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Abstract
In this paper, we first introduce the two-step intermixed iteration for finding the
common solution of a constrained convex minimization problem, and also we prove
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty,
closed, and convex subset of a real Hilbert space H .

We denote the fixed point set of a mapping T by F(T). Fixed point theory can be ap-
plied to variational inequality problems, equilibrium problems, split feasibility problems,
optimization problems, etc. These problems are encountered in various fields such as en-
gineering, physics, game theory, and economics.

A mapping T of C into itself is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

In mathematics, conventional optimization problems arise in the process of making a
trading system more effective and are usually stated in terms of minimization problems.
In this paper, we give a new iteration for solving two constrained convex minimization
problems.

Convex constrained minimization problem is popular and very important to various
branches in physics, engineering and economics, e.g., to find the minimum travel dis-
tance or to find the lowest cost. Consider the constrained convex minimization problem
as follows:

minimize
{

f (x) : x ∈ C
}

, (1)
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where f : C → R is a real-valued convex function. If f is (Fréchet) differentiable, then
the gradient-projection algorithm (GPA) generates a sequence {xn} using the following
recursive formula:

xn+1 = PC
(
xn – λ∇f (xn)

)
, ∀n ≥ 0, (2)

or more generally,

xn+1 = PC
(
xn – λn∇f (xn)

)
, ∀n ≥ 0, (3)

where both in (2) and (3) the initial guess x0 is taken from C arbitrarily, and the parameters,
λ or λn, are positive real numbers satisfying certain conditions. The convergence of the
algorithms (2) and (3) depends on the behavior of the gradient ∇f . In fact, it is known that
if ∇f is α-strongly monotone and L-Lipschitz with constants α, L ≥ 0, then the operator

T := PC(I – λ∇f ) (4)

is a contraction; hence, the sequence {xn} defined by the algorithm (2) converges in norm
to the unique minimizer of (1). However, if the gradient ∇f fails to be strongly monotone,
the operator T defined by (4) could fail to be contractive; consequently, the sequence {xn}
generated by the algorithm (2) may fail to converge strongly [1]. If ∇f is Lipschitz, then
the algorithms (2) and (3) can still converge in the weak topology under certain conditions
[2–4].

The variational inequality problem is to find a point u ∈ C such that

〈v – u, Au〉 ≥ 0, ∀v ∈ C. (5)

We denote the set of solutions of the variational inequality by VI(C, A). Many models of
variational inequalities are used in practice, including a mathematical theory, some inter-
esting connections to numerous disciplines and a wide range of important applications in
engineering, physics, optimization, minimax problems, game theory, and economics; for
more details, see [5, 6].

Su and Xu [3] introduced the relation of a solution to the minimization problem (1)
and solutions of the variational inequality (5) as stated in the following Lemma 1, and this
lemma helps to prove the theorem about the minimization problem more effectively; for
more details, see [7–9].

Lemma 1 (Optimality condition, [3]) A necessary condition for a point x∗ ∈ C to be a
solution of the minimization problem (1) is that x∗ solves the variational inequality

〈∇f
(
x∗), x – x∗〉 ≥ 0, ∀x ∈ C. (6)

Equivalently, x∗ ∈ C solves the fixed point equation

x∗ = PC
(
x∗ – λ∇f

(
x∗)),

for every constant λ > 0. If, in addition, f is convex, then the optimality condition (6) is also
sufficient.
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By Uf we denote the set of solutions of (1).
In 2011, Ceng et al. [10] introduced the following iterative scheme that generates a se-

quence {xn} in an explicit way:

xn+1 = PC
[
snγ Vxn + (I – snμF)Tnxn

]
, ∀n ≥ 0,

where sn = 2–λnL
4 and PC(I – λn∇f ) = snI + (1 – sn)Tn for each n ≥ 0. He proved that the

sequence {xn} converges strongly to a minimizer x∗ ∈ S of (1).
In 2014, Ming and Lei [11] introduced an explicit composite iterative method for finding

the common element of the set of solutions to an equilibrium problem and the solution
set to a constrained convex minimization problem, as well as proved a strong convergence
theorem, as follows:

Algorithm 1 Given x1 ∈ C, let the sequences {un} and {xn} be generated iteratively by
⎧
⎨

⎩
φ(un, y) + 1

βn
〈y – un, un – xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnγ Vun + (I – αnA)Tnun, ∀n ∈N,

where Tn is a nonexpansive mapping from PC(I – λn∇f ) = snI + (1 – sn)Tn, which is 2+λnL
4 -

averaged with sn = 2–λnL
4 , and ∇f is an L-Lipschitz mapping, for all L ≥ 0, V : C → C

is an l-Lipschitz mapping with constant l ≥ 0, A : C → C is a strongly positive bounded
linear operator with coefficient γ̄ ≥ 0 and 0 < γ < γ̄

l , un = Qβn xn, {λn} ⊂ (0, 2
L ), {αn} ⊂ (0, 1),

{βn} ⊂ (0,∞) and {sn} ⊂ (0, 1
2 ).

In 2015, Yao et al. [12] introduced the intermixed algorithm for two strict pseudocon-
tractions S and T as follows:

Algorithm 2 For arbitrarily given x0 ∈ C, y0 ∈ C, let the sequences {xn} and {yn} be gen-
erated iteratively by

⎧
⎨

⎩
xn+1 = (1 – βn)xn + βnPC[αnf (yn) + (1 – k – αn)xn + kTxn], n ≥ 0,

yn+1 = (1 – βn)yn + βnPC[αng(xn) + (1 – k – αn)yn + kSyn], n ≥ 0,
(7)

where S, T : C → C are λ-strictly pseudocontractions, f : C → H is a ρ1-contraction, and
g : C → H is a ρ2-contraction, k ∈ (0, 1–λ) is a constant, and {αn}, {βn} are two real number
sequences in (0, 1).

Furthermore, under some control conditions, they proved that the iterative sequences
{xn} and {yn} defined by (7) converge independently to PF(T)f (y∗) and PF(S)g(x∗), respec-
tively, where x∗ ∈ F(T) = {z ∈ C : Tz = z} and y∗ ∈ F(S) = {z∗ ∈ C : Tz∗ = z∗}.

Motivated by Yao et al. [12] and Ming et al. [11], we introduce the new iterative method
as follows:

Algorithm 3 Given x1, y1 ∈ C, let the sequences {xn} and {yn} be defined by

⎧
⎨

⎩
xn+1 = (1 – μn)xn + μnPC(αnf (yn) + (1 – αn)Tf̃1

n xn),

yn+1 = (1 – μn)yn + μnPC(αng(xn) + (1 – αn)Tf̃2
n yn),

(8)
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where f , g : H → H are af - and ag -contraction mappings with af , ag ∈ (0, 1) and a =
max{af , ag}, ∇ f̃i is an 1

Li
-inverse strongly monotone with Li ≥ 0, for all i = 1, 2, {μn},

{αn} ⊆ [0, 1], PC(I – λi
n∇ f̃i) = si

nI + (1 – si
n)Tf̃i

n , ∀i = 1, 2 and si
n = 2–λi

nLi
4 , {λi

n} ⊂ (0, 2
Li

) and
0 < θ ≤ μn ≤ θ for all n ∈ N and for some θ , θ > 0.

