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Abstract
Tensor eigenvalue problem is one of important research topics in tensor theory. In
this manuscript, we consider the properties of Z-eigenpair of irreducible nonnegative
tensors. By estimating the ratio of the smallest and largest components of a positive
Z-eigenvector for a nonnegative tensor, we present some bounds for the eigenvector
and Z-spectral radius of an irreducible and weakly symmetric nonnegative tensor. The
proposed bounds complement and extend some existing results. Finally, several
examples are given to show that such a bound is different from one given in the
literature.
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1 Introduction
Matrix theory is one of the most fundamental tools of mathematics exploration and sci-
entific research [2, 12]. As a higher-order generalization of a matrix, tensors and their
properties are widely used in a great variety of fields, such as gravitational theory and
quantum mechanics in physics [32, 42], large-scale date analysis [18], hypergraph spectral
theory [33, 43], social network data analytics [16, 48], automatical control [27], the best
rank-one approximations in statistical data analysis [17, 49], complementarity problems
[1, 7, 9, 10, 15, 24–26, 37, 38, 40, 41], etc. As a significant knowledge point of tensor theory,
tensor eigenvalues is one of the most popular research topics in recent years, and gradually
appears in many research and application fields.

In 2005, Qi [28] introduced the concept of eigenvalues for symmetric tensors. At the
same time, this concept was simultaneously introduced by Lim [23], but he only consid-
ered the case when the eigenpairs are real. Since then, the tensor eigenvalue theory has
attracted great attention and developed rapidly over the last decades. However, in order
to find an eigenvalue or eigenvector of a higher-order tensor, it is necessary to solve a sys-
tem of higher-degree polynomial equations with multiple variables [29, 31]. This means
that it will be extremely difficult to solve the tensor eigenvalue problem when the order
of such a tensor is very high. Therefore, many mathematical researchers pay attention to
how to find more accurate range and numerical methods of eigenvalues and eigenvectors
of higher-order tensors. For example, there is a lot of literature on bounds and calculation
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methods of the spectral radius (H-eigenvalue) of nonnegative tensors [3, 5, 8, 10, 19, 21,
31, 34–36, 39, 43–46].

Equally important, the Z-eigenpair for nonnegative tensors plays a fundamental role
in many applications such as high order Markov chains [13, 22], geometric measure of
quantum entanglement [14], best rank-one approximation [6, 30, 47], and so on. Recently,
due to the joint efforts of mathematicians, there are a series of theoretical conclusions and
numerical methods to bound the Z-spectral radius for nonnegative tensors, these results
are beneficial to further research and applications of the field.

In this paper, we mainly consider the bounds of Z-eigenpair of an irreducible nonnega-
tive tensor. By estimating the ratio of the smallest and largest components of a Perron vec-
tor, we present some bounds for the eigenvector and Z-spectral radius of an irreducible
and weakly symmetric nonnegative tensor. These proposed bounds extend and comple-
ment some existing ones. Furthermore, two examples are given to illustrate the proposed
bounds.

This paper is organized as follows. In Sect. 2, we will give some basic facts and symbols.
The concept of Z-eigenvalue and a Peron–Frobenius-type theorem is given [4]. In Sect. 3,
we calculate the ratio of the smallest and largest components of a Perron vector. Moreover,
a sharper bound of Z-spectral radius is shown for an irreducible and weakly symmetric
nonnegative tensor. Two examples are given and the corresponding comparison is made
intuitively and in detail. Some concluding remarks are presented in the final section.

