)=-\infty$ and so $\lim _{n \rightarrow \infty} d\left(\theta_{n+1}, \Upsilon \theta\right)=0$. Therefore,

$$
d(\theta, \Upsilon \theta)=\lim _{n \rightarrow \infty} d\left(\theta_{n+1}, \Upsilon \theta\right)=\lim _{n \rightarrow \infty} d\left(\Upsilon \theta_{n}, \Upsilon \theta\right)=0
$$

Thus, $d(\theta, \Upsilon \theta)=0$ and so $\theta=\Upsilon \theta$. Hence, $\Upsilon \theta=\theta$.

We illustrate Theorem 2.2 by the following examples.
Example 2.3 let $X=\{-1,0,1\}$ be endowed with the metric

$$
d(\theta, \vartheta)= \begin{cases}0 & \text { if } \theta=\vartheta \\ \frac{3}{2} & \text { if }(\theta, \vartheta) \in\{(1,-1),(-1,1)\} \\ 1 & \text { otherwise }\end{cases}
$$

Clearly, $(X, d)$ is complete. Take $\Upsilon 0=\Upsilon(-1)=0$ and $\Upsilon 1=-1$.
First, letting $\theta=0$ and $\vartheta=1$, we have

$$
F(d(\Upsilon \theta, \Upsilon \vartheta))=F(d(0,-1))=F(1) \quad \text { and } \quad F(d(\theta, \vartheta))=F(d(0,1))=F(1)
$$

Thus, we cannot find $\tau>0$ such that $\tau+F(d(\Upsilon \theta, \Upsilon \vartheta)) \leq F(d(\theta, \vartheta))$, that is, Theorem 1.9 is not applicable.
On the other hand, let $\theta, \vartheta \in X \backslash \operatorname{Fix}(\Upsilon)$ with $d(\Upsilon \theta, \Upsilon \vartheta)>0$. Hence $(\theta, \vartheta) \in\{(1,-1)$, $(-1,1)\}$. Without loss of generality, take $(\theta, \vartheta)=(1,-1)$. Choose $\alpha=\frac{1}{3}, \beta=\frac{1}{2}, \tau=\frac{1}{2} \ln \left(\frac{3}{2}\right)$ and $F(t)=\ln (t)$ for $t>0$. We have

$$
\begin{aligned}
\tau+F(d(\Upsilon \theta, \Upsilon \vartheta)) & =\frac{1}{3} \ln \left(\frac{3}{2}\right)+\ln (1) \\
& =\frac{1}{3} \ln \left(\frac{3}{2}\right) \\
& \leq \frac{1}{2} \ln \left(\frac{3}{2}\right) \\
& =\alpha F(d(\theta, \vartheta))+\beta F(d(\theta, \Upsilon \theta))+(1-\alpha-\beta) F(d(\vartheta, \Upsilon \vartheta))
\end{aligned}
$$

that is, (2.1) holds for all $\theta, \vartheta \in X \backslash \operatorname{Fix}(\Upsilon)$ with $d(\Upsilon \theta, \Upsilon \vartheta)>0$. Here, $\Upsilon$ admits a fixed point $(u=0)$.

Example 2.4 Let $X=[0,1]$. We endow $X$ with the metric $d$ defined by

$$
d(\theta, \vartheta)= \begin{cases}\max \{\theta, \vartheta\} & \text { if } \theta \neq \vartheta \\ 0 & \text { otherwise }\end{cases}
$$

Consider the mapping $\Upsilon: X \rightarrow X$ given as

$$
\Upsilon \theta= \begin{cases}0 & \text { if } \theta \in\left[0, \frac{1}{4}\right) \\ \frac{1}{8} & \text { if } \theta \in\left[\frac{1}{4}, \frac{1}{2}\right] \\ \frac{1}{4} & \text { if } \theta \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