The purpose of this article is to combine the GPA and averaged mapping approach to
design a two-step intermixed iteration for finding the common solution of a constrained
convex minimization problem, and also prove a strong convergence theorem for the in-
termixed algorithm generated by (8). Applying our main result, we prove a strong conver-
gence theorem for the split feasibility problem. Moreover, we utilize our main theorem in
the numerical example.

2 Preliminaries
Throughout this article, we always assume that C is a nonempty, closed, and convex subset
of a real Hilbert space H . We use “⇀” for weak convergence and “→” for strong conver-
gence. For every x ∈ H , there is a unique nearest point PCx in C such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

Such an operator PC is called the metric projection of H onto C.
Assume that C is a nonempty closed and convex subset of H . A mapping V : C → C is

said to be an l-Lipschitz if there exists a constant l ≥ 0 such that

‖Vx – Vy‖ ≤ l‖x – y‖, ∀x, y ∈ C.

If l ∈ [0, 1), then V is called a contraction. Obviously, if l = 1, V is a nonexpansive mapping.

Definition 1 A mapping T : H → H is said to be firmly nonexpansive if and only if 2T – I
is nonexpansive, or equivalently,

〈x – y, Tx – Ty〉 ≥ ‖Tx – Ty‖2, x, y ∈ H .

Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =
1
2

(I + S),

where S : H → H is nonexpansive.

Definition 2 (Positive operator) An operator A is called positive if it is self-adjoint and
〈Ax, x〉 ≥ 0 for all x ∈ H .

An operator A on H is strongly positive if there exists a constant γ > 0 with the property

〈Ax, x〉 ≥ γ ‖x‖2, ∀x ∈ H .
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Lemma 2 ([13]) For a given z ∈ H and u ∈ C,

u = PCz ⇐⇒ 〈u – z, v – u〉 ≥ 0, ∀v ∈ C.

Furthermore, PC is a firmly nonexpansive mapping of H onto C.

Lemma 3 ([14]) Let H be a real Hilbert space. Then the following results hold:
(i) For all x, y ∈ H and α ∈ [0, 1],

∥∥αx + (1 – α)y
∥∥2 = α‖x‖2 + (1 – α)‖y‖2 – α(1 – α)‖x – y‖2,

(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, for each x, y ∈ H .

Lemma 4 ([4]) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 = (1 – αn)sn + δn, ∀n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence such that
(1)

∑∞
n=1 αn = ∞,

(2) lim supn→∞
δn
αn

≤ 0 or
∑∞

n=1 |δn| < ∞.
Then limn→∞ sn = 0.

Definition 3 A mapping T : H → H is said to be an averaged mapping if it can be written
as the average of the identity I and a nonexpansive mapping, that is,

T = (1 – α)I + αS, (9)

where α is a number in (0, 1) and S : H → H is nonexpansive. More precisely, when (9)
holds, we say that T is α-averaged.

Clearly, a firmly nonexpansive mapping is a 1
2 -averaged mapping.

Proposition 1 For given operators S, T , V : H → H :
(i) If T = (1 – α)S + αV for some α ∈ (0, 1) and if S is averaged and V is nonexpansive,

then T is averaged.
(ii) T is firmly nonexpansive if and only if the complement I – T is firmly nonexpansive.

(iii) If T = (1 – α)S + αV for some α ∈ (0, 1), S is firmly nonexpansive and V is
nonexpansive, then T is averaged.

(iv) The composition of finitely many averaged mappings is averaged. That is, if each of
the mappings {Ti}N

i=1 is averaged, then so is the composition T1 ◦ T2 ◦ · · · ◦ TN . In
particular, if T1 is α1-averaged, and T2 is α2-averaged, where α1,α2 ∈ (0, 1), then the
composition T1 ◦ T2 is α-averaged, where α = α1 + α2 – α1α2.

Lemma 5 ([11]) For given x ∈ H and let PC : H → C be a metric projection. Then
(a) z = PCx if and only if 〈x – z, y – z〉 ≤ 0, ∀y ∈ C.
(b) z = PCx if and only if ‖x – z‖2 ≤ ‖x – y‖2 – ‖y – z‖2, ∀y ∈ C.
(c) 〈PCx – PCy, x – y〉 ≥ ‖PCx – PCy‖2, ∀x, y ∈ H .

Consequently, PC is nonexpansive and monotone.
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Lemma 6 ([15]) Each Hilbert space H satisfies Opial’s condition, i.e., for any sequence
{un} ⊂ H with un ⇀ u, the inequality

lim inf
n→∞ ‖un – u‖ < lim inf

n→∞ ‖un – v‖

holds for every v ∈ H with v �= u.

Definition 4 A nonlinear operator T whose domain D(T) ⊆ H and range R(T) ⊆ H is
said to be:

(a) monotone if

〈x – y, Tx – Ty〉 ≥ 0, ∀x, y ∈ D(T);

(b) β-strongly monotone if there exists β > 0 such that

〈x – y, Tx – Ty〉 ≥ β‖x – y‖2, ∀x, y ∈ D(T);

(c) v-inverse strongly monotone (for short, v-ism) if there exists v > 0 such that

〈x – y, Tx – Ty〉 ≥ v‖Tx – Ty‖2, ∀x, y ∈ D(T).

Proposition 2 Let T be an operator from H to itself. Then
(a) T is nonexpansive if and only if the complement I – T is 1

2 -ism;
(b) If T is v-ism, then for γ > 0, γ T is v

γ
-ism;

(c) T is averaged if and only if the complement I – T is v-ism for some v > 1
2 . Indeed, for

α ∈ (0, 1), T is α-averaged if and only if I – T is 1
2α

-ism.

Lemma 7 ([16]) Assume A : H → H is a strongly positive bounded linear operator with
coefficient γ > 0 and 0 < t ≤ ‖A‖–1. Then ‖I – tA‖ ≤ 1 – tγ .

3 Main results
Let V : C → C be l-Lipschitz with coefficient l ≥ 0, and A : C → C a strongly positive
bounded linear operator with coefficient γ and 0 < γ < γ

l . Let f : C → R be a real-valued
convex function and assume that ∇f is an L-Lipschitz mapping with L ≥ 0. From Xu [1],
we have that PC(I – λ∇f ) is 2+λL

4 -averaged for 0 < λ < 2
L and for each n ∈N, that is, we can

write

PC(I – λn∇f ) = (1 – sn)I + snTf
n ,

where Tf
n is nonexpansive and sn = 2+λnL

4 .

Theorem 1 Let C be a nonempty closed convex subset of a real Hilbert space H . For every
i = 1, 2, f̃i : C → R be a real-valued convex function and assume that ∇ f̃i is an 1

Li
-inverse

strongly monotone with Li > 0 and Uf̃i �= ∅. Let f , g : H → H be af - and ag -contraction
mappings, respectively, with af , ag ∈ (0, 1) and a = max{af , ag}. Let the sequences {xn}, {yn}
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be generated by x1, y1 ∈ C and
⎧
⎨

⎩
xn+1 = (1 – μn)xn + μnPC(αnf (yn) + (1 – αn)Tf̃1

n xn),

yn+1 = (1 – μn)yn + μnPC(αng(xn) + (1 – αn)Tf̃2
n yn),

(10)

where {μn}, {αn} ⊆ [0, 1], PC(I – λi
n∇ f̃i) = si

nI + (1 – si
n)Tf̃i

n , si
n = 2–λi

nLi
4 and {λi

n} ⊂ (0, 2
Li

) for
all i = 1, 2. Assume that the following conditions hold:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(ii) 0 < θ ≤ μn ≤ θ for all n ∈N and for some θ , θ > 0,

(iii)
∑∞

n=1 |αn+1 – αn| < ∞,
∑∞

n=1 |μn+1 – μn| < ∞.
Then {xn} and {yn} converge strongly as si

n → 0 (⇐⇒ λi
n → 2

Li
) ∀i = 1, 2, to x∗ = PŨf1

f (y∗)
and y∗ = PŨf2

g(x∗), respectively.