2 Preliminaries and basic facts
For a positive integer n, In denotes the set In = {1, 2, . . . , n}. Let R and C be the real and
complex field, respectively. We call A = (ai1i2···im ) a real (complex) tensor of mth order and
dimension n if ai1i2···im ∈R (C), i1, i2, . . . , im ∈ In. Clearly, an mth order n-dimensional ten-
sor consists of nm entries from the real field R. The set of all mth order n-dimensional
real tensors is denoted by Tm,n. For any tensor A = (ai1···im ) ∈ Tm,n, if their entries ai1···im
are invariant under any permutation of their indices, then A is called a symmetric ten-
sor. We denote the set of all mth order n-dimensional real symmetric tensors as Sm,n. Let
π (1, 2, . . . , n) be set of all permutations of {1, 2, . . . , n}. Let A = (ai1···im ) ∈ Tm,n and consider
a vector x = (x1, x2, . . . , xn)� ∈ R

n or C
n. Then Axm–1 is a vector with its ith component

defined by

(
Axm–1)

i :=
n∑

i2,...,im=1

aii2···im xi2 · · ·xim , ∀i ∈ In,

and Axm is a homogeneous polynomial of degree m,

Axm := x�(
Axm–1) =

n∑

i1,i2,...,im=1

ai1i2···im xi1 xi2 · · ·xim ,

where x� is the transposition of x.

Definition 2.1 Let A = (ai1i2···im ) ∈ Tm,n. We call a number λ ∈ C an E-eigenvalue of A if
there is a nonzero vector x ∈ C

n which solves the following system of polynomial equa-
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tions:

Axm–1 = λx,

xT x = 1,

and call the solution x an E-eigenvector of A associated with the eigenvalue λ. Any such
pair (λ, x) is called an E-eigenpair of A. We call (λ, x) a Z-eigenpair if they are both real.

Definition 2.2 The set of all Z-eigenvalues ofA is called the Z-spectrum of A, denoted as
σz(A). The largest modulus of the elements in the Z-spectrum ofA is called the Z-spectral
radius of A, denoted as ρz(A).

Definition 2.3 For any given tensor A = (ai1i2···im ) ∈ Tm,n, we say that A is reducible if
there exists a nonempty proper index subset J ⊂ In such that

ai1···im = 0, ∀i1 ∈ J ,∀i2, . . . , im /∈ J ;

A is called irreducible if it is not reducible.

Definition 2.4 A real tensor A is called weakly symmetric if the associated homogeneous
polynomial

fA(x) := Axm =
n∑

i2,...,im=1

ai1i2···im xi1 xi2 · · ·xim

satisfies ∇fA(x) = mAxm–1.

An mth order n-dimensional tensor A is called nonnegative (or, respectively, positive)
if ai1···im ≥ 0 (or, respectively, ai1···im > 0) for all i1, . . . , im ∈ In. We denote the set of all
nonnegative (or, respectively, positive) tensors of mth order and dimension n by R

[m,n]
+

(or, respectively, R[m,n]
++ ).

Theorem 2.1 ([4]) Let A be an mth order n-dimensional nonnegative tensor. Then
(i) There exists a Z-eigenvalue λ0 ≥ 0 of A with a nonnegative Z-eigenvector x0 �= 0, i.e.,

Axm–1
0 = λ0x0, x�

0 x0 = 1;

(ii) The above Z-eigenvalue λ0 and its Z-eigenvector x0 are positive if A is irreducible;
(iii) The Z-spectral radius ρz(A) is a positive Z-eigenvalue with a positive Z-eigenvector

if A is weakly symmetric and irreducible.

Recently, there appeared a series of theoretical conclusions and numerical methods to
bound the Z-spectral radius for nonnegative tensors. For instance, Chang, Pearson and
Zhang [4] studied some variation principles of Z-eigenvalues of nonnegative tensors. As
a corollary of the main results, they presented the lower bound of Z-spectral radius for
irreducible weakly symmetric nonnegative tensors (see Corollary 4.10 of [4]) as follows:

max{c1, c2} ≤ ρz(A), (2.1)
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where c1 = maxi ai···i and c2 = ( 1√
n )m–2 mini

∑n
i2,...,im=1 aii2...im . For a nonnegative tensor, they

also gave an upper bound for the Z-spectral radius (see Proposition 3.3 of [4]):

ρz(A) ≤ √
n max

i

n∑

i2,...,im=1

aii2...im . (2.2)

