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1 Introduction
Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C be a nonempty,
closed, and convex subset of a real Hilbert space H.

We denote the fixed point set of a mapping T by F(T). Fixed point theory can be ap-
plied to variational inequality problems, equilibrium problems, split feasibility problems,
optimization problems, etc. These problems are encountered in various fields such as en-
gineering, physics, game theory, and economics.

A mapping T of C into itself is called nonexpansive if

1Tx - Tyl < llx=yl, Vx,yeC.

In mathematics, conventional optimization problems arise in the process of making a
trading system more effective and are usually stated in terms of minimization problems.
In this paper, we give a new iteration for solving two constrained convex minimization
problems.

Convex constrained minimization problem is popular and very important to various
branches in physics, engineering and economics, e.g., to find the minimum travel dis-
tance or to find the lowest cost. Consider the constrained convex minimization problem
as follows:

minimize {f(x) 1x € C}, 1)
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where f: C — R is a real-valued convex function. If f is (Fréchet) differentiable, then
the gradient-projection algorithm (GPA) generates a sequence {x,} using the following

recursive formula:

Xna1 = Po(%y — AVf (%)), Vn=0, 2
or more generally,

Xns1 = Pc(dn = 2 Vf (), V120, (3)

where both in (2) and (3) the initial guess xy is taken from C arbitrarily, and the parameters,
A or X,, are positive real numbers satisfying certain conditions. The convergence of the
algorithms (2) and (3) depends on the behavior of the gradient Vf. In fact, it is known that
if Vf is a-strongly monotone and L-Lipschitz with constants «, L > 0, then the operator

T := Pc(l - AVf) )

is a contraction; hence, the sequence {x,} defined by the algorithm (2) converges in norm
to the unique minimizer of (1). However, if the gradient Vf fails to be strongly monotone,
the operator T defined by (4) could fail to be contractive; consequently, the sequence {x,}
generated by the algorithm (2) may fail to converge strongly [1]. If Vf is Lipschitz, then
the algorithms (2) and (3) can still converge in the weak topology under certain conditions
[2-4].

The variational inequality problem is to find a point u € C such that

(v—u,Au) >0, VveC. (5)

We denote the set of solutions of the variational inequality by VI(C,A). Many models of
variational inequalities are used in practice, including a mathematical theory, some inter-
esting connections to numerous disciplines and a wide range of important applications in
engineering, physics, optimization, minimax problems, game theory, and economics; for
more details, see [5, 6].

Su and Xu [3] introduced the relation of a solution to the minimization problem (1)
and solutions of the variational inequality (5) as stated in the following Lemma 1, and this
lemma helps to prove the theorem about the minimization problem more effectively; for
more details, see [7-9].

Lemma 1 (Optimality condition, [3]) A necessary condition for a point x* € C to be a
solution of the minimization problem (1) is that x* solves the variational inequality

(Vf(x*),x-x*)>0, VxeC. (6)
Equivalently, x* € C solves the fixed point equation
x* = Pc(x* - AVf(x%)),

for every constant A > 0. If, in addition, f is convex, then the optimality condition (6) is also
sufficient.
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By Uy we denote the set of solutions of (1).
In 2011, Ceng et al. [10] introduced the following iterative scheme that generates a se-
quence {x,} in an explicit way:

Xn+l = PC[sn)’ Ve, + (1 - Sn/-'LF)Tnxn]; Vn >0,

where s,, = # and Pc(I — 1, Vf) =s,I + (1 —s,)T, for each n > 0. He proved that the
sequence {x,} converges strongly to a minimizer x* € S of (1).

In 2014, Ming and Lei [11] introduced an explicit composite iterative method for finding
the common element of the set of solutions to an equilibrium problem and the solution
set to a constrained convex minimization problem, as well as proved a strong convergence
theorem, as follows:

Algorithm 1 Given x; € C, let the sequences {u,} and {x,} be generated iteratively by

G y) + 5 =ty thy = %,) =20, Vy€C,
Kps1 =Wy Vu, + ([ —a,A)Tyu,, VYneN,

where T, is a nonexpansive mapping from Pc(I — 1, Vf) =s,I + (1 —s,)T,, which is %—
averaged with s, = #, and Vf is an L-Lipschitz mapping, forall L >0, V:C — C
is an [-Lipschitz mapping with constant / > 0, A : C — C is a strongly positive bounded
linear operator with coefficient y > 0and 0 < y < Z;, Uy = Qp,%u, {An} C (0, %), {a,} € (0,1),

{Bu} C (0,00) and {s,,} C (0, 3).

In 2015, Yao et al. [12] introduced the intermixed algorithm for two strict pseudocon-
tractions S and T as follows:

Algorithm 2 For arbitrarily given x, € C, yo € C, let the sequences {x,} and {y,} be gen-
erated iteratively by

X1 =(1 - ﬂn)xn + ﬂnPC[anf(y;q) +(1-k-ay)x, + kIx,], n=>0,
Yn+l = (1 - ,Bn)yn + lgnPC[ang(xn) + (1 - k - Oln)yn + kSyn]; n= 0)

(7)

where S, T : C — C are A-strictly pseudocontractions, f : C — H is a p;-contraction, and
g:C— Hisa py-contraction, k € (0,1-A) isa constant, and {«,}, {8,} are two real number
sequences in (0, 1).

Furthermore, under some control conditions, they proved that the iterative sequences
{x,,} and {y,} defined by (7) converge independently to Prr)f(y*) and Pp(sg(x*), respec-
tively, where x* € F(T) ={z€ C: Tz =z} and y* € F(S) = {z" € C: Tz* = z*}.