Proof First, we show that {xn} and {yn} are bounded. Assume that x̃ ∈ Uf̃1 and ỹ ∈ Uf̃2 .
Then we have

‖xn+1 – x̃‖ =
∥∥(1 – μn)xn + μnPC

(
αnf (yn) + (1 – αn)Tf̃1

n xn
)

– x̃
∥∥

=
∥∥(1 – μn)(xn – x̃) + μn

(
PC

(
αnf (yn) + (1 – αn)Tf̃1

n xn
)

– x̃
)∥∥

≤ (1 – μn)‖xn – x̃‖ + μn
∥∥αnf (yn) + (1 – αn)Tf̃1

n xn – x̃
∥∥

≤ (1 – μn)‖xn – x̃‖ + μn
(
αn

∥∥f (yn) – x̃
∥∥ + (1 – αn)

∥∥Tf̃1
n xn – x̃

∥∥)

≤ (1 – μn)‖xn – x̃‖ + μn
(
αn

∥∥f (yn) – x̃
∥∥ + (1 – αn)‖xn – x̃‖)

= (1 – αnμn)‖xn – x̃‖ + αnμn
∥∥f (yn) – x̃

∥∥

≤ (1 – αnμn)‖xn – x̃‖ + αnμn
(∥∥f (yn) – f (̃y)

∥∥ +
∥∥f (̃y) – x̃

∥∥)

≤ (1 – αnμn)‖xn – x̃‖ + αnμna‖yn – ỹ‖ + αnμn
∥∥f (̃y) – x̃

∥∥. (11)

Similarly, we get

‖yn+1 – ỹ‖ ≤ (1 – αnμn)‖yn – ỹ‖ + αnμna‖xn – x̃‖ + αnμn
∥∥g (̃x) – ỹ

∥∥. (12)

Combining (11) and (12), we have

‖xn+1 – x̃‖ + ‖yn+1 – ỹ‖ ≤ (
1 – αnμn(1 – a)

)(‖xn – x̃‖ + ‖yn – ỹ‖)

+ αnμn
(∥∥f (̃y) – x̃

∥∥ +
∥∥g (̃x) – ỹ

∥∥)
.

By induction, we can derive that

‖xn – x̃‖ + ‖yn – ỹ‖ ≤ max
{‖x1 – x̃‖ + ‖y1 – ỹ‖,

∥∥f (̃y) – x̃
∥∥ +

∥∥g (̃x) – ỹ
∥∥}

,

for every n ∈N. This implies that {xn} and {yn} are bounded.
Next, we show that ‖xn+1 – xn‖ → 0 and ‖yn+1 – yn‖ → 0. Observe that

∥∥Tf̃1
n xn – Tf̃1

n–1xn–1
∥∥

≤ ∥∥Tf̃1
n xn – Tf̃1

n xn–1
∥∥ +

∥∥Tf̃1
n xn–1 – Tf̃1

n–1xn–1
∥∥
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≤ ‖xn – xn–1‖ +
∥∥∥∥

(
4PC(I – λ1

n∇ f̃1) – (2 – λ1
nL1)

2 + λ1
nL1

)
xn–1

–
(

4PC(I – λ1
n–1∇ f̃1) – (2 – λ1

n–1L1)
2 + λ1

n–1L1

)
xn–1

∥∥∥∥

≤ ‖xn – xn–1‖ +
∥∥∥∥

(
4PC(I – λ1

n∇ f̃1)
2 + λ1

nL1

)
xn–1 –

(
4PC(I – λ1

n–1∇ f̃1)
2 + λ1

n–1L1

)
xn–1

∥∥∥∥

+
∥∥∥∥

(
2 – λ1

n–1L1

2 + λ1
n–1L1

)
xn–1 –

(
2 – λ1

nL1

2 + λ1
nL1

)
xn–1

∥∥∥∥

= ‖xn – xn–1‖

+
∥∥∥∥

4(2 + λ1
n–1L1)PC(I – λ1

n∇ f̃1)xn–1 – 4(2 + λ1
nL1)PC(I – λ1

n–1∇ f̃1)xn–1

(2 + λ1
nL1)(2 + λ1

n–1L1)

∥∥∥∥

+
∥∥∥∥

(2 – λ1
n–1L1)(2 + λ1

nL1)xn–1 – (2 – λ1
nL1)(2 + λ1

n–1L1)xn–1

(2 + λ1
nL1)(2 + λ1

n–1L1)

∥∥∥∥

= ‖xn – xn–1‖

+
∥∥∥∥

4(2 + λ1
n–1L1)PC(I – λ1

n∇ f̃1)xn–1 – 4(2 + λ1
nL1)PC(I – λ1

n–1∇ f̃1)xn–1

(2 + λ1
nL1)(2 + λ1

n–1L1)

∥∥∥∥

+
(

4L1|λ1
n – λ1

n–1|
(2 + λ1

nL1)(2 + λ1
n–1L1)

)
‖xn–1‖

= ‖xn – xn–1‖

+
∥∥∥∥

4L1(λ1
n–1 – λ1

n)PC(I – λ1
n∇ f̃1)xn–1

(2 + λ1
nL1)(2 + λ1

n–1L1)

+
4(2 + λ1

nL1)(PC(I – λ1
n∇ f̃1)xn–1 – PC(I – λ1

n–1∇ f̃1)xn–1)
(2 + λ1

nL1)(2 + λ1
n–1L1)

∥∥∥∥

+
(

4L1|λ1
n – λ1

n–1|
(2 + λ1

nL1)(2 + λ1
n–1L1)

)
‖xn–1‖

≤ ‖xn – xn–1‖

+
4L1|λ1

n–1 – λ1
n|‖PC(I – λ1

n∇ f̃1)xn–1‖
(2 + λ1

nL1)(2 + λ1
n–1L1)

+
4‖λ1

n–1∇ f̃1xn–1 – λ1
n∇ f̃1xn–1‖

2 + λ1
n–1L1

+
(

4L1|λ1
n – λ1

n–1|
(2 + λ1

nL1)(2 + λ1
n–1L1)

)
‖xn–1‖

≤ ‖xn – xn–1‖ + L1
∣∣λ1

n–1 – λ1
n
∣∣∥∥PC

(
I – λ1

n∇ f̃1
)
xn–1

∥∥

+ 4
∣∣λ1

n–1 – λ1
n
∣∣‖∇ f̃1xn–1‖ + L1

∣∣λ1
n – λ1

n–1
∣∣‖xn–1‖

≤ ‖xn – xn–1‖
+

∣∣λ1
n–1 – λ1

n
∣∣(L1

∥∥PC
(
I – λ1

n∇ f̃1
)
xn–1

∥∥ + 4‖∇ f̃1xn–1‖ + L1‖xn–1‖
)