Take $F(t)=\ln (t)$ and $\alpha=\beta=\frac{1}{4}$. Choose $\tau \in(0, \ln (2))$. Let $\theta, \vartheta \in X \backslash \operatorname{Fix}(\Upsilon)$ such that $d(\Upsilon \theta, \Upsilon \vartheta)>0$. Without loss of generality, we have the following cases: $(\theta, \vartheta) \in\left\{\left(\left(0, \frac{1}{4}\right) \times\right.\right.$ $\left.\left.\left[\frac{1}{4}, \frac{1}{2}\right]\right),\left(\left(0, \frac{1}{4}\right) \times\left(\frac{1}{2}, 1\right]\right),\left(\left[\frac{1}{4}, \frac{1}{2}\right] \times\left(\frac{1}{2}, 1\right]\right)\right\}$. Case $1:(\theta, \vartheta) \in\left(\left(0, \frac{1}{4}\right) \times\left[\frac{1}{4}, \frac{1}{2}\right]\right)$. Here, we have

$$
\begin{aligned}
\tau+F(d(\Upsilon \theta, \Upsilon \vartheta)) & =\tau+\ln \left(\frac{1}{8}\right) \\
& \leq \ln (2)+\ln \left(\frac{1}{8}\right)=\ln \left(\frac{1}{4}\right) \\
& \leq \frac{1}{2} \ln \left(\frac{1}{4}\right) \\
& \leq \frac{1}{2} \ln (\vartheta) \\
& \leq \alpha F(d(\theta, \vartheta))+\beta F(d(\theta, \Upsilon \theta))+(1-\alpha-\beta) F(d(\vartheta, \Upsilon \vartheta))
\end{aligned}
$$

Case 2: $(\theta, \vartheta) \in\left(\left(0, \frac{1}{4}\right) \times\left(\frac{1}{2}, 1\right]\right)$. Here, we have

$$
\begin{aligned}
\tau+F(d(\Upsilon \theta, \Upsilon \vartheta)) & =\tau+F\left(\frac{1}{4}\right) \\
& \leq \ln (2)+\ln \left(\frac{1}{4}\right)=\ln \left(\frac{1}{2}\right) \\
& \leq \frac{1}{2} \ln \left(\frac{1}{2}\right) \\
& \leq \frac{1}{2} \ln (\vartheta) \\
& \leq \alpha F(d(\theta, \vartheta))+\beta F(d(\theta, \Upsilon \theta))+(1-\alpha-\beta) F(d(\vartheta, \Upsilon \vartheta))
\end{aligned}
$$

Case 3: $(\theta, \vartheta) \in\left(\left[\frac{1}{4}, \frac{1}{2}\right] \times\left(\frac{1}{2}, 1\right]\right)$. Again, we have

$$
\begin{aligned}
\tau+F(d(\Upsilon \theta, \Upsilon \vartheta)) & =\tau+F\left(\frac{1}{4}\right) \\
& \leq \alpha F(d(\theta, \vartheta))+\beta F(d(\theta, \Upsilon \theta))+(1-\alpha-\beta) F(d(\vartheta, \Upsilon \vartheta))
\end{aligned}
$$

All assumptions of Theorem 2.2 hold. Here, $T$ has a fixed point, which is, $u=0$.
On the other, the Wardowski contraction is not satisfied. Indeed, for $\theta=\frac{1}{5}$ and $\vartheta=\frac{1}{4}$, we have, for the standard metric $d(\theta, \vartheta)=|\theta-\vartheta|$, the following inequality:

$$
d(\Upsilon \theta, \Upsilon \vartheta)=\frac{1}{8}>\frac{5}{100}=d(\theta, \vartheta)
$$

so one writes

$$
\tau+F(d(\Upsilon \theta, \Upsilon \vartheta))>F(d(\theta, \vartheta))
$$

for all $\tau>0$ and $F \in \mathcal{F}$.

Remark 2.5 If we consider $F(t)=\ln (t)$ (for $t>0)$ in Theorem 1.6, the contraction (2.1) becomes

$$
\begin{equation*}
d(\Upsilon \theta, \Upsilon \vartheta) \leq e^{-\tau}[d(\theta, \vartheta)]^{\alpha} \cdot[d(\theta, \Upsilon \theta)]^{\beta} \cdot[d(\vartheta, \Upsilon \vartheta)]^{1-\alpha-\beta}, \tag{2.7}
\end{equation*}
$$

for all $\theta, \vartheta \in X \backslash \operatorname{Fix}(\Upsilon)$. That is, (2.7) corresponds to the main contraction (1.2). Hence, $\Upsilon$ possesses a fixed point, i.e., Theorem 1.6 is a particular case of Theorem 2.2.