Motivated by Yao et al. [12] and Ming et al. [11], we introduce the new iterative method
as follows:

Algorithm 3 Given x;,y; € C, let the sequences {x,} and {y,} be defined by

X1 = (1= )% + pnPclof () + (1 - ) Tl ),

(8)
Yn+1 = (1- /«Ln)yn + MnPC(ang(xn) +(1- Oln)TJnCzyn)r
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where f,g : H — H are ay- and a,-contraction mappings with ar,a, € (0,1) and a =
max{ay, a,}, Vfi is an Lif-inverse strongly monotone with L; > 0, for all i = 1,2, {u,},
{on} S [0,1], Pcll - A,VF) = sl + (1= si)Th, ¥i=1,2 and 51, = 22, (31} € (0, 2) and
0<0 < u, <0 forall n € N and for some 6,6 > 0.

The purpose of this article is to combine the GPA and averaged mapping approach to
design a two-step intermixed iteration for finding the common solution of a constrained
convex minimization problem, and also prove a strong convergence theorem for the in-
termixed algorithm generated by (8). Applying our main result, we prove a strong conver-
gence theorem for the split feasibility problem. Moreover, we utilize our main theorem in

the numerical example.
2 Preliminaries
Throughout this article, we always assume that C is a nonempty, closed, and convex subset
of a real Hilbert space H. We use “—” for weak convergence and “—” for strong conver-
gence. For every x € H, there is a unique nearest point Pcx in C such that
lle—Peall < lx—yll, VyeC.
Such an operator P¢ is called the metric projection of H onto C.
Assume that C is a nonempty closed and convex subset of H. A mapping V: C — C'is
said to be an /-Lipschitz if there exists a constant [ > 0 such that
Ve —Vy| <lllx—yl, Vx,yeC.

If] € [0,1), then V is called a contraction. Obviously, if / = 1, V is a nonexpansive mapping.

Definition 1 A mapping 7 : H — H is said to be firmly nonexpansive if and only if 2T — I

is nonexpansive, or equivalently,
(x—y, Tx - Ty) > | Tx - Ty|?, x,y€H.
Alternatively, T is firmly nonexpansive if and only if T’ can be expressed as
1
T==-(I+9),
ST +9)
where S: H — H is nonexpansive.

Definition 2 (Positive operator) An operator A is called positive if it is self-adjoint and
(Ax,x) >0 forallx € H.

An operator A on H is strongly positive if there exists a constant > 0 with the property

(Ax,x) >V |x||>, VxeH.
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Lemma 2 ([13]) Foragivenze Handu € C,
u=Pcz <+ (u-z,v-u)>0, VveC.
Furthermore, Pc is a firmly nonexpansive mapping of H onto C.

Lemma 3 ([14]) Let H be a real Hilbert space. Then the following results hold:
(i) Forallx,y € H and o € [0,1],

oz + (1= ey | = alixl® + (1 = @) yl12 = (1 - @) - 11,
(i) Jlx+ 1% < |lx[|® + 2(y,x + ), for each x,y € H.
Lemma 4 ([4]) Let {s,} be a sequence of nonnegative real numbers satisfying
Sus1 = (L= tu)sy + 8, Vn =0,

where {a,} is a sequence in (0,1) and {8,} is a sequence such that
(1) Zzil oy = 00,
(2) limsup,_, o, ;STZ <0o0rY 2|84 < o0.

Then lim,_, o S, = 0.

Definition 3 A mapping 7 : H — H is said to be an averaged mapping if it can be written
as the average of the identity / and a nonexpansive mapping, that is,

T=(01-a)+as, ©)

where « is a number in (0,1) and S : H — H is nonexpansive. More precisely, when (9)
holds, we say that T is a-averaged.

Clearly, a firmly nonexpansive mapping is a %—averaged mapping.

Proposition 1 For given operators S, T,V : H — H:
(i) IfT=Q0-a)S+aV for some o €(0,1) and if S is averaged and V is nonexpansive,
then T is averaged.

(il) T isfirmly nonexpansive if and only if the complement I — T is firmly nonexpansive.

(iti) f T =1 -w)S+aV forsomea €(0,1), S is firmly nonexpansive and V is
nonexpansive, then T is averaged.

(iv) The composition of finitely many averaged mappings is averaged. That is, if each of
the mappings {T;}Y, is averaged, then so is the composition Ty o Tyo-+-0 Ty. In
particular, if Ty is a1-averaged, and T, is ay-averaged, where a1, € (0,1), then the
composition Ty o T, is a-averaged, where o = a1 + aa — 010to.

Lemma 5 ([11]) For given x € H and let Pc : H — C be a metric projection. Then
(@) z=Pcx ifand only if (x —z,y —z) <0,Vy e C.
(b) z=Pcx ifand only if Ix— 22 < |w = yI* ~ lly - 2II% Vy € C.
(¢) (Pcx—Pcy,x—y) > ||Pcx — Pcy|? Vx,y € H.

Consequently, Pc is nonexpansive and monotone.
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Lemma 6 ([15]) Each Hilbert space H satisfies Opial’s condition, i.e., for any sequence
{u,} C H with u, — u, the inequality

liminf ||z, — u|| < liminf ||z, — V||
n—00 n—oo
holds for every v e H with v # u.