≤ ‖xn – xn–1‖ + M1
∣∣λ1

n–1 – λ1
n
∣∣, (13)

for some M1 > 0 such that M1 ≥ L1‖PC(I – λ1
n∇ f̃1)xn–1‖ + 4‖∇ f̃1xn–1‖ + L1‖xn–1‖, ∀n ≥ 1.
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From the definition of xn and (13), we have

‖xn+1 – xn‖
=

∥∥(1 – μn)xn + μnPC
(
αnf (yn) + (1 – αn)Tf̃1

n xn
)

–
(
(1 – μn–1)xn–1 + μn–1PC

(
αn–1f (yn–1) + (1 – αn–1)Tf̃1

n–1xn–1
))∥∥

≤ (1 – μn)‖xn – xn–1‖ + |μn–1 – μn|‖xn–1‖
+ μn

∥∥PC
(
αnf (yn) + (1 – αn)Tf̃1

n xn
)

– PC
(
αn–1f (yn–1) + (1 – αn–1)Tf̃1

n–1xn–1
)∥∥

+ |μn – μn–1|
∥∥PC

(
αn–1f (yn–1) + (1 – αn–1)Tf̃1

n–1xn–1
)∥∥

≤ (1 – μn)‖xn – xn–1‖ + |μn–1 – μn|‖xn–1‖
+ μn

∥∥αnf (yn) + (1 – αn)Tf̃1
n xn –

(
αn–1f (yn–1) + (1 – αn–1)Tf̃1

n–1xn–1
)∥∥

+ |μn – μn–1|
∥∥PC

(
αn–1f (yn–1) + (1 – αn–1)Tf̃1

n–1xn–1
)∥∥

≤ (1 – μn)‖xn – xn–1‖ + |μn–1 – μn|‖xn–1‖
+ μn

(∥∥αnf (yn) – αn–1f (yn–1)
∥∥ +

∥∥(1 – αn)Tf̃1
n xn – (1 – αn–1)Tf̃1

n–1xn–1
∥∥)

+ |μn – μn–1|
∥∥PC

(
αn–1f (yn–1) + (1 – αn–1)Tf̃1

n–1xn–1
)∥∥

≤ (1 – μn)‖xn – xn–1‖ + |μn–1 – μn|‖xn–1‖
+ μn

(
αn

∥∥f (yn) – f (yn–1)
∥∥ + |αn – αn–1|

∥∥f (yn–1)
∥∥

+ (1 – αn)
∥∥Tf̃1

n xn – Tf̃1
n–1xn–1

∥∥ + |αn–1 – αn|
∥∥Tf̃1

n–1xn–1
∥∥)

+ |μn – μn–1|
∥∥PC

(
αn–1f (yn–1) + (1 – αn–1)Tf̃1

n–1xn–1
)∥∥

≤ (1 – μn)‖xn – xn–1‖ + |μn–1 – μn|‖xn–1‖
+ μn

(
αn

∥∥f (yn) – f (yn–1)
∥∥ + |αn – αn–1|

∥∥f (yn–1)
∥∥

+ (1 – αn)
(‖xn – xn–1‖ + M1

∣∣λ1
n–1 – λ1

n
∣∣) + |αn–1 – αn|

∥∥Tf̃1
n–1xn–1

∥∥)

+ |μn – μn–1|
∥∥PC

(
αn–1f (yn–1) + (1 – αn–1)Tf̃1

n–1xn–1
)∥∥

≤ (1 – μn)‖xn – xn–1‖ + |μn–1 – μn|‖xn–1‖

+ μn

(
αn

∥∥f (yn) – f (yn–1)
∥∥ + |αn – αn–1|

∥∥f (yn–1)
∥∥

+ (1 – αn)‖xn – xn–1‖ + (1 – αn)
4M1

L1

∣∣s1
n – s1

n–1
∣∣

+ |αn–1 – αn|
∥∥Tf̃1

n–1xn–1
∥∥
)

+ |μn – μn–1|
∥∥PC

(
αn–1f (yn–1) + (1 – αn–1)Tf̃1

n–1xn–1
)∥∥

≤ (1 – μnαn)‖xn – xn–1‖ + |μn–1 – μn|‖xn–1‖
+ |μn – μn–1|

∥∥PC
(
αn–1f (yn–1) + (1 – αn–1)Tf̃1

n–1xn–1
)∥∥
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+ μn

(
αna‖yn – yn–1‖ + |αn – αn–1|

∥∥f (yn–1)
∥∥

+ (1 – αn)
4M1

L1

∣∣s1
n – s1

n–1
∣∣ + |αn–1 – αn|

∥∥Tf̃1
n–1xn–1

∥∥
)

. (14)

Using the same method as derived in (14), we have

‖yn+1 – yn‖
≤ (1 – μnαn)‖yn – yn–1‖ + |μn–1 – μn|‖yn–1‖

+ |μn – μn–1|
∥∥PC

(
αn–1g(xn–1) + (1 – αn–1)Tf̃2

n–1yn–1
)∥∥

+ μn

(
αna‖xn – xn–1‖ + |αn – αn–1|

∥∥g(xn–1)
∥∥

+ (1 – αn)
4M2

L2

∣∣s2
n – s2

n–1
∣∣ + |αn–1 – αn|

∥∥Tf̃2
n–1yn–1

∥∥
)

, (15)

for some M2 > 0 such that M2 ≥ L2‖PC(I – λ2
n∇ f̃2)yn–1‖ + 4‖∇ f̃2yn–1‖ + L2‖yn–1‖, ∀n ≥ 1.

From (14) and (15), we have

‖xn+1 – xn‖ + ‖yn+1 – yn‖
≤ (

1 – (1 – a)μnαn
)(‖xn – xn–1‖ + ‖yn – yn–1‖

)

+ |μn–1 – μn|
(‖xn–1‖ + ‖yn–1‖

+
∥∥PC

(
αn–1f (yn–1) + (1 – αn–1)Tf̃1

n–1xn–1
)∥∥

+
∥∥PC

(
αn–1g(xn–1) + (1 – αn–1)Tf̃2

n–1yn–1
)∥∥)

+ |αn – αn–1|
(∥∥f (yn–1)

∥∥ +
∥∥g(xn–1)

∥∥ +
∥∥Tf̃1

n–1xn–1
∥∥ +

∥∥Tf̃2
n–1yn–1

∥∥)

+ (1 – αn)
(

4M1

L1

∣∣s1
n – s1

n–1
∣∣ +

4M2

L2

∣∣s2
n – s2

n–1
∣∣
)

.