Song and Qi [34] proved a sharper upper bound for the Z-spectral radius of any mth
order n-dimensional tensor (see Corollary 4.5 of [34]):

ρz(A) ≤ max
i

n∑

i2,...,im=1

|aii2...im |. (2.3)

He and Huang [11] obtained an upper bound of the Z-spectral radius for a weakly sym-
metric positive tensor (see Theorem 2.7 of [11]):

ρz(A) ≤ R – l(1 – θ ), (2.4)

where ri =
∑n

i2,...,im=1 aii2...im , R = maxi ri, r = mini ri, l = mini1,...,im ai1···im , and θ = ( r
R ) 1

m .
Li, Liu and Vong [20] gave an upper bound of the Z-spectral radius for any tensor:

ρz(A) ≤ min
k∈[m]

max
ik

n∑

it=1,t∈[m]\{k}
|ai1···ik ···im |. (2.5)

Moreover, they also presented two-sided bounds of the Z-spectral radius for an irreducible
weakly symmetric nonnegative tensor:

dm,n ≤ ρz(A) ≤ max
i,j

{
ri + aij···j

(
δ– m–1

m – 1
)}

, (2.6)

where δ = mini,j aij···j
r–mini,j aij···j (γ m–1

m – γ
1
m ) + γ , γ = R–mini,j aij···j

r–mini,j aij···j , ri =
∑n

i2,...,im=1 aii2...im , R = maxi ri,
r = mini ri, and

dm,n = max
k∈[m]\{1}

min
i1

[
(
δ

1
m – 1

)
min

it ,t∈[m]\{1}
ai1···ik ···im + min

it ,t∈[m]\{1,k}

n∑

ik =1

ai1···ik ···im

]

.

Recently, Li, Liu and Vong [21] obtained an upper bound of the Z-spectral radius for an
irreducible weakly symmetric nonnegative tensor by the following equation: for a Perron
vector x = (x1, . . . , xn)�,

xmax

xmin
≥ η(A)

1
m (2.7)

and

ρz(A) ≤ max
i,j∈In

(m–1∑

k=0

Ai,α(k,j)η
– k

m

)

, (2.8)
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where xmin = min1≤i≤n xi, xmax = max1≤i≤n xi,

η(A) =
∑m–1

k=t mini,j∈In Ai,α(k,j)[γ
k
m – γ

m–k
m ] + maxi∈In ri –

∑m–1
k=t mini,j∈In Ai,α(k,j)

mini∈In ri –
∑t–1

k=1 mini,j∈In Ai,α(k,j)(1 – γ – k
m ) –

∑m–1
k=t mini,j∈In Ai,α(k,j)

,

Ai,α(k,j) =
∑

s1<···<sksk+1<···<sm–1{s1,...,sk ,...,sm–1}∈π (2,...,m)

∑

is1 =···=isk =j
isk+1 =···=ism–1 �=j

ai1i2···im , 0 ≤ k ≤ m – 1,

γ = maxi∈In ri–mini,j aij···j
mini∈In ri–mini,j aij···j , ri =

∑n
i2,...,im=1 aii2...im , and t = [ m

2 ]. From (2.8), they have the following
conclusion:

ρz(A) ≤ max
i,j∈In

(m–1∑

k=0

S ′
i,α(k,j)η

– k
m

)

, (2.9)

where S ′ = 1
m!S , η ≡ η(S ′), S = (si1···im ) ∈ R[m,n], and si1···im=

∑
(j1,...,jm)∈π (i1,...,im) aj1 ···jm . However,

there is a small negligence here since they use t ≥ m – t in their proof, but the fact that
t = [ m

2 ] may not imply t ≥ m – t (for example, for m = 3, t = [ m
2 ] = 1 and m – t = 2). In this

paper, we will modify this negligence by taking t = m – [ m
2 ].