Definition 4 A nonlinear operator T whose domain D(T) C H and range R(T) C H is
said to be:

(a) monotone if
(x—y,Tx—Ty) >0, Vx,yeD(T);

(b) B-strongly monotone if there exists 8 > 0 such that
(x—y, Tx—Ty) > Blx—yl>, Vx,yeD(T);

(c) v-inverse strongly monotone (for short, v-ism) if there exists v > 0 such that
(x—y, Tx = Ty) > v||Tx — Ty||*>, Vx,y € D(T).

Proposition 2 Let T be an operator from H to itself. Then
(@) T is nonexpansive if and only if the complement I — T is 5-ism;
(b) If T is v-ism, then for y >0, yT is %—ism;
(c) T is averaged if and only if the complement I — T is v-ism for some v > % Indeed, for

a €(0,1), T is a-averaged if and only if - T is %-z’sm.

Lemma 7 ([16]) Assume A : H — H is a strongly positive bounded linear operator with
coefficient y >0and 0 <t < |A||™ . Then | -tA| <1-ty.

3 Main results

Let V : C — C be [-Lipschitz with coefficient / > 0, and A : C — C a strongly positive
bounded linear operator with coefficient y and 0 < y < % Let f : C — R be a real-valued
convex function and assume that Vf is an L-Lipschitz mapping with L > 0. From Xu [1],
we have that Pc(I — AVf) is %—averaged forO< A< % and for each # € N, that is, we can

write

Pc(I =1, Vf) = (1 =s,)I +5,T,

_ 2+r4L

where T{: is nonexpansive and s, 4

Theorem 1 Let C be a nonempty closed convex subset of a real Hilbert space H. For every
i= 1,2,}; : C — R be a real-valued convex function and assume that VZ- is an %—inverse
strongly monotone with L; > 0 and Uy # . Let f,g : H — H be ay- and a,-contraction

mappings, respectively, with ag,aq € (0,1) and a = max{ay,a,}. Let the sequences {x,}, {y.}
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be generated by x1,y, € C and

%1 = (1= )%, + i Pelnf 3) + (1 — ) Thix,),

= (10)
et = (1= pn)yn + nPclotug(x,) + (1 - an)Tf?yn),

where {{1,}, {a,} € [0,1], Pc(I — )LLVI’,») =siI+(1 —sL)Tﬁ, sho= %ﬂi and (A} C (0, L%)for

all i = 1,2. Assume that the following conditions hold:
(i) limy ooy =0and ) oo o, =00,
(i) 0< 8 <, <06 forall n € N and for some 8,6 >0,

(111) ZZO:I |tns1 — 0| < 00, Zzil [Mns1 = Hn| < 00.
Then {x,} and {y,} converge strongly as s, — 0 (<= A, — L%) Vi=1,2, tox* = Puflf(y*)
and y* = Pu?2 g(x*), respectively.

Proof First, we show that {x,} and {y,} are bounded. Assume that ¥ € Uz and y € .
Then we have

e = Fl = (1= ) + 1nPe (f O) + (1 = ) Tha,) - 5|
= @ = ) @ =B + (P ernf 0) + (1= o) Tix,) - F) |
< (U= )10 =T+ i oraf () + (1= ) T 5, -
< (= )l = 1+ (0 [F ) 5| + (1 — )| T, ~ %)
< (1= ) 10 = R+ (o0 [ ) = F + (1 = e0) s — 5
= (1= atupn) len =% + ctupin [ f () =X
< (1= atpn) s =%l + aurin ([ ) = FO) | + | G) -]

< (1= ctutn) 1% = Zl| + Cnpn@llyn =V + ctuptn|[fG) - % (11)
Similarly, we get
191 =T < (1= @t 190 =TI + aptnatllt —Fl + cuprn]| g@ -7 (12)
Combining (11) and (12), we have

| Y _%” + [y _3’{” = (1 — a1 - ﬂ))(”xn _35” + {|yn —7”)
+ o ([FG) -F] + @ -5)-

By induction, we can derive that

F) %[ + |¢@ -5},

%, =% + [l = ¥l < max{ e =% + lly1 =7,

for every n € N. This implies that {x,} and {y,} are bounded.
Next, we show that ||x,.1 — %, = 0 and ||y,41 — yx || = 0. Observe that

|70 = T

< | Tty = Thatya | + | Tyt — Tt
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< %n = xuall +

4Pc(I - ALVf) - (2= ALLY)
X
24211, !

<4PC(1 AL VA) - (2- 2L 1L1)> 1

2+ )‘n 1L1
4Pc(I - ALVA) 4Pc(I - AL VF)
S LR Y [ | (paichitar A ALY PR it ML) PR
2+ A L1 2+ )Ln 1L1
2-AL 2- /\1L1
24411, Yn1 = 2+, )7
= ”xn _xn—lll
. 42+ AL L)Pe(I = AV &g — 42 + AAL)P( = AL Vi )x,
(2+ALL)(2+ AL Ly)
. (2= L)@+ ApL1)%uo1 — (2= ALL1) (2 + A L1) %yt
(2+ALL) @2+ AL L)
= ||xn _xn—lll
. 42 + AL L)Pc(I = ALV F ), 1 — 42 + ALL)Pe(I = AL V)%,
(2 + )\}ILl)(Z + A;I—lLl)

4Ly Ay = Ay |
: |
(2+)\. Ll)(2+)\ Ll)

= ”xn —Xn-1 ”

4L, (ML = AMPe(I = AL V)%,
2+ AL+ AL L)

4(2+A L) (Pc(I = AL Vfl)xn 1= Pc(I -2 1Vf1)x,, n)
(2+ALL)(2+ AL Ly)

AL AL — AL
¥ L . 2 I |
2+ knLl)(2 +x, L)