Applying Lemma 4 and condition (iii), we can conclude that

‖xn+1 – xn‖ → 0 and ‖yn+1 – yn‖ → 0 as n → ∞. (16)

Next, we show that ‖xn –Wn‖ → 0 where Wn = αnf (yn)+(1–αn)Tf̃1
n xn and ‖yn –Vn‖ → 0

where Vn = αng(xn) + (1 – αn)Tf̃2
n yn. Let x̃ ∈ Uf̃1 and ỹ ∈ Uf̃2 . Then we derive that

‖xn+1 – x̃‖2 =
∥∥(1 – μn)xn + μnPCWn – x̃

∥∥2

=
∥∥(1 – μn)(xn – x̃) + μn(PCWn – x̃)

∥∥2

= (1 – μn)‖xn – x̃‖2 + μn‖PCWn – x̃‖2

– (1 – μn)μn‖xn – PCWn‖2

≤ (1 – μn)‖xn – x̃‖2 + μn
∥∥αnf (yn) + (1 – αn)Tf̃1

n xn – x̃
∥∥2

– (1 – μn)μn‖xn – PCWn‖2



Saechou and Kangtunyakarn Journal of Inequalities and Applications        (2019) 2019:269 Page 11 of 22

= (1 – μn)‖xn – x̃‖2 + μn
∥∥αn

(
f (yn) – Tf̃1

n xn
)

+ Tf̃1
n xn – x̃

∥∥2

– (1 – μn)μn‖xn – PCWn‖2

≤ (1 – μn)‖xn – x̃‖2 + μn
(∥∥Tf̃1

n xn – x̃
∥∥2

+ 2αn
〈
f (yn) – Tf̃1

n xn,αnf (yn) + (1 – αn)Tf̃1
n xn – x̃

〉)

– (1 – μn)μn‖xn – PCWn‖2

≤ (1 – μn)‖xn – x̃‖2 + μn
(∥∥Tf̃1

n xn – x̃
∥∥2

+ 2αn
∥∥f (yn) – Tf̃1

n xn
∥∥∥∥αnf (yn) + (1 – αn)Tf̃1

n xn – x̃
∥∥)

– (1 – μn)μn‖xn – PCWn‖2

≤ (1 – μn)‖xn – x̃‖2 + μn‖xn – x̃‖2

+ 2αnμn
∥∥f (yn) – Tf̃1

n xn
∥∥∥∥αnf (yn) + (1 – αn)Tf̃1

n xn – x̃
∥∥

– (1 – μn)μn‖xn – PCWn‖2

= ‖xn – x̃‖2

+ 2αnμn
∥∥f (yn) – Tf̃1

n xn
∥∥∥∥αnf (yn) + (1 – αn)Tf̃1

n xn – x̃
∥∥

– (1 – μn)μn‖xn – PCWn‖2,

which implies that

(1 – μn)μn‖xn – PCWn‖2

≤ ‖xn – x̃‖2 – ‖xn+1 – x̃‖2

+ 2αnμn
∥∥f (yn) – Tf̃1

n xn
∥∥∥∥αnf (yn) + (1 – αn)Tf̃1

n xn – x̃
∥∥

≤ ‖xn – xn+1‖
(‖xn – x̃‖ + ‖xn+1 – x̃‖)

+ 2αnμn
∥∥f (yn) – Tf̃1

n xn
∥∥∥∥αnf (yn) + (1 – αn)Tf̃1

n xn – x̃
∥∥.

By (16), as well as conditions (i) and (ii), we get

‖PCWn – xn‖ → 0 as n → ∞. (17)

From definition of xn and applying the same method as (17), we have

‖PCVn – yn‖ → 0 as n → ∞. (18)

Considering

‖PCWn – x̃‖2 = ‖PCWn – PCx̃‖2

≤ 〈Wn – x̃, PCWn – x̃〉

=
1
2
(‖Wn – x̃‖2 + ‖PCWn – x̃‖2 – ‖Wn – PCWn‖2)
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implies that

‖PCWn – x̃‖ ≤ ‖Wn – x̃‖2 – ‖Wn – PCWn‖2. (19)

Observe that

‖Wn – x̃‖2 =
∥∥αn

(
f (yn) – x̃

)
+ (1 – αn)

(
Tf̃1

n xn – x̃
)∥∥2

≤ αn
∥∥f (yn) – x̃

∥∥2 + (1 – αn)
∥∥Tf̃1

n xn – x̃
∥∥2

≤ αn
∥∥f (yn) – x̃

∥∥2 + (1 – αn)‖xn – x̃‖2. (20)

From (19) and (20), we obtain

‖xn+1 – x̃‖2 =
∥∥(1 – μn)xn + μnPC

(
αnf (yn) + (1 – αn)Tf̃1

n xn
)

– x̃
∥∥2

=
∥∥(1 – μn)(xn – x̃) + μn(PCWn – x̃)

∥∥2

≤ (1 – μn)‖xn – x̃‖2 + μn‖PCWn – x̃‖2

≤ (1 – μn)‖xn – x̃‖2 + μn
(‖Wn – x̃‖2 – ‖Wn – PCWn‖2)

≤ (1 – μn)‖xn – x̃‖2

+ μn
(
αn

∥∥f (yn) – x̃
∥∥2 + (1 – αn)‖xn – x̃‖2 – ‖Wn – PCWn‖2),

implying that

μn‖Wn – PCWn‖2 ≤ (1 – αnμn)‖xn – x̃‖2 – ‖xn+1 – x̃‖2 + αnμn
∥∥f (yn) – x̃

∥∥2

≤ ‖xn – x̃‖2 – ‖xn+1 – x̃‖2 + αnμn
∥∥f (yn) – x̃

∥∥2

≤ ‖xn – xn+1‖
(‖xn – x̃‖ + ‖xn+1 – x̃‖) + αnμn

∥∥f (yn) – x̃
∥∥2.

From ‖xn+1 – xn‖ → 0 as n → ∞ and condition (i), we have

‖Wn – PCWn‖ → 0 as n → ∞. (21)

From definition of Vn and applying the same argument as (21), we also obtain

‖Vn – PCVn‖ → 0 as n → ∞. (22)

Since

‖xn – Wn‖ = ‖xn – PCWn + PCWn – Wn‖
≤ ‖xn – PCWn‖ + ‖PCWn – Wn‖.

From (17) and (21), we have

‖xn – Wn‖ → 0 as n → ∞. (23)
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From definition of yn and applying the same method as in (23), we also have

‖yn – Vn‖ → 0 as n → ∞. (24)

Next, we show that ‖Wn – PC(I – 2
L1

∇ f̃1)Wn‖ → 0 as n → ∞ and ‖Vn – PC(I –
2

L2
∇ f̃2)Vn‖ → 0 as n → ∞. Observe that

Wn – xn = αn
(
f (yn) – xn

)
+ (1 – αn)

(
Tf̃1

n xn – xn
)
,

which yields

(1 – αn)
∥∥Tf̃1

n xn – xn
∥∥ ≤ ‖Wn – xn‖ + αn

∥∥f (yn) – xn
∥∥.

From (23) and condition (i), we have

∥∥Tf̃1
n xn – xn

∥∥ → 0 as n → ∞. (25)

Since

∥∥Wn – Tf̃1
n Wn

∥∥ =
∥∥Wn – xn + xn – Tf̃1

n xn + Tf̃1
n xn – Tf̃1

n Wn
∥∥

≤ ‖Wn – xn‖ +
∥∥xn – Tf̃1

n xn
∥∥ +

∥∥Tf̃1
n xn – Tf̃1

n Wn
∥∥

≤ ‖Wn – xn‖ +
∥∥xn – Tf̃1

n xn
∥∥ + ‖xn – Wn‖

= 2‖xn – Wn‖ +
∥∥Tf̃1

n xn – xn
∥∥.