In what follows, we consider the multi-valued version of Theorem 2.2. Denote by $C B(X)$ the set of all nonempty closed bounded subsets of $X$. Define the Pompeiu-Hausdorff metric $H$ induced by $d$ on $C B(X)$ as follows:

$$
H(\mathcal{A}, \mathcal{B})=\max \left\{\sup _{\theta \in \mathcal{A}} d(\theta, \mathcal{B}), \sup _{\vartheta \in \mathcal{B}} d(\vartheta, \mathcal{A})\right\}
$$

for all $\mathcal{A}, \mathcal{B} \in C B(X)$ where $d(\theta, \mathcal{B})=\inf _{\vartheta \in \mathcal{B}} d(\theta, \vartheta)$. An element $\varsigma \in X$ is called a fixed point of the multi-valued mapping $\Upsilon: X \rightarrow C B(X)$ whenever $\varsigma \in \Upsilon \varsigma$.

Definition 2.6 Let $(X, d)$ be a metric space. We say that the multi-valued mapping $\Upsilon$ : $X \rightarrow C B(X)$ is an extended interpolative multi-valued Ćirić-Reich-Rus type F-contraction if there are $\alpha, \beta>0$ with $\alpha+\beta<1, \tau>0$ and $F \in \mathcal{F}$ so that

$$
\begin{equation*}
\tau+F(H(\Upsilon \theta, \Upsilon \vartheta)) \leq \alpha F(d(\theta, \vartheta))+\beta F(d(\theta, \Upsilon \theta))+(1-\alpha-\beta) F(d(\vartheta, \Upsilon \vartheta)) \tag{2.8}
\end{equation*}
$$

for all $\theta, \vartheta \in X \backslash \operatorname{Fix}(\Upsilon)$ with $H(\Upsilon \theta, \Upsilon \vartheta)>0$.

Theorem 2.7 Let $(X, d)$ be a complete metric space and $\Upsilon$ be an extended interpolative multi-valued Ćirić-Reich-Rus type F-contraction. Assume in addition that

$$
(H): \quad F(\inf \mathcal{A})=\inf (F(\mathcal{A}))
$$

Then $\Upsilon$ possesses a fixed point.

Proof Choose two arbitrary points $\theta_{0} \in X$ and $\theta_{1} \in \Upsilon \theta_{0}$. If $\theta_{0} \in \Upsilon \theta_{0}$ or $\theta_{1} \in \Upsilon \theta_{1}$, we have nothing to prove. Let $\theta_{0} \notin \Upsilon \theta_{0}$ and $\theta_{1} \notin \Upsilon \theta_{1}$. Then $\Upsilon \theta_{0} \neq \Upsilon \theta_{1}$. Now,

$$
\begin{align*}
\frac{\tau}{2}+F\left(d\left(\theta_{1}, \Upsilon \theta_{1}\right)\right) & <\tau+F\left(H\left(\Upsilon \theta_{0}, \Upsilon \theta_{1}\right)\right) \\
& \leq \alpha F\left(d\left(\theta_{0}, \theta_{1}\right)\right)+\beta F\left(d\left(\theta_{0}, \Upsilon \theta_{0}\right)\right)+(1-\alpha-\beta) F\left(d\left(\theta_{1}, \Upsilon \theta_{1}\right)\right) \\
& \leq \alpha F\left(d\left(\theta_{0}, \theta_{1}\right)\right)+\beta F\left(d\left(\theta_{0}, \theta_{1}\right)\right)+(1-\alpha-\beta) F\left(d\left(\theta_{1}, \Upsilon \theta_{1}\right)\right) \tag{2.9}
\end{align*}
$$