= ”xn — Xn-1 ”

ALy AL = AP = ALV )& | . 4N Vhixu 1 = AV x|
Q2+ALL)@Q+AL L) 2+AL L

402 — AL
+ — [
2+ALL)@2+ X, L)

< o=l Lafpd s =8 [Pt - V)

+4AL = AUV il + Lo AL = AL o
< 1% — % |
+ AL = AL(La | Pe (T = AL VAo || + 41V Al + Ll )

1 1
< % = %1l +M1|)“n—l =Xy

’
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(13)

for some M; > 0 such that My > Ly |Pc(I = ALV )1 || + 4| VA% || + Ly 6,1 [, Y12 > 1.
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From the definition of x, and (13), we have

%1 = %l

= [ (U= )+ P (ctf () + (1 = ) Thh,)

= (1= pne1)Znr + pnaa Pe (@t f o) + (1 = an_l)TZﬂlxn_l)) I

< (@ = )l = xnall + | tn-1 = ol 121
+ | P ) + (1 — ) T, )
= Pc(otn1f(n-1) + (1 - an—l)TJilxn—l) I
1t = || Pe (@t f Ont) + (1 = 0y 1) T fi X )|
L= w1 = %n-a [l + [ n-1 = Wl ll-1
+ ] ernf On) + (1= @) Tt = (uaf rat) + (1 =t DTH 3, )|
# 1 = ot [P (@nof Ornet) + (= @) T 001 |
(L= ) lln = 21 [l + 11 =t lln1 ]
+u4nmfon-wmﬂfwm4H+411—an7ﬁxn (= atn )T )
+ 1w = in-1 || Pe(@naaf On1) + (1 — ot DT %, )
L= )l = xn-all + (-1 = pnlll®n-1 |l
+ (0 [f On) = fOn-1) | + lon — | Ilf(yn_1)||

+u—%wﬁunszmuﬂ%l—%m )

IA

IA

IA

+ |Mn Mn— 1|||PC(Oln ]f(yn 1)+(1 Oy 1) 1xn 1)”

IA

L= )10 = %1 ll + [pn-1 = ponl 1%n-1

+ 1 (@ [f O) = O | + Lot = ana [ f G|

4 (L= ) (160 = ot | + Ma[RLy = 2L) + ot =l | T 001 )
+ | tn = i || Pe(@naaf o) + (1 = e )T 1xn )|

1— ) l%n = Xl + |1 — | %=1 |l

IA

+uﬂQMWUM—fUmﬂH+Wn—%FMV@mﬂH

aM
+ (1 —a)llxn —xpo1ll + (1 — ) I - }Si _Sit—l|
1

o —anl| T 1M1@

+ | = - 1|||PC(an—]f0/n )+ (1 -, I)T{}_lxn—l)u
< (1= pnot) 10 = Xna |l + |1 = ul %01l

+ 1in = ton-1] | P (@n-1f On1) + (1 = ot 1) 1xn Nl
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+ Un <ana||yn = Y1l + oy — aya] |If(y;4—1) ”
4M 7
#1ma) P  lotns —al| T ||). (14)
1
Using the same method as derived in (14), we have

Iyne1 = yull
<@1- Mnan)”yn —Yn-1 |+ [n-1 = el lyn-1ll

+ |y = ] ”PC(an—lg(xn—l) +(1- an—l)Ti?—lyn—l) ||

+ Un <ana”xn —Xp-1 ” + |an — 0y | Hg(xn—l) ”
4M. Z
+(1- an)L—zz |Sf, - Si71| + o1 — o ” T5271yn—1 ”)’ (15)

for some M > 0 such that My > Ly | Pc(I = X2V fa)yuor | + 40 VfaYnor | + Lallyusll, Vi > 1.
From (14) and (15), we have
%41 = Zull + 1ynse1 = yull
< (1= (=@ pnotn) (150 = Kt | + 170 = Yu1ll)
+ 11 = ol (161 | + [Yna
# 1 Pe(@naf On) + (= o) T ) |
+ | Pe(en-1861) + (L - ) T2 31) )
Ou0] + gt + | Tistas | + [ T30 ])

4M, a4M,
+(1—a,,)<—L si—si_l‘ + 7 Si—sﬁ_1|).
1 2

+ |an _an—1|(

Applying Lemma 4 and condition (iii), we can conclude that
|ne1 — x4l > 0 and  ||yye1 —yull > 0 asn— oo. (16)

Next, we show that [|x, — W, || — 0 where W}, = at,,f (y,,) + (1 —an)T{,{lxn and ||y, — V|| = 0
where V, = a,g(x,) + (1 - oc,,)T{;zyn. Let X € Uz andy € U, Then we derive that

[1%6241 _36”2 = ”(1 — Wn)%n + PuPc Wy _%”2
~ |12
= ”(1 — U)X = %) + i (Pc Wy, = %) “
= (L= a)lles = FI* + pa Pc W, - %1
— (1= ) nlln _PCWn”2
~ 7 ~|12
< (1= wn)lln _x||2 T Uy Hanf(yn) +(1 _an)Tﬁlxn _x”

— (1= ) nll%n _PCVVn”2
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= (1= )1 = F12 + ot (F ) = i) + Thoe, %)
= (1 = ) 1% = Pc Wi

< (1= n)lloen =512 + pon (| 7w — %)
+ 200 ) = T €f () + (1 = ) T, — 7))
— (1= ) e lltn = Pc Wil