From (23) and (25), we get

∥∥Tf̃1
n Wn – Wn

∥∥ → 0 as n → ∞. (26)

Observe that

∥∥PC
(
I – λ1

n∇ f̃1
)
Wn – Wn

∥∥ =
∥∥s1

nWn +
(
1 – s1

n
)
Tf̃1

n Wn – Wn
∥∥

=
(
1 – s1

n
)∥∥Tf̃1

n Wn – Wn
∥∥

≤ ∥∥Tf̃1
n Wn – Wn

∥∥, (27)

where s1
n = 2–λ1

nL1
4 ∈ (0, 1

2 ).
From (27), we have

∥∥∥∥PC

(
I –

2
L1

∇ f̃1

)
Wn – Wn

∥∥∥∥

≤
∥∥∥∥PC

(
I –

2
L1

∇ f̃1

)
Wn – PC

(
I – λ1

n∇ f̃1
)
Wn

∥∥∥∥ +
∥∥PC

(
I – λ1

n∇ f̃1
)
Wn – Wn

∥∥

≤
∥
∥∥∥

(
I –

2
L1

∇ f̃1

)
Wn –

(
I – λ1

n∇ f̃1
)
Wn

∥∥∥∥ +
∥∥PC

(
I – λ1

n∇ f̃1
)
Wn – Wn

∥∥

≤
(

2
L1

– λ1
n

)∥∥∇ f̃1(Wn)
∥∥ +

∥∥Tf̃1
n Wn – Wn

∥∥.
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From the boundedness of {Wn}, s1
n → 0 (⇐⇒ λ1

n → 2
L1

) and (26), we conclude that

lim
n→∞

∥∥∥∥Wn – PC

(
I –

2
L1

∇ f̃1

)
Wn

∥∥∥∥ = 0. (28)

Applying the same method as for (28), we also have

lim
n→∞

∥∥∥∥Vn – PC

(
I –

2
L2

∇ f̃2

)
Vn

∥∥∥∥ = 0. (29)

Next, we show that lim supn→∞〈f (y∗) – x∗, Wn – x∗〉 ≤ 0, where x∗ = PŨf1
f (y∗) and

lim supn→∞〈g(x∗) – y∗, Vn – y∗〉 ≤ 0, where y∗ = PŨf2
g(x∗).

Indeed, take a subsequence {Wnk } of {Wn} such that

lim sup
n→∞

〈
f
(
y∗) – x∗, Wn – x∗〉 = lim sup

k→∞

〈
f
(
y∗) – x∗, Wnk – x∗〉.

Since {xn} is bounded, without loss of generality, we may assume that xnk ⇀ x̂ as k → ∞.
From (23), we obtain Wnk ⇀ x̂ as k → ∞. Assume that x̂ �= PC(I – 2

L1
∇ f̃1)̂x. By nonexpan-

siveness of PC(I – 2
L1

∇ f̃1), (28) and Opial’s property, we have

lim inf
k→∞

‖Wnk – x̂‖ < lim inf
k→∞

∥∥∥∥Wnk – PC

(
I –

2
L1

∇ f̃1

)
x̂
∥∥∥∥

≤ lim inf
k→∞

(∥∥∥∥Wnk – PC

(
I –

2
L1

∇ f̃1

)
Wnk

∥∥∥∥

+
∥∥∥∥PC

(
I –

2
L1

∇ f̃1

)
Wnk – PC

(
I –

2
L1

∇ f̃1

)
x̂
∥∥∥∥

)

≤ lim inf
k→∞

‖Wnk – x̂‖.

This is a contradiction, thus we have

x̂ ∈ F
(

PC

(
I –

2
L1

∇ f̃1

))
= Uf̃1 . (30)

Since Wnk ⇀ x̂ as k → ∞, due to (30) and Lemma 2, we can derive that

lim sup
n→∞

〈
f
(
y∗) – x∗, Wn – x∗〉 = lim sup

k→∞

〈
f
(
y∗) – x∗, Wnk – x∗〉

=
〈
f
(
y∗) – x∗, x̂ – x∗〉

≤ 0. (31)

Similarly, take a subsequence {Vnk } of {Vn} such that

lim sup
n→∞

〈
g
(
x∗) – y∗, Vn – y∗〉 = lim sup

k→∞

〈
g
(
x∗) – y∗, Vnk – y∗〉.

Since {yn} is bounded, without loss of generality, we may assume that ynk ⇀ ŷ as k → ∞.
From (24), we obtain Vnk ⇀ ŷ as k → ∞. Following the same method as for (31), we easily
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obtain that

lim sup
n→∞

〈
g
(
x∗) – y∗, Vn – y∗〉 ≤ 0. (32)

Finally, we show that {xn} converges strongly to x∗, where x∗ = PŨf1
f (y∗) and {yn} con-

verges strongly to y∗, where y∗ = PŨf2
g(x∗).

Let Wn = αnf (yn) + (1 – αn)Tf̃1
n xn and Vn = αng(xn) + (1 – αn)Tf̃2

n yn. From the definition
of xn, we get

∥∥xn+1 – x∗∥∥2

=
∥∥(1 – μn)xn + μnPC

(
αnf (yn) + (1 – αn)Tf̃1

n xn
)

– x∗∥∥2

=
∥∥(1 – μn)

(
xn – x∗) + μn

(
PC

(
αnf (yn) + (1 – αn)Tf̃1

n xn
)

– x∗)∥∥2

= (1 – μn)
∥∥xn – x∗∥∥2 + μn

∥∥PC
(
αnf (yn) + (1 – αn)Tf̃1

n xn
)

– x∗∥∥2

≤ (1 – μn)
∥∥xn – x∗∥∥2 + μn

∥∥αnf (yn) + (1 – αn)Tf̃1
n xn – x∗∥∥2

= (1 – μn)
∥∥xn – x∗∥∥2

+ μn
∥∥αn

(
f (yn) – x∗) + (1 – αn)

(
Tf̃1

n xn – x∗)∥∥2

≤ (1 – μn)
∥∥xn – x∗∥∥2

+ μn
(
(1 – αn)

∥∥Tf̃1
n xn – x∗∥∥2 + 2αn

〈
f (yn) – x∗, Wn – x∗〉)

≤ (1 – μn)
∥∥xn – x∗∥∥2

+ μn(1 – αn)
∥∥xn – x∗∥∥2 + 2αnμn

〈
f (yn) – x∗, Wn – x∗〉

= (1 – αnμn)
∥∥xn – x∗∥∥2 + 2αnμn

〈
f (yn) – x∗, Wn – x∗〉

= (1 – αnμn)
∥∥xn – x∗∥∥2

+ 2αnμn
(〈

f (yn) – f
(
y∗), Wn – x∗〉 +

〈
f
(
y∗) – x∗, Wn – x∗〉)

≤ (1 – αnμn)
∥∥xn – x∗∥∥2

+ 2αnμn
(∥∥f (yn) – f

(
y∗)∥∥∥∥Wn – x∗∥∥ +

〈
f
(
y∗) – x∗, Wn – x∗〉)

≤ (1 – αnμn)
∥∥xn – x∗∥∥2

+ 2αnμn
∥∥f (yn) – f

(
y∗)∥∥(‖Wn – xn+1‖ +

∥∥xn+1 – x∗∥∥)

+ 2αnμn
〈
f
(
y∗) – x∗, Wn – x∗〉

≤ (1 – αnμn)
∥∥xn – x∗∥∥2

+ 2αnμna
∥∥yn – y∗∥∥‖Wn – xn+1‖ + 2αnμna

∥∥yn – y∗∥∥∥∥xn+1 – x∗∥∥

+ 2αnμn
〈
f
(
y∗) – x∗, Wn – x∗〉

≤ (1 – αnμn)
∥∥xn – x∗∥∥2

+ 2αnμna
∥∥yn – y∗∥∥‖Wn – xn+1‖ + αnμna

(∥∥yn – y∗∥∥2 +
∥∥xn+1 – x∗∥∥2)