In the case where $d\left(\theta_{0}, \theta_{1}\right)<d\left(\theta_{1}, \Upsilon \theta_{1}\right)$, we obtain from (2.9), $\frac{\tau}{2}+F\left(d\left(\theta_{1}, \Upsilon \theta_{1}\right)\right)<$ $F\left(d\left(\theta_{1}, \Upsilon \theta_{1}\right)\right)$, which is a contradiction. Now, let $d\left(\theta_{1}, \Upsilon \theta_{1}\right) \leq d\left(\theta_{0}, \theta_{1}\right)$. Substituting in (2.9), we have

$$
\frac{\tau}{2}+F\left(d\left(\theta_{1}, \Upsilon \theta_{1}\right)\right)<F\left(d\left(\theta_{0}, \theta_{1}\right)\right)
$$

From this inequality and using $(H)$, we can conclude that there is $\theta_{2} \in \Upsilon \theta_{1}$ so that

$$
\frac{\tau}{2}+F\left(d\left(\theta_{1}, \theta_{2}\right)\right)<F\left(d\left(\theta_{0}, \theta_{1}\right)\right)
$$

Continuing this process, we obtain a sequence $\left\{\theta_{n}\right\}$ in $X$ such that $\theta_{n+1} \in \Upsilon \theta_{n}, \theta_{n} \notin \Upsilon \theta_{n}$ and

$$
\begin{equation*}
\frac{\tau}{2}+F\left(d\left(\theta_{n}, \theta_{n+1}\right)\right)<F\left(d\left(\theta_{n-1}, \theta_{n}\right)\right) \tag{2.10}
\end{equation*}
$$

for all $n \geq 1$.
If there is $n_{0}$ so that $\theta_{n_{0}}=\theta_{n_{0}+1}$, then $\theta_{n_{0}}$ is a fixed point of $T$. So, assume that $\theta_{n} \neq \theta_{n+1}$ for all $n \geq 0$. Consequently

$$
\begin{equation*}
F\left(d\left(\theta_{n}, \theta_{n+1}\right)\right) \leq F\left(d\left(\theta_{n-1}, \theta_{n}\right)\right)-\frac{\tau}{2} \leq \cdots \leq F\left(d\left(\theta_{0}, \theta_{1}\right)\right)-n\left(\frac{\tau}{2}\right) \tag{2.11}
\end{equation*}
$$

for all $n \geq 1$. Similar to Theorem 1.6, we find that $\left\{\theta_{n}\right\}$ is a cauchy sequence. Suppose $\theta_{n} \rightarrow \theta$. suppose to the contrary $\theta \notin \Upsilon \theta$.

We consider two cases.
Case 1: There is a subsequence $\left\{\theta_{n_{k}}\right\}$ such that $\Upsilon \theta_{n_{k}}=\Upsilon \theta$ for all $k \in \mathbb{N}$. In this case,

$$
d(\theta, \Upsilon \theta)=\lim d\left(\theta_{n_{k}+1}, \Upsilon \theta\right)=\lim H\left(\Upsilon \theta_{n_{k}}, \Upsilon \theta\right)=0
$$

Case 2: There is a natural number $N$ such that $\Upsilon \theta_{n} \neq \Upsilon \theta$ for all $n \geq N$. In this case, applying (2.8), for $\theta=\theta_{n}$ and $\vartheta=\theta$, we have

$$
\begin{align*}
\tau+F\left(d\left(\theta_{n+1}, \Upsilon \theta\right)\right) & =\tau+F\left(H\left(\Upsilon \theta_{n}, \Upsilon \theta\right)\right) \\
& \leq \alpha F\left(d\left(\theta_{n}, \theta\right)\right)+\beta F\left(d\left(\theta_{n}, \theta_{n+1}\right)\right)+(1-\alpha-\beta) F(d(\theta, \Upsilon \theta)) \tag{2.12}
\end{align*}
$$

Letting $n \rightarrow \infty$ in the inequality (2.12), we find that $\lim _{n \rightarrow \infty} F\left(d\left(\theta_{n+1}, \Upsilon \theta\right)\right)=-\infty$ and so $\lim _{n \rightarrow \infty} d\left(\theta_{n+1}, \Upsilon \theta\right)=0$. Therefore,

$$
d(\theta, \Upsilon \theta)=\lim _{n \rightarrow \infty} d\left(\theta_{n+1}, \Upsilon \theta\right) \leq \lim _{n \rightarrow \infty} H\left(\Upsilon \theta_{n}, \Upsilon \theta\right)=0 .
$$

Thus, $d(\theta, \Upsilon \theta)=0$ and so $\theta \in \Upsilon \theta$. Thus, $\theta \in \Upsilon \theta$.
Remark 2.8 Some corollaries could be derived for particular choices of $F$ in Theorem 2.7.