Obviously, the bound (2.5) is sharper than those in (2.2) and (2.3) for any tensor. Since
δ ≥ 1, it’s easy to see that the upper bound in (2.6) is sharper than that in (2.4) when the
tensor is assumed to be weakly symmetric positive. Since η(A) ≥ δ ≥ γ ≥ 1, hence the
upper bound in (2.8) is always better than that in (2.6). When the tensor is irreducible
symmetric nonnegative, the bound in (2.9) becomes that in (2.8).

3 Bounds for the Z-spectral radius of nonnegative tensors
Theorem 3.1 Let A = (ai1i2···im ) ∈ R

[m,n] be a nonnegative tensor having a positive Z-
eigenpair. Then for any Z-eigenpair (λ, x) of A with a positive Z-eigenvector x, we have

xmax

xmin
≥ ϕ(A)

1
m ,

where xs = xmin = mini∈In xi, xl = xmax = maxi∈In xi,

ϕ(A) =

∑m–1
k=t

( m–1
m–k–1

)
(n – 1)m–k–1βm–k–1(A)[γ

k
m – γ

m–k
m ] + R –

∑m–1
k=t

( m–1
m–k–1

)
(n – 1)m–k–1βm–k–1(A)

r –
∑t–1

k=1
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A)(1 – γ – k

m ) –
∑m–1

k=t
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A)

,

βt(A) = min
i,j∈In

{
aii2···im : (i2, . . . , im) ∈ (j, m – t – 1)

}
, t = 0, 1, . . . , m – 2,

(j, u) =
⋃

S⊆{2,...,m}
|S|=u

{
(i2 . . . , im) : iv = j,∀v ∈ S, and iv �= j,∀v /∈ S

}
, u = 0, 1, . . . , m – 1,

γ =
R – mini,j∈In aij···j
r – mini,j∈In aij···j

, R = rp = max
i,j∈In

ri, r = rq = min
i,j∈In

ri, ri =
n∑

i2···im=1

aii2···im .

Proof According to Theorem 2.1, there exists an x = (x1, x2, . . . , xn)T > 0 such that Axm–1 =
λx. For xs = xmin = mini∈In xi, it follows that

λxs ≤ λxi =
∑

i2,...,im∈In

aii2···im xi2 · · ·xim
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≤ ais···sxm–1
s +

∑

(i2,...,im)∈(s,m–2)

aii2···im xm–2
s xl + · · ·

+
∑

(i2,...,im)∈(s,k)

aii2···im xk
s xm–k–1

l + · · ·

+
∑

(i2,...,im)∈(s,1)

aii2···im xsxm–2
l +

∑

(i2,...,im)∈(s,0)

aii2···im xm–1
l

= ais···s
(
xm–1

s – xm–1
l

)
+

∑

(i2,...,im)∈(s,m–2)

aii2···im
(
xm–2

s xl – xm–1
l

)
+ · · ·

+
∑

(i2,...,im)∈(s,k)

aii2···im
(
xk

s xm–k–1
l – xm–1

l
)

+ · · ·

+
∑

(i2,...,im)∈(s,1)

aii2···im
(
xsxm–2

l – xm–1
l

)
+ ri(A)xm–1

l

≤ min
i,j∈In

aij···j
(
xm–1

s – xm–1
l

)
+

(
m – 1

1

)

(n – 1)β1(A)
(
xm–2

s xl – xm–1
l

)
+ · · ·

+

(
m – 1
m – 2

)

(n – 1)m–2βm–2(A)
(
xsxm–2

l – xm–1
l

)
+ ri(A)xm–1

l

=
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)
(
xm–k–1

s xk
l – xm–1

l
)

+ ri(A)xm–1
l .