< (1= n)lloen =512 + pan (| 7w — %]
+ 20, [f0) = Tt | [t 0r) + (1 = ) T, ~ 5]
— (1= ) e lltn = Pc Wil

< (1= )l =TI + gl = 51
+ 2000100 [f ) — Tt | | taf 0) + (1 = ) T, ~ |
— (1= ) e lltn = Pc Wil

=l — 72
+ 2000110 [f ) — Th 60 | | taf 0) + (1 = e0) T, ~ |

— (1 = ) |l _PCWnHZv
which implies that

(1 = pn) nll%n = Pc W, |I>
< loen = FI = 201 - FII
420,00 | F O) = TPt | |t 0) + (1 = 00) Tt — |
< 1en = Zsr (10 = Fll + 201 = )

+ 20 [F ) = T 0 | o 0) + (1 = c0) T 0, ~ 3
By (16), as well as conditions (i) and (ii), we get
[|PcW,, —x,]| = 0 asn— oo.
From definition of x,, and applying the same method as (17), we have
IPcVy—yull = 0 asn— oo.
Considering

|Pc W, =% = ||Pc W, — PcX||*
< (W, =%, PcW, -%)

1 ~n2 ~n2 2
=5(”Wn_x” +IPc Wy, = FII> = W, — PcW,||?)

(17)

(18)

Page 11 of 22
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implies that
IPc W, =% < [IWy, =%)|* = [|W,, — Pc W,,l|>. (19)
Observe that

W, = F = | (F ) = F) + (1 = a,) (T, - F) |
=y Hf(yn) _%”2 +(1- an)” Tlen _%”2

<, |[fn) =% + (1 - a)llx, - R (20)

From (19) and (20), we obtain

B =R = [ (1= 1) + 1P (ornf i) + (1 = ) Thx,) =%
= [ = )@ = F) + pa(PW, -F) |
< (1= ) 6w = FI1> + tullPc Wy = %)
< (1= ) lln = F1* + pn (1 W = F))> = | Wy = PcWiull?)
< (1= )%, = %)

o ([f 0) =F|* + (1 = @)l = FI1 = W, = PeWiul?),
implying that

~ ~ ~|12
nll Wy _PCVVn”2 < (1 = ot n) |l _x"2 = l%n41 _x”Z + iy “f(yn) _x”
~ ~ ~|12
< llxn _x||2 = %41 _x”2 + 0y fhy Hf(yn) _x”

< 116 = 2t 1 (16 = T+ 61 = F) + ettt [F ) — F]
From ||x,.1 —x,|| = 0 as # — oo and condition (i), we have
W, =PcW,|| =0 asn— oo. (21)
From definition of V;, and applying the same argument as (21), we also obtain
|Vy=PcVyl =0 asn— oco. (22)
Since

It = Wil = ey = Pc Wy, + Pc W, — W, ||

< xp = Pc Wyl + |Pc W, — Wil
From (17) and (21), we have

%, = Wyl = 0 asn— oo. (23)

Page 12 of 22
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From definition of y, and applying the same method as in (23), we also have
¥n = Vall > 0 asnm— oc. (24)

Next, we show that ||W, — Pc(I - %VE)W,,H — 0 as # — o0 and ||V, — Pc(I -
%VE)VHH — 0 as n — o0. Observe that

Wi = 2 = 00 (f ) = %) + (1 = ) (T, — ),
which yields

(1= atn) | T =00 | < Wy =]l + | () = -
From (23) and condition (i), we have

| Thx, — 24| >0 asn— oo. (25)
Since

||W,, - TEW,,H = ||Wn — X+ Xy — T{,erx,, + Tle,, - T{?WnH
< Wy =l + || = T, || + | T, — T W, |
< Wi =l + 0 = Thata | + Il = Wl

= 20l = Wil + | T, —
From (23) and (25), we get
| 7AW, - W, | =0 asn— . (26)
Observe that

[P (=325 W= W, | = |52 W+ (1=51) T W, = 7|
(=) T W, - W

< | w,-w,], (27)

2-AhLy 1
3 €0,3)

From (27), we have

where sl =

2 ~
PC(I— —Vﬁ) W, - W,
L

+[Pe(I=1,V7) W, = Wi

=

2 ~ ~
PC<I— L—Vﬁ) W, = Pc(I =2, VH) W,
1

[Pl = 39 W, -

< H (1— L%v]f])wn — (1= 21VF)W,

2 - ~
< (z —A;) [ W)+ | 7w, - W, .
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From the boundedness of {W,,}, s, — 0 (<= AL — %) and (26), we conclude that

2 ~
lim ”Wn—PC<1—L—Vﬁ>Wn =0. (28)
1

n—00

Applying the same method as for (28), we also have

-0. (29)

lim
n— o0

2 ~
v, —PC(I - —sz) v,
L,
Next, we show that limsup,_, . (f(y*) — «*, W,, — x*) < 0, where x* = Pu]lf(y*) and
limsup,,_, .. (g(x*) — ¥*, V,, —y*) <0, where y* = Pufzg(x*)'
Indeed, take a subsequence {W,, } of {W,} such that

limsup(f (y*) — &%, W, — &) = limsup(f (y*) — x*, W,,, — x*).
n—00 k— o0
Since {x,} is bounded, without loss of generality, we may assume that x,, — ¥ as k — oo.
From (23), we obtain W}, — X as k — 0o. Assume that ¥ # Pc(I - %Vﬁ )%. By nonexpan-
siveness of Pc(I — %Vfl), (28) and Opial’s property, we have