## 3 An application to integral equations

Take $I=[0, T]$. Let $X=C(I, \mathbb{R})$ be the set of all real valued continuous functions with domain I. Consider

$$
d(\theta, \vartheta)=\sup _{t \in I}(|\theta(t)-\vartheta(t)|)=\|\theta-\vartheta\| .
$$

Consider the integral equation:

$$
\begin{equation*}
\theta(t)=q(t)+\int_{0}^{T} G(t, \omega) f(\omega, \theta(\omega)) d \omega, \quad t \in[0, T] \tag{3.1}
\end{equation*}
$$

where
(C1) $q: I \rightarrow \mathbb{R}$ and $f: I \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous;
(C2) $G: I \times I \rightarrow \mathbb{R}$ is continuous and measurable at $\omega \in I$ for all $t \in I$;
(C3) $G(t, \omega) \geq 0$ for all $t, \omega \in I$ and $\int_{0}^{T} G(t, \omega) d \omega \leq 1$ for all $t \in I$.

Theorem 3.1 Assume that the conditions (C1)-(C3) hold. Suppose that there are $\tau>0$ and $\alpha, \beta \in(0,1)$ with $\alpha+\beta<1$ so that

$$
\begin{align*}
& |f(t, \theta(t))-f(t, \vartheta(t))| \\
& \quad \leq \frac{|\theta(t)-\vartheta(t)|}{\left[\tau \sqrt{\|\theta-\vartheta\|}+\alpha+\beta \sqrt{\frac{\|\theta-\vartheta\|}{\left\|\theta-\int_{0}^{T} G(t, \omega) f(\omega, \theta(\omega)) d \omega\right\|}}+(1-\alpha-\beta) \sqrt{\frac{\|\theta-\vartheta\|}{\left\|\vartheta-\int_{0}^{T} G(t, \omega) f(\omega, \vartheta(\omega)) d \omega\right\|}}\right]}, \tag{3.2}
\end{align*}
$$

for each $t \in I$ and for all $\theta, \vartheta \in C(I, \mathbb{R})$ such that

$$
\begin{aligned}
& \theta(t) \neq \int_{0}^{T} G(t, \omega)(f(\omega, \theta(\omega))) d \omega, \\
& \vartheta(t) \neq \int_{0}^{T} G(t, \omega) f(\omega, \vartheta(\omega)) d \omega,
\end{aligned}
$$

and

$$
\int_{0}^{T} G(t, \omega) f(\omega, \theta(\omega)) d \omega \neq \int_{0}^{T} G(t, \omega) f(\omega, \vartheta(\omega)) d \omega .
$$

Then the integral equation (3.1) has a solution in $C(I, \mathbb{R})$.
Proof Define $\Upsilon: C(I, \mathbb{R}) \rightarrow C(I, \mathbb{R})$ as

$$
\Upsilon \theta(t)=q(t)+\int_{0}^{T} G(t, \omega) f(\omega, \theta(\omega)) d \omega, \quad t \in[0, T]
$$