Taking ri = rq = r, since xs > 0, we have

λ ≤
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)xm–k–2
s xk

l

+

(

r –
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)

)
xm–1

l
xs

. (3.1)

For xl = xmax = maxi∈In xi, we similarly have

λxl ≥ λxi =
∑

i2,...,im∈In

aii2···im xi2 · · ·xim

≥ ail···lxm–1
l +

∑

(i2,...,im)∈(l,m–2)

aii2···im xm–2
l xs + · · ·

+
∑

(i2,...,im)∈(l,k)

aii2···im xk
l xm–k–1

s + · · ·

+
∑

(i2,...,im)∈(l,1)

aii2···im xlxm–2
s +

∑

(i2,...,im)∈(l,0)

aii2···im xm–1
s

= ail···l
(
xm–1

l – xm–1
s

)
+

∑

(i2,...,im)∈(l,m–2)

aii2···im
(
xm–2

l xs – xm–1
s

)
+ · · ·

+
∑

(i2,...,im)∈(l,k)

aii2···im
(
xk

l xm–k–1
s – xm–1

s
)

+ · · ·

+
∑

(i2,...,im)∈(l,1)

aii2···im
(
xlxm–2

s – xm–1
s

)
+ ri(A)xm–1

s
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≥ min
i,j∈In

aij···j
(
xm–1

l – xm–1
s

)
+

(
m – 1

1

)

(n – 1)β1(A)
(
xm–2

l xs – xm–1
s

)
+ · · ·

+

(
m – 1
m – 2

)

(n – 1)m–2βm–2(A)
(
xlxm–2

s – xm–1
s

)
+ ri(A)xm–1

s

=
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)
(
xm–k–1

l xk
s – xm–1

s
)

+ ri(A)xm–1
s .

Taking ri = rp, since xl > 0, we have that

λ ≥
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)xm–k–2
l xk

s

+

(

R –
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)

)
xm–1

s
xl

. (3.2)

Combining (3.1) and (3.2) together gives

m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)xm–k–2
l xk

s +

(

R –
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)

)
xm–1

s
xl

≤
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)xm–k–2
s xk

l

+

(

r –
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)

)
xm–1

l
xs

.

Multiplying by xl
xm–1

s
on both sides gives

m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)
xm–k–2

l xk
s xl

xm–1
s

+

(

R –
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)

)

≤
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)
xm–k–2

s xk
l xl

xm–1
s

+

(

r –
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)

)(
xl

xs

)m

,

and so we have

m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)
(

xl

xs

)m–k–1

+

(

R –
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)

)

≤
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)
(

xl

xs

)k+1

+

(

r –
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)

)(
xl

xs

)m

. (3.3)
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Since ( xl
xs

)m ≥ ( xl
xs

)m–1 ≥ · · · ≥ xl
xs

≥ 1, by (3.3), we get

min
i,j∈In

aij···j
(

xl

xs

)m–1

+
m–2∑

k=1

(
m – 1

k

)

(n – 1)kβk(A) +

(

R –
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)

)

≤ min
i,j∈In

aij···j
xl

xs
+

m–2∑

k=1

(
m – 1

k

)

(n – 1)kβk(A)
(

xl

xs

)m

+

(

r –
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)

)(
xl

xs

)m

,

i.e.,

min
i,j∈In

aij···j
(

xl

xs

)m–1

+
(

R – min
i,j∈In

aij···j
)

≤ min
i,j∈In

aij···j
xl

xs
+

(
r – min

i,j∈In
aij···j

)(
xl

xs

)m

.

Hence

(
xl

xs

)m

≥ R – mini,j∈In aij···j
r – mini,j∈In aij···j

.

Let γ = R–mini,j∈In aij···j
r–mini,j∈In aij···j . Then xl

xs
≥ γ

1
m ≥ 1. Let t = m – [ m

2 ]. Then t ≥ m – t, so by (3.3) again,
we have

min
i,j∈In

aij···j
(

xl

xs

)m–1

+

(
m – 1

1

)

(n – 1)β1(A)
(

xl

xs

)m–2

+ · · ·

+

(
m – 1

m – t – 1

)

(n – 1)m–t–1βm–t–1(A)
(

xl

xs

)t

+

(

R –
m–1∑

k=t

(
m – 1

m – k – 1

)

(n – 1)m–k–1βm–k–1(A)

)

≤ min
i,j∈In

aij···j
xl

xs
+

(
m – 1

1

)