2~
liminf || W, —%|| < liminf| W}, — Pc (I— —Vﬁ)'a?
k—00 k—o00 Ll

2~
< liminf<” W, — Pc (1 - L—Vfl) Wi
1

k—00

+

2 _~ 2\
Pe(1-=Vh \W,, —Pc(1- =V )z
L L

)

< liminf | W,,, —Z]I.
k— 00

This is a contradiction, thus we have

~ 2 _~
xeF(PC<I—L—1Vf1)> =U;. (30)
Since W, — ¥ as k — oo, due to (30) and Lemma 2, we can derive that

limsup(f (y*) — ", W, - x*) = limsup(f (y*) - x*, W, - x*)

n—00 k— 00
={f (") -3 -w7)

<0. (31)
Similarly, take a subsequence {V}, } of {V},} such that

limsuplg(x*) — ¥, Vi, — y*) = limsup(g (x*) — y*, Viy, —¥").

n—00 k—o00

Since {y,} is bounded, without loss of generality, we may assume that y,, — 7% as k — oo.
From (24), we obtain V,,, — 7 as k — oo. Following the same method as for (31), we easily

Page 14 of 22
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obtain that

lim sup(g(x*) -y Va —y*) <0. (32)

n—0o0

Finally, we show that {x,} converges strongly to x*, where x* = Pu](1 f@*) and {y,} con-
verges strongly to y*, where y* = Puj72 g(x*).

Let W), = ayf (y) + (1 — @) T, and Vi, = ang(,) + (1 — ) T2y, From the definition
of x,,, we get
e =
= [ = 1) + P (enf ) + (1 = ) Th,) —x**
= 0 = ) (00 = &) + s (Pe(f O) + (1 = ) Thi,) — &%)
= (1= ) = 2% |+ | Pe (ot ) + (1 - @) Th ) 27|

< (1= ) |20 =2 + | cf ) + (1 = @) T, — 2%

I

= (1= )| — 2|
e (FOm) = 7) + (1 = ) (D, — %) |
< (1= )]0 -2t
(1= @) | T, — % || + 20{f () — %, W, — 7))
< (1= )| — x|
(L = o) [ = 2| + 20 0a{f () — 2%, W, — )
= (1= tttn) 6 = 2| + 20012lf () — &, W), — %)
= (1= appan) |20 — 2%
+ 20010 ((f O) =f (77), W = 27) + (f(57) = ", Wiy = 27))
< (1= atpton) |20 - 2|
+ 2eupin ([ ) = £ OF) [ Wi =27+ (F(77) =27, W = 27))
< (1= )| — 2|
+ 20t |[f ) = F (V) [ (I Win = Zpar || + |21 — 27 )
+ 20, pnlf () — &%, W, — x¥)
< (1= appan) |, — 2|
+ 20n | yn = 7 || W = 1| + 20t yn = 5| [o6m.1 = 57
+ 200 alf (V) — &%, W,y — &%)
< (1= apptn) | — 2%
4 2000 | Y = V| I Wia = 2 | + ot (|3 = 5| + |21 = 2]

+ 20, p1n(f () — %%, W, — x*),
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which yields
[rs1 =
1 - anpin * |2 20ty fnd *
ST” n = +1_7||yn—y 11W, = e
nMnd Upnd
Gy 2R ) W, —
+1—Olnl/«na”yn y” +1—Olnlinll<f(y) x* W, x)
:(1_M)Hxn_x*Hz-l—M”yn_y*||llwn_xn+1”
1- Unhnd 1- Upfnd
B T O VR A
+1—auﬂ”yn y” +1—Ot/L,,tl(f(y) x5 W, x)
= (1 Oln/'Ln 1 ﬂ)>|| ||2 M” n_y*”||Wn_xn+1”
1-a nind l_an:u«na
B R LR R YA
l_anﬂnﬂ || y || l—-« . ﬂ(f(y) X 1Wn X ) (33)

Similarly, as derived above, we also have

5w = |
ptn(l—a) 12 20Ua
< (1- 2= g, -y s
Qyhnd 2 ” 2 205?1,“41

I-a,u,a e a8 = V=) (34)

Xy — %" ” Vi = Yl
o -
From (33) and (34), we deduce that

Jsonss = 1"+ o =

ntin(l—a * *
< (1- 220D (s, -+ ')

1 - aupna
IZaZMZa (19 =5 |1 Wi = s |+ [ = 21 Vi = sn )
# o (= =)
. %(V(y*) -t Wy =) + (g(x) =57, Vi =)
- (1- 222 - b=
e [ Ry P TR
() - ) Vo) @)

By (16), (23), (24), (31), (32), condition (i) and Lemma 4, we have lim,,_, oo (|| %, —x*|| + ||y, —
¥*|1) = 0. It implies that the sequences {x,}, {y,} converge to x* = PL171 fO), y* = PU;,2 g(x*),
respectively. This completes the proof. d
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Corollary1 Let C be a nonempty closed convex subset of a real Hilbert space H. Letf :C—
R be a real-valued convex function and assume that Vf is %-inverse strongly monotone
with L >0 and Uy # ). Let f : H — H be an a-contraction mapping with a € (0,1). Let the
sequence {x,} be generated by x, € C and

Fns1 = (L= pn)xn + MnPC(anf(xn) +(1- Ol,,)TJ:x,,), (36)

where {|1,}, {o,} € [0,1], Pc(I — k;Vf) =8, +(1- s,,)T£ and s, = z_i”L, {r.} C (0, %). As-
sume that the following conditions hold:
(i) limy ooy =0and ) oo o, =00,
(i) 0<O <, < 0 for all n € N and for some 9,0 >0,
(iii) Z;Xil lote1 — 0] < 00, Z;.,il [ns1 = tnl < 00.
Then {x,} converges strongly, as s, — 0 (<= A, — %), to x* = Pu;,f(x*).