We have, for every $t \in[0, T]$,

$$
\begin{aligned}
&|\Upsilon \theta(t)-\Upsilon \vartheta(t)| \\
&=\left|\int_{0}^{T} G(t, \omega)(f(\omega, \theta(\omega))-f(\omega, \vartheta(\omega))) d \omega\right| \\
& \leq \int_{0}^{T} G(t, \omega)|f(\omega, \theta(\omega))-f(\omega, \vartheta(\omega))| d \omega \\
& \leq \int_{0}^{T} \frac{G(t, \omega)|\theta(t)-\vartheta(t)|}{\left[\tau \sqrt{\|\theta-\vartheta\|}+\alpha+\beta \sqrt{\frac{\|\theta-\vartheta\|}{\|\theta-T \theta\|}}+(1-\alpha-\beta) \sqrt{\frac{\|\theta-\vartheta\|}{\|\vartheta-T \vartheta\|}}\right]^{2}} d \omega \\
& \leq \frac{\|\theta-\vartheta\|}{\left[\tau \sqrt{\|\theta-\vartheta\|}+\alpha+\beta \sqrt{\frac{\|\theta-\vartheta\|}{\|\theta-T \theta\|}}+(1-\alpha-\beta) \sqrt{\frac{\|\theta-\vartheta\|}{\|\vartheta-T \vartheta\|}}\right]^{2}} \int_{0}^{T} G(t, \omega) d \omega \\
& \leq \frac{\|\theta-\vartheta\|}{\left[\tau \sqrt{\|\theta-\vartheta\|}+\alpha+\beta \sqrt{\frac{\|\theta-\vartheta\|}{\|\theta-\Upsilon \theta\|}}+(1-\alpha-\beta) \sqrt{\frac{\|\theta-\vartheta\|}{\|\vartheta-\Upsilon \vartheta\|}}\right]^{2}} .
\end{aligned}
$$

Take the supremum to find that

$$
\begin{aligned}
d(\Upsilon \theta, \Upsilon \vartheta) & =\|\Upsilon \theta-\Upsilon \vartheta\| \\
& \leq \frac{\|\theta-\vartheta\|}{\left[\tau \sqrt{\|\theta-\vartheta\|}+\alpha+\beta \sqrt{\frac{\|\theta-\vartheta\|}{\|\theta-\Upsilon \theta\|}}+(1-\alpha-\beta) \sqrt{\frac{\|\theta-\vartheta\|}{\|\vartheta-\Upsilon \vartheta\|}}\right]^{2}} \\
& =\frac{d(\theta, \vartheta)}{\left[\tau \sqrt{d(\theta, \vartheta)}+\alpha+\beta \sqrt{\frac{d(\theta, \vartheta)}{d(\theta, \Upsilon \theta)}}+(1-\alpha-\beta) \sqrt{\frac{d(\theta, \vartheta)}{d(\vartheta, \Upsilon \vartheta)}}\right]^{2}} .
\end{aligned}
$$

From the above inequality, we obtain

$$
\begin{aligned}
\frac{1}{\sqrt{d(\Upsilon \theta, \Upsilon \vartheta)}} \geq & \tau+\alpha\left(\frac{1}{\sqrt{d(\theta, \vartheta)}}\right)+\beta\left(\frac{1}{\sqrt{d(\theta, \Upsilon \theta)}}\right) \\
& +(1-\alpha-\beta)\left(\frac{1}{\sqrt{d(\vartheta, \Upsilon \vartheta)}}\right)
\end{aligned}
$$

This is equivalent to

$$
\begin{aligned}
\tau+\left(\frac{-1}{\sqrt{d(\Upsilon \theta, \Upsilon \vartheta)}}\right) \leq & \alpha\left(\frac{-1}{\sqrt{d(\theta, \vartheta)}}\right)+\beta\left(\frac{-1}{\sqrt{d(\theta, \Upsilon \theta)}}\right) \\
& +(1-\alpha-\beta)\left(\frac{-1}{\sqrt{d(\vartheta, \Upsilon \vartheta)}}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\tau+\left(\frac{-1}{\sqrt{d(\Upsilon \theta, \Upsilon \vartheta)}}+1\right) \leq & \alpha\left(\frac{-1}{\sqrt{d(\theta, \vartheta)}}+1\right)+\beta\left(\frac{-1}{\sqrt{d(\theta, \Upsilon \theta)}}+1\right) \\
& +(1-\alpha-\beta)\left(\frac{-1}{\sqrt{d(\vartheta, \Upsilon \vartheta)}}+1\right)
\end{aligned}
$$

Taking $F(t)=-\frac{1}{\sqrt{t}}+1$, we get

$$
\tau+F(d(\Upsilon \theta, \Upsilon \vartheta)) \leq \alpha F(d(\theta, \vartheta))+\beta F(d(\theta, \Upsilon \theta))+(1-\alpha-\beta) F(d(\vartheta, \Upsilon \vartheta))
$$

for all $\theta, \vartheta \in X \backslash \operatorname{Fix}(\Upsilon)$ with $d(\Upsilon \theta, \Upsilon \vartheta)>0$, which is (2.8). Therefore, by Theorem 2.2, $\Upsilon$ has a fixed point. Hence there is a solution for (3.1).