(n – 1)β1(A)
(

xl

xs

)2

+ · · ·

+

(
m – 1

m – t – 1

)

(n – 1)m–t–1βm–t–1(A)
(

xl

xs

)m–t

+

(
m – 1
m – t

)

(n – 1)m–tβm–t(A)
(

xl

xs

)m

γ – t–1
m + · · ·

+

(
m – 1
m – 2

)

(n – 1)m–2βm–2(A)
(

xl

xs

)m

γ – 1
m

+

(

r –
m–2∑

k=0

(
m – 1

k

)

(n – 1)kβk(A)

)(
xl

xs

)m
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= min
i,j∈In

aij···j
(

xl

xs

)
+

(
m – 1

1

)

(n – 1)β1(A)
(

xl

xs

)2

+ · · ·

+

(
m – 1

m – t – 1

)

(n – 1)m–t–1βm–t–1(A)
(

xl

xs

)m–t

+

[

r –
t–1∑

k=1

(
m – 1

m – k – 1

)

(n – 1)m–k–1βm–k–1(A)
(
1 – γ – k

m
)

–
m–1∑

k=t

(
m – 1

m – k – 1

)

(n – 1)m–k–1βm–k–1(A)

](
xl

xs

)m

.

Since xl
xs

≥ γ
1
m ≥ 1 and t ≥ m – t, we have

[

r –
t–1∑

k=1

(
m – 1

m – k – 1

)

(n – 1)m–k–1βm–k–1(A)
(
1 – γ – k

m
)

–
m–1∑

k=t

(
m – 1

m – k – 1

)

(n – 1)m–k–1βm–k–1(A)

](
xl

xs

)m

≥ min
i,j∈In

aij···j
[(

xl

xs

)m–1

–
xl

xs

]
+

(
m – 1

1

)

(n – 1)β1(A)
[(

xl

xs

)m–2

–
(

xl

xs

)2]
+ · · ·

+

(
m – 1

m – t – 1

)

(n – 1)m–t–1βm–t–1(A)
[(

xl

xs

)t

–
(

xl

xs

)m–t]

+

(

R –
m–1∑

k=t

(
m – 1

m – k – 1

)

(n – 1)m–k–1βm–k–1(A)

)

≥ min
i,j∈In

aij···j
[
γ

m–1
m – γ

1
m

]
+

(
m – 1

1

)

(n – 1)β1(A)
[
γ

m–2
m – γ

2
m
]

+ · · ·

+

(
m – 1

m – t – 1

)

(n – 1)m–t–1βm–t–1(A)
[
γ

t
m – γ

m–t
m

]

+

(

R –
m–1∑

k=t

(
m – 1

m – k – 1

)

(n – 1)m–k–1βm–k–1(A)

)

,

and hence, xl
xs

≥ (ϕ(A)) 1
m , where

ϕ(A) =

∑m–1
k=t

( m–1
m–k–1

)
(n – 1)m–k–1βm–k–1(A)[γ

k
m – γ

m–k
m ] + R –

∑m–1
k=t

( m–1
m–k–1

)
(n – 1)m–k–1βm–k–1(A)

r –
∑t–1

k=1
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A)(1 – γ – k

m ) –
∑m–1

k=t
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A)

.

�

From Theorem 3.1, we have the following upper bound.
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Theorem 3.2 Let A ∈ R
[m,n] be an irreducible and weakly symmetric nonnegative tensor.

Then we have

ρz(A) ≤ max
i,j∈In

(m–1∑

k=0

∑

(i2,...,im)∈(j,k)

aii2···imϕ– k
m

)

,

where ϕ ≡ ϕ(A) is given in Theorem 3.1.