Proof If we put f =g, x,, = y,, in Theorem 1, we obtain the desired conclusion. g

4 Application
Let Hy, H, be two real Hilbert spaces. Let C, Q be nonempty closed convex subsets of H;
and H», respectively.

In 1994, Censor and Elfving [17] introduced the split feasibility problem (SFP), which is
to find a point x such that

xe€C and DxeQ,

where D : H; — H, is a bounded linear operator.

Throughout this paper, we assume that the SFP is consistent, that is, the solution set
I' of the SFP is nonempty. Let f : 7; — R be a continuous differentiable function. The
minimization problem

. 1 2
I;lelélf(x) =min |Ax — PoAx|| 37)
is ill-posed.

Before proving Theorem 2, we need the following:

Proposition 3 ([18]) Given x* € H,, the following statements are equivalent:
(i) x* solves the SFP;
(i) Pc(l - AVf)x* = Po(I - LA*(I - Po)A)x* = x%;
(iii) x* solves the variational inequality problem of finding x* € C such that

(Vf(x*),x-x*)>0, VxeC, (38)
where Vf = A*(I — Pg)A and A* is the adjoint of A.
Theorem 2 Let C and Q be nonempty, closed, and convex subsets of H, and H,, respec-

tively, and let A; : Hi — Hj be bounded linear operators for all i = 1,2 with L; being the
spectral radius of A7A; foralli = 1,2 with I'; # (). Let f,g : H — H be ay- and a,-contraction
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mappings with as,aq € (0,1) and a = max{ay,a,}. Let the sequences {x,}, {y,} be generated
by x1,y1 € C and

Xns1 = (1= )% + pnPc(f 5n) + (1 = ) T %), (39)
Yn+l = (1 - I'Ln)yn + /‘LnPC(ang(xn) + (1 - an)TZZyn):
where {11, {cty} C [0, 1], Pe(I - 25 (AF(I-P)A)) = sil + (1 i) T, Vi = 1,2 and s}, = 22k,
(A} (o, %). Assume that the following conditions hold:
(i) limyooay =0and Y oo o, = 00,
(i) 0<8 <, <6 forall n € N and for some 6,6 >0,
(iii) Z:il lotns1 — ap| < 00, Z;il [lns1 = tn| < 00.
Then {x,} and {y,} converge strongly, as s, — 0 (& A, — L%) Vi=1,2, to x* = Pr,f(y*)
with I = {x € C;A1x € Q} and y* = P, g(x*) with I, = {x € C; Axx € Q}, respectively.

Proof Letting x,y € C and Vf; = A} (I — Pg)A; for all i = 1,2, we have

[V£i@) = VA = 47U - Po)Aw - A7 - Po)An |

2
< Li||(I - Po)Aix ~ (I - P)Aiy " (40)
From the property of Pc, we have

|2 - PRz~ (1 - Po) Ay
= (I - PQ)Aix — (I - Po)Ay, I - Po)Aix — (I - Po)Ayy)
= (U - Po)Awx — (I - PQ)Ay, Aix — Ay)
—((I = Po)Aix — (I - PQ)Ay, PoAsx — PoA )
= (A7 - PQ)Ax — A (I - P)Aiy,x - y)
— (I = PQ)Asx — (I - Po)A;y, PoAix — PoAy)
= (A7 - PQ)Ax — A (I - P)Aiy,x - y)
— (U = Po)Aix, PoAix — PoAy)
+(( = Po)Aiy, PoAix — PoAjy)

< (A7 -Po)Aix — A} (I - PQ)Ay,x — ). (41)
Substituting (41) into (40), we have

| Vfitx) = V)| < Li{AFT - Po)Ax — AN - Po)Ayy,x — )
= Li{Vfi(x) - VA®),x —y).

It follows that

(V) - V0 ~5) = 1| VA0 - VA0

Then Vf; is %—inverse strongly monotone, for all i = 1, 2.

Page 18 of 22
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From Proposition 3 and Theorem 1, we can conclude that Theorem 2 is true. O

Corollary 2 Let C and Q be nonempty, closed, and convex subsets of H, and H,, respec-
tively, and let A : Hy — H, be bounded linear operator with L being the spectral radius
of A*A with I’ # 0. Let f : H — H be an a-contraction mapping with a € (0,1). Let the
sequence {x,} be generated by x, € C and

Xns1 = (1= pu)wn + MnPC(anf(xn) +(1- an)TZIxn): (42)

where {11}, {atn} € (0,1, Pc(l = 3n(A*(I = PQ)A)) = sul + (1 =s5,) Ty" and s, = 232%, (3,} C
(0, %). Assume that the following conditions hold:
(i) limy—ooay =0and Y oo a, = 00,
(i) 0<O <, < 0 forallne Nandforsome§,9 >0,
(i) 5y lotnar — 0| < 00, Yoy |imer — ] < 00
Then {x,} converges strongly, as s, — 0 (<= 1, — %), tox* =Prfx*) with I’ ={x €
C;Ax € Q}.