+ 2αnμn
〈
f
(
y∗) – x∗, Wn – x∗〉,
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which yields

∥∥xn+1 – x∗∥∥2

≤ 1 – αnμn

1 – αnμna
∥∥xn – x∗∥∥2 +

2αnμna
1 – αnμna

∥∥yn – y∗∥∥‖Wn – xn+1‖

+
αnμna

1 – αnμna
∥∥yn – y∗∥∥2 +

2αnμn

1 – αnμna
〈
f
(
y∗) – x∗, Wn – x∗〉

=
(

1 –
αnμn – αnμna

1 – αnμna

)∥∥xn – x∗∥∥2 +
2αnμna

1 – αnμna
∥∥yn – y∗∥∥‖Wn – xn+1‖

+
αnμna

1 – αnμna
∥∥yn – y∗∥∥2 +

2αnμn

1 – αnμna
〈
f
(
y∗) – x∗, Wn – x∗〉

=
(

1 –
αnμn(1 – a)
1 – αnμna

)∥∥xn – x∗∥∥2 +
2αnμna

1 – αnμna
∥∥yn – y∗∥∥‖Wn – xn+1‖

+
αnμna

1 – αnμna
∥∥yn – y∗∥∥2 +

2αnμn

1 – αnμna
〈
f
(
y∗) – x∗, Wn – x∗〉. (33)

Similarly, as derived above, we also have

∥∥yn+1 – y∗∥∥2

≤
(

1 –
αnμn(1 – a)
1 – αnμna

)∥∥yn – y∗∥∥2 +
2αnμna

1 – αnμna
∥∥xn – x∗∥∥‖Vn – yn+1‖

+
αnμna

1 – αnμna
∥∥xn – x∗∥∥2 +

2αnμn

1 – αnμna
〈
g
(
x∗) – y∗, Vn – y∗〉. (34)

From (33) and (34), we deduce that

∥∥xn+1 – x∗∥∥2 +
∥∥yn+1 – y∗∥∥2

≤
(

1 –
αnμn(1 – a)
1 – αnμna

)(∥∥xn – x∗∥∥2 +
∥∥yn – y∗∥∥2)

+
2αnμna

1 – αnμna
(∥∥yn – y∗∥∥‖Wn – xn+1‖ +

∥∥xn – x∗∥∥‖Vn – yn+1‖
)

+
αnμna

1 – αnμna
(∥∥xn – x∗∥∥2 +

∥∥yn – y∗∥∥2)

+
2αnμn

1 – αnμna
(〈

f
(
y∗) – x∗, Wn – x∗〉 +

〈
g
(
x∗) – y∗, Vn – y∗〉)

=
(

1 –
αnμn(1 – 2a)

1 – αnμna

)(∥∥xn – x∗∥∥2 +
∥∥yn – y∗∥∥2)

+
2αnμna

1 – αnμna
(∥∥yn – y∗∥∥‖Wn – xn+1‖ +

∥∥xn – x∗∥∥‖Vn – yn+1‖
)

+
2αnμn

1 – αnμna
(〈

f
(
y∗) – x∗, Wn – x∗〉 +

〈
g
(
x∗) – y∗, Vn – y∗〉). (35)

By (16), (23), (24), (31), (32), condition (i) and Lemma 4, we have limn→∞(‖xn – x∗‖ + ‖yn –
y∗‖) = 0. It implies that the sequences {xn}, {yn} converge to x∗ = PŨf1

f (y∗), y∗ = PŨf2
g(x∗),

respectively. This completes the proof. �
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Corollary 1 Let C be a nonempty closed convex subset of a real Hilbert space H . Let f̃ : C →
R be a real-valued convex function and assume that ∇ f̃ is 1

L -inverse strongly monotone
with L > 0 and Uf̃ �= ∅. Let f : H → H be an a-contraction mapping with a ∈ (0, 1). Let the
sequence {xn} be generated by x1 ∈ C and

xn+1 = (1 – μn)xn + μnPC
(
αnf (xn) + (1 – αn)Tf̃

nxn
)
, (36)

where {μn}, {αn} ⊆ [0, 1], PC(I – λi
n∇ f̃ ) = snI + (1 – sn)Tf̃

n and sn = 2–λnL
4 , {λn} ⊂ (0, 2

L ). As-
sume that the following conditions hold:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(ii) 0 < θ ≤ μn ≤ θ for all n ∈N and for some θ , θ > 0,

(iii)
∑∞

n=1 |αn+1 – αn| < ∞,
∑∞

n=1 |μn+1 – μn| < ∞.
Then {xn} converges strongly, as sn → 0 (⇐⇒ λn → 2

L ), to x∗ = PŨf
f (x∗).

Proof If we put f ≡ g , xn = yn, in Theorem 1, we obtain the desired conclusion. �

4 Application
Let H1, H2 be two real Hilbert spaces. Let C, Q be nonempty closed convex subsets of H1

and H2, respectively.
In 1994, Censor and Elfving [17] introduced the split feasibility problem (SFP), which is

to find a point x such that

x ∈ C and Dx ∈ Q,

where D : H1 → H2 is a bounded linear operator.
Throughout this paper, we assume that the SFP is consistent, that is, the solution set

Γ of the SFP is nonempty. Let f : H1 → R be a continuous differentiable function. The
minimization problem

min
x∈C

f (x) := min
x∈C

1
2
‖Ax – PQAx‖2 (37)

is ill-posed.
Before proving Theorem 2, we need the following:

Proposition 3 ([18]) Given x∗ ∈H1, the following statements are equivalent:
(i) x∗ solves the SFP;

(ii) PC(I – λ∇f )x∗ = PC(I – λA∗(I – PQ)A)x∗ = x∗;
(iii) x∗ solves the variational inequality problem of finding x∗ ∈ C such that

〈∇f
(
x∗), x – x∗〉 ≥ 0, ∀x ∈ C, (38)

where ∇f = A∗(I – PQ)A and A∗ is the adjoint of A.

Theorem 2 Let C and Q be nonempty, closed, and convex subsets of H1 and H2, respec-
tively, and let Ai : H1 → H2 be bounded linear operators for all i = 1, 2 with Li being the
spectral radius of A∗

i Ai for all i = 1, 2 with Γi �= ∅. Let f , g : H → H be af - and ag -contraction
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mappings with af , ag ∈ (0, 1) and a = max{af , ag}. Let the sequences {xn}, {yn} be generated
by x1, y1 ∈ C and

⎧
⎨

⎩
xn+1 = (1 – μn)xn + μnPC(αnf (yn) + (1 – αn)Ta1

n xn),

yn+1 = (1 – μn)yn + μnPC(αng(xn) + (1 – αn)Ta2
n yn),

(39)

where {μn}, {αn} ⊆ [0, 1], PC(I –λi
n(A∗

i (I –PQ)Ai)) = si
nI +(1–si

n)Tai
n , ∀i = 1, 2 and si

n = 2–λi
nLi

4 ,
{λi

n} ⊂ (0, 2
Li

). Assume that the following conditions hold:
(i) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(ii) 0 < θ ≤ μn ≤ θ for all n ∈N and for some θ , θ > 0,
(iii)

∑∞
n=1 |αn+1 – αn| < ∞,

∑∞
n=1 |μn+1 – μn| < ∞.