Proof Since A is a weakly irreducible nonnegative symmetric tensor, we know that the Z-
spectral radius ρ ≡ ρz(A) is a positive Z-eigenvalue with a positive Z-eigenvector x. Since
xT x = 1 and x > 0, then xm–1

i ≤ xi for any i. Let xs = xmin = mini∈In xi, xl = xmax = mini∈In xi.
Then we have

ρ(A)xm–1
i ≤ ρ(A)xi

≤ ais···sxm–1
s +

∑

(i2,...,im)∈(s,m–2)

aii2···im xm–2
s xl + · · ·

+
∑

(i2,...,im)∈(s,1)

aii2···im xsxm–2
l +

∑

(i2,...,im)∈(s,0)

aii2···im xm–1
l .

Taking i = l and multiplying by x1–m
l on both sides of the above inequality, from Theo-

rem 3.1, we get

ρ(A) ≤ ais···s
(

xs

xl

)m–1

+
∑

(i2,...,im)∈(s,m–2)

aii2···im

(
xs

xl

)m–2

+ · · ·

+
∑

(i2,...,im)∈(s,1)

aii2···im
xs

xl
+

∑

(i2,...,im)∈(s,0)

aii2···im

≤ max
i,j∈In

{
aij···jϕ– m–1

m +
∑

(i2,...,im)∈(j,m–2)

aii2···imϕ– m–2
m + · · ·

+
∑

(i2,...,im)∈(j,1)

aii2···imϕ– 1
m +

∑

(i2,...,im)∈(j,0)

aii2···im

}

= max
i,j∈In

(m–1∑

k=0

∑

(i2,...,im)∈(j,k)

aii2···imϕ– k
m

)

.
�

Remark 3.1 For the matrix case A = (aij) ∈R
[n×n], i, j ∈ In, i.e., when m = 2, it is easy to see

that the bound in Theorem 3.2 reduces to the following one:

ρz(A) ≤ max
i,j

{
ri(A) + aij(ξ – 1)

}
, (3.4)

where ξ = ( R–mini,j aij
r–mini,j aij

)– 1
2 , R = maxi ri, r = mini ri, and ri =

∑n
j=1 aij, which is the same as the

bound in (2.6) for the matrix case.
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Remark 3.2 Let δ = a
c and ϕ = a+b

c–d , where δ is given by (2.6), ϕ is given by Theorem 3.1 and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = mini,j∈In aij···j
(
γ

m–1
m – γ

1
m

)
+ R – mini,j∈In aij···j,

b =
∑m–2

k=t
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A)(γ k

m – γ
m–k

m )

–
∑m–2

k=t
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A),

c = r – mini,j∈In aij···j,

d =
∑t–1

k=1
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A)(1 – γ – k

m )

+
∑m–2

k=t
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A).

Since δ ≥ γ ≥ 1 and a, c, d, a + b, c – d ≥ 0, it’s easy to conclude that

b
d

≥ –
∑m–2

k=t
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A)

∑t–1
k=1

( m–1
m–k–1

)
(n – 1)m–k–1βm–k–1(A)(1 – γ – k

m ) +
∑m–2

k=t
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A)

≥ –1 ≥ –δ = –
a
c

,

when d > 0, and b =
∑m–2

k=t
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A)(γ k

m – γ
m–k

m ) ≥ 0, when d = 0.
Then we have a+b

c–d ≥ a
c , i.e., ϕ ≥ δ ≥ γ ≥ 1.

Thus the upper bound in Theorem 3.2 is better than that in (2.6).

The authors presented the following bound in [20]:

xmax

xmin
≥ δ

1
m ,

where

δ =
mini,j∈In aij···j

r – mini,j∈In aij···j

(
γ

m–1
m – γ

1
m
)

+ γ , γ =
R – mini,j∈In aij···j
r – mini,j∈In aij···j

. (3.5)

Example 3.1 Let A = (ai1i2i3 ) ∈R
[3,2]
+ with

a111 = a121 = k, a112 = a222 = 1, a211 = a212 = a221 = a122 = 2, k > 4.