Proof 1f we put f =g, x, =y, in Theorem 2, then the conclusion follows. O

5 Numerical examples

Example 1 Let C = [-10,10] x [-10,10] and let (-,-) : R? x R? — R be an inner product
defined by (x,y) = X -y = x1y1 + x2¥», for all x = (x1,x;) € R? and y = (y1,7,) € R2. For
every i =1,2, let f;: C — R be defined by f; (x1,%,) = 2x% + %3 and f5(x1,%,) = (¥ — 1) + x3,

Vx1,%; € R. Let f,g : R* — R?, defined by f(x1,%5) = (%, %2) and g(x1,%,) = (%, %), be

%— and %—contraction mappings and a = max{;, ;)} = l Let the sequences {x,}, {y,} be

generated by x1,y; € C. Putting o, = and Uy =

3”*1 , we can rewrite (10) as follows:

Xna1 = () + CHE)Pe (g f () + (4 LT,

(43)
et = (1), + (2L)Pe(Lg(x,) + (221) T y,),

where Pc(x1,%3) = (max{min{x;, 10}, -10}, max{min{xz, 10},-10}) and also Pc(I - )\LV};) =
sI+(1-s )Tf’ and s = M,where)\’ = oo Vi=1,2.

Then, smcefl(xl,xz) =242 + %y andfz(xl,xz) = (%1 — 1) + x3, we have
VAle1,%) = (x1,1) and Ve, x0) = (1, 2x).

It is obvious that Vﬁ isa %—inverse strongly monotone, Vi =1,2.
Consider (0,-10),(-10,0) € [-10,10] x [-10, 10] for which

~ 1 ~
Pc(I =1, V£1)(0,-10) = P(_10,10]x[-10,10] <1 - 1—6Vfl>(0, -10)

p 0 -161
= Plo10,10)x(-10101{ ) —

-161
= (P[_lo,l()]( ), Pl 1010]( 16 ))

: _[-161
= (max{mln{O, 10},—10},max{mm{Y,lo},—loD
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= (0’ _10)’

thus (0,-10) Us.
Similarly,

~ 1 ~
Pc(I - 22V£)(=10,0) = P_10,10)x[-10,10] <1 - 1_6Vf2>(_10’ 0)

-161
= P_10,101x[-10,10] 7’0

(2019) 2019:269

-161
= | Pio10,10] 6 »P-10,101(0)

. [-161 .
= (max{mm{ BT 10}, —10}, max{mm{O, 10}, —10})

= (_101 0)’

thus (-10,0) € Us.

It is clear that the sequences {«,}, {1t} satisfy all the conditions of Theorem 1, so we
can conclude that the sequences {x,} and {y,} converge strongly to (0,-10) and (-10,0),
respectively. Table 1 shows the values of {x,} and {y,} with x} = -10, 2 = 10, y! = 10,

y%=-10,and n = N = 400.

Table 1 The values of {x,} and {y,} with x) =10, x2 = 10,y =10, y2 = -10,and n = N = 400

n

Xn =06, x2)

Yo =4 y2)

A w N =

250

396
397
398
399
400

-10.0000, 10.0000)
-6.0784,8.0448)
-4.2192,7.3380)
-3.0380,6.9152)

(-0.0050,-7.7785)

(-0.0043,-9.9937)
(-0.0042,-9.9937)
(-0.0042,-9.9937)
(-0.0042,-9.9937)
(-0.0042,-9.9937)

(10.0000,-10.0000)
(8.1639,-7.2059)
(7.5048,-5.8538)
(7.1109,-4.9143)

(-7.5696,-0.0076)

(-9.9937,-0.0065)
(-9.9937,-0.0064)
(-9.9937,-0.0064)
(-9.9937,-0.0064)
(-9.9937,-0.0064)

Figure 1 The convergence of {x,} and {y,} with
x)=-10,x2=10,y) =10,y2 =-10,and n = N = 400

x_and yn

n

5}
\\

Y SR

\ \\

\
~
i i i
50 100 150
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Table 2 The values of {x,} with x) =-10,x2 = 10,and n=N = 400

Xn = 0}, x2)

-10.0000, 10.0000)
-7.0308,8.9972)
-5.2235,8.5685)
-3.9531,8.2876)

>

A w N =

250 (0.0000,-6.2974)

396 (0.0000,-9.9958)
397 (0.0000,-9.9958)
398  (0.0000,-9.9958)
399 (0.0000,-9.9958)
400  (0.0000,-9.9958)

Figure 2 The convergence of {x,} with x; =-10, 10 r T T T .
- 1
x2=10,and n =N =400 sl O :
N\ an
B+
e
2t ]
< 0 [ e e A s esem o o e e o e s v o o]
3
2l
T
4
6
8 J
-10 i 1 1 i 1 i A
0 50 100 150 200 250 300 350 400
n

Remark 1 If we choose f = g and x,, = y,, in Example 1, we can rewrite (36) as follows:

dn-1 3n+1 1 4n-1 7
Xp+l = Tn Xpn + Tn Pc Ef(xn) + an Tnxn )

where Pc(xl,a?) = (max{min{xy, 10}, —10}, max{min{x,, 10}, -10}) and also Pc( — Aan) =
Sl +(1— s,,)Tf: ands, = 2’A+(16), where A, = 8n’§2+1 . From Corollary 1, we can conclude that
the sequence {x,} converges strongly to (0,—10). Table 2 shows the values of {x,} with

xl =-10, 2 =10, and n = N = 400.

Conclusion
1. Theorem 1 guarantees the convergence of {x,} and {y,} in Example 1.
2. Corollary 1 guarantees the convergence of {x,} in Remark 1.
3. By using the concepts of an intermixed algorithm and gradient-projection algorithm
(GPA), we give a new iteration for solving two constrained convex minimization
problems.
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