## 4 Conclusion

We aimed to enrich the fixed point theory by addressing interpolative approaches.

## Funding

This research received no external funding.

## Availability of data and materials

Not applicable.

## Competing interests

The authors declare that they have no competing interests regarding the publication of this paper

## Authors' contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

## Author details

${ }^{1}$ Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran. ${ }^{2}$ Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran. ${ }^{3}$ Institut Supérieur d'Informatique et des Techniques de Communication, Université de Sousse, H. Sousse, Tunisia. ${ }^{4}$ China Medical University Hospital, China Medical University, Taichung, Taiwan.

## Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 29 June 2019 Accepted: 17 October 2019 Published online: 12 November 2019

## References

1. Krein, S.G., Petunin, J.I., Semenov, E.M.: Interpolation of Linear Operators. Am. Math. Soc., Providence (1978)
2. Karapınar, E.: Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2, 85-87 (2018)
3. Karapınar, E., Agarwal, R.P., Aydi, H.: Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces. Mathematics 6, Article ID 256 (2018)
4. Ćirić, L.B.: On contraction type mappings. Math. Balk. 1, 52-57 (1971)
5. Ćirić, L.B.: Generalized contractions and fixed-point theorems. Publ. Inst. Math. (Belgr.) 12, 19-26 (1971)
6. Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121-124 (1971)
7. Reich, S.: Fixed point of contractive functions. Boll. Unione Mat. Ital. 4, 26-42 (1972)
8. Reich, S.: Kannan's fixed point theorem. Boll. Unione Mat. Ital. 4, 1-11 (1971)
9. Rus, I.A.: Generalized Contractions and Applications. Cluj University Press, Clui-Napoca (2001)
10. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3, 133-181 (1922)
11. Karapınar, E., Algahtani, O., Aydi, H.: On interpolative Hardy-Rogers type contractions. Symmetry 11, Article ID 8 (2018)
12. Aydi, H., Karapinar, E., Roldan Lopez de Hierro, A.F.: $\omega$-interpolative Ćirić-Reich-Rus type contractions. Mathematics 7, Article ID 57 (2019)
13. Aydi, H., Chen, C.M., Karapinar, E.: Interpolative Ćirić-Reich-Rus type contractions via the Branciari distance. Mathematics 7, Article ID 84 (2019)
14. Qawaqneh, H., Mitrovic, Z., Aydi, H., Md Noorani, M.S.: The weight inequalities on Reich type theorem in b-metric spaces. J. Math. Comput. Sci. 19(1), 51-57 (2019)
15. Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012)
16. Abbas, M., Berzig, M., Nazir, T., Karapinar, E.: Iterative approximation of fixed points for Presic F-type contraction operators. UPB Sci. Bull., Ser. A, Appl. Math. Phys. 78(2), 147-160 (2016)
17. Alsulami, H.H., Karapinar, E., Piri, H.: Fixed points of modified F-contractive mappings in complete metric-like spaces. J. Funct. Spaces 2015, Article ID 290971 (2015)
18. Karapinar, E., Kutbi, M., Piri, H., O’Regan, D.: Fixed points of conditionally F-contractions in complete metric-like spaces. Fixed Point Theory Appl. 2015, 126 (2015)
19. Patle, P., Patel, D., Aydi, H., Radenovic, S.: On $\mathrm{H}^{+}$-type multivalued contractions and applications in symmetric and probabilistic spaces. Mathematics 7(2), 144 (2019)
20. Qawaqneh, H., Noorani, M.S., Shatanawi, W., Aydi, H., Alsamir, H.: Fixed point results for multi-valued contractions in b-metric spaces. Mathematics 7(2), 132 (2019)

## Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