ThenA is a positive tensor. A simple computation with (3.5) gives R = 2k +3, r = 7, γ = k+1
3 ,

and then δ = 1
6 [( k+1

3 ) 2
3 – ( k+1

3 ) 1
3 ] + k+1

3 . However, by Theorem 3.1, we have t = 2, β0(A) =
mini,j aij···j = 1, β1(A) = 1, thus

ϕ =
[( k+1

3 ) 2
3 – ( k+1

3 ) 1
3 ] + 2k + 3 – 1

7 – 2[1 – ( k+1
3 )– 1

3 ] – 1
=

[( k+1
3 ) 2

3 – ( k+1
3 ) 1

3 ] + 2k + 2

4 + 2( k+1
3 )– 1

3
.

Now we take k = 10, and then in (3.5) we have

1.5613 ≤ xmax

xmin
,

while in Theorem 3.1,

1.6275 ≤ xmax

xmin
.
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Remark 3.3 Let η = e
g and ϕ = f

h , where η is given by (2.7), ϕ is given by Theorem 3.1 and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e =
∑m–1

k=t mini,j∈In Ai,α(k,j)(γ
k
m – γ

m–k
m ) + R –

∑m–1
k=t mini,j∈In Ai,α(k,j),

f =
∑m–1

k=t
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A)(γ k

m – γ
m–k

m ) + R

–
∑m–1

k=t
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A),

g = r –
∑t–1

k=1 mini,j∈In Ai,α(k,j)(1 – γ – k
m ) –

∑m–1
k=t mini,j∈In Ai,α(k,j),

h = r –
∑t–1

k=1
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A)(1 – γ – k

m )

–
∑m–1

k=t
( m–1

m–k–1

)
(n – 1)m–k–1βm–k–1(A).

Obviously, we have

m–1∑

k=t

(
m – 1

m – k – 1

)

(n – 1)m–k–1βm–k–1(A) ≥
m–1∑

k=t

min
i,j∈In

Ai,α(k,j).

Then (1 – γ – k
m ) ≥ 0, so it’s easy to conclude that h ≤ g . Since

f – e =
m–1∑

k=t

((
m – 1

m – k – 1

)

(n – 1)m–k–1βm–k–1(A) – min
i,j∈In

Ai,α(k,j)

)
(
γ

k
m – γ

m–k
m – 1

)
,

when γ
k
m – γ

m–k
m ≥ 1, k = t, . . . , m – 1, we have f ≥ e, i.e., ϕ ≥ η.

So in some cases, the bound of Theorem 3.2 is sharper than that of (2.8).

Example 3.2 Let A = (ai1i2i3 ) ∈R
[3,5]
+ with k > 4,

a111 = a1i1 = k, a222 = a333 = a444 = a555 = 1, aijj = 2,

and other

ai1i2i3 = 2.

Then A is a positive tensor, and we have t = 2. A simple computation with (2.7) gives
mini,j∈5 Ai,α(2,j) = 1, mini,j∈5 Ai,α(1,j) = 4, R = 5k + 40, r = 49, so

η =
[(γ ) 2

3 – (γ ) 1
3 ] + 5k + 40 – 1

49 – 4(1 – (γ )– 1
3 ) – 1

.

However, in Theorem 3.1, β0(A) = mini,j aij···j = 1, β1(A) = 2, thus

ϕ =
[(γ ) 2

3 – (γ ) 1
3 ] + 5k + 40 – 1

49 – 2 × 4 × 2(1 – (γ )– 1
3 ) – 1

=
[(γ ) 2

3 – (γ ) 1
3 ] + 5k + 40 – 1

49 – 16(1 – (γ )– 1
3 ) – 1

.

Similarly, we take k = 10,

η =
[(γ ) 2

3 – (γ ) 1
3 ] + 89

44 + 4(γ )– 1
3

,
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ϕ =
[(γ ) 2

3 – (γ ) 1
3 ] + 89

32 + 16(γ )– 1
3

.

So we have

44 + 4(γ )– 1
3 – 32 – 16(γ )– 1

3 = 12
(
1 – (γ )– 1

3
)
.

Since γ ≥ 1, we get (1 – (γ )– 1
3 ) ≥ 0, and so

ϕ ≥ η.
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