Then {xn} and {yn} converge strongly, as si
n → 0 (⇐⇒ λi

n → 2
Li

) ∀i = 1, 2, to x∗ = PΓ1 f (y∗)
with Γ1 = {x ∈ C; A1x ∈ Q} and y∗ = PΓ2 g(x∗) with Γ2 = {x̄ ∈ C; A2x̄ ∈ Q}, respectively.

Proof Letting x, y ∈ C and ∇fi = A∗
i (I – PQ)Ai for all i = 1, 2, we have

∥∥∇fi(x) – ∇fi(y)
∥∥2 =

∥∥A∗
i (I – PQ)Aix – A∗

i (I – PQ)Aiy
∥∥2

≤ Li
∥∥(I – PQ)Aix – (I – PQ)Aiy

∥∥2. (40)

From the property of PC , we have

∥∥(I – PQ)Aix – (I – PQ)Aiy
∥∥2

=
〈
(I – PQ)Aix – (I – PQ)Aiy, (I – PQ)Aix – (I – PQ)Aiy

〉

=
〈
(I – PQ)Aix – (I – PQ)Aiy, Aix – Aiy

〉

–
〈
(I – PQ)Aix – (I – PQ)Aiy, PQAix – PQAiy

〉

=
〈
A∗

i (I – PQ)Aix – A∗
i (I – PQ)Aiy, x – y

〉

–
〈
(I – PQ)Aix – (I – PQ)Aiy, PQAix – PQAiy

〉

=
〈
A∗

i (I – PQ)Aix – A∗
i (I – PQ)Aiy, x – y

〉

–
〈
(I – PQ)Aix, PQAix – PQAiy

〉

+
〈
(I – PQ)Aiy, PQAix – PQAiy

〉

≤ 〈
A∗

i (I – PQ)Aix – A∗
i (I – PQ)Aiy, x – y

〉
. (41)

Substituting (41) into (40), we have

∥∥∇fi(x) – ∇fi(y)
∥∥2 ≤ Li

〈
A∗

i (I – PQ)Aix – A∗
i (I – PQ)Aiy, x – y

〉

= Li
〈∇fi(x) – ∇fi(y), x – y

〉
.

It follows that

〈∇fi(x) – ∇fi(y), x – y
〉 ≥ 1

Li

∥∥∇fi(x) – ∇fi(y)
∥∥2.

Then ∇fi is 1
Li

-inverse strongly monotone, for all i = 1, 2.
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From Proposition 3 and Theorem 1, we can conclude that Theorem 2 is true. �

Corollary 2 Let C and Q be nonempty, closed, and convex subsets of H1 and H2, respec-
tively, and let A : H1 → H2 be bounded linear operator with L being the spectral radius
of A∗A with Γ �= ∅. Let f : H → H be an a-contraction mapping with a ∈ (0, 1). Let the
sequence {xn} be generated by x1 ∈ C and

xn+1 = (1 – μn)xn + μnPC
(
αnf (xn) + (1 – αn)Ta1

n xn
)
, (42)

where {μn}, {αn} ⊆ [0, 1], PC(I – λn(A∗(I – PQ)A)) = snI + (1 – sn)Ta1
n and sn = 2–λnL

4 , {λn} ⊂
(0, 2

L ). Assume that the following conditions hold:
(i) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(ii) 0 < θ ≤ μn ≤ θ for all n ∈N and for some θ , θ > 0,
(iii)

∑∞
n=1 |αn+1 – αn| < ∞,

∑∞
n=1 |μn+1 – μn| < ∞.

Then {xn} converges strongly, as sn → 0 (⇐⇒ λn → 2
L ), to x∗ = PΓ f (x∗) with Γ = {x ∈

C; Ax ∈ Q}.

Proof If we put f ≡ g , xn = yn in Theorem 2, then the conclusion follows. �

5 Numerical examples
Example 1 Let C = [–10, 10] × [–10, 10] and let 〈·, ·〉 : R2 × R

2 → R be an inner product
defined by 〈x, y〉 = x · y = x1y1 + x2y2, for all x = (x1, x2) ∈ R

2 and y = (y1, y2) ∈ R
2. For

every i = 1, 2, let f̃i : C → R be defined by f̃1(x1, x2) = 2x2
1 + x2 and f̃2(x1, x2) = (x1 – 1) + x2

2,
∀x1, x2 ∈ R. Let f , g : R2 → R

2, defined by f (x1, x2) = ( x1
3 , x2

3 ) and g(x1, x2) = ( x1
4 , x2

4 ), be
1
2 - and 1

3 -contraction mappings and a = max{ 1
2 , 1

3 } = 1
2 . Let the sequences {xn}, {yn} be

generated by x1, y1 ∈ C. Putting αn = 1
4n and μn = 3n+1

7n , we can rewrite (10) as follows:

⎧
⎨

⎩
xn+1 = ( 4n–1

7n )xn + ( 3n+1
7n )PC( 1

4n f (yn) + ( 4n–1
4n )Tf̃1

n xn),

yn+1 = ( 4n–1
7n )yn + ( 3n+1

7n )PC( 1
4 g(xn) + ( 4n–1

4n )Tf̃2
n yn),

(43)

where PC(x1, x2) = (max{min{x1, 10}, –10}, max{min{x2, 10}, –10}) and also PC(I – λi
n∇ f̃i) =

si
nI + (1 – si

n)Tf̃i
n and si

n = 2–λi
n(16)
4 , where λi

n = n2

8n2+1 ∀i = 1, 2.
Then, since f̃1(x1, x2) = 2x2

1 + x2 and f̃2(x1, x2) = (x1 – 1) + x2
2, we have

∇ f̃1(x1, x2) = (4x1, 1) and ∇ f̃2(x1, x2) = (1, 2x2).

It is obvious that ∇ f̃i is a 1
16 -inverse strongly monotone, ∀i = 1, 2.

Consider (0, –10), (–10, 0) ∈ [–10, 10] × [–10, 10] for which

PC
(
I – λ1

n∇ f̃1
)
(0, –10) = P[–10,10]×[–10,10]

(
I –

1
16

∇ f̃1

)
(0, –10)

= P[–10,10]×[–10,10]

(
0,

–161
16

)

=
(

P[–10,10](0), P[–10,10]

(
–161

16

))

=
(

max
{
min{0, 10}, –10

}
, max

{
min

{
–161

16
, 10

}
, –10

})
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= (0, –10),

thus (0, –10) ∈ Uf̃1 .
Similarly,

PC
(
I – λ2

n∇ f̃2
)
(–10, 0) = P[–10,10]×[–10,10]

(
I –

1
16

∇ f̃2

)
(–10, 0)

= P[–10,10]×[–10,10]

(
–161

16
, 0

)

=
(

P[–10,10]

(
–161

16

)
, P[–10,10](0)

)

=
(

max

{
min

{
–161

16
, 10

}
, –10

}
, max

{
min{0, 10}, –10

})

= (–10, 0),

thus (–10, 0) ∈ Uf̃2 .
It is clear that the sequences {αn}, {μn} satisfy all the conditions of Theorem 1, so we

can conclude that the sequences {xn} and {yn} converge strongly to (0, –10) and (–10, 0),
respectively. Table 1 shows the values of {xn} and {yn} with x1

n = –10, x2
n = 10, y1

n = 10,
y2

n = –10, and n = N = 400.

Table 1 The values of {xn} and {yn} with x1n = –10, x2n = 10, y1n = 10, y2n = –10, and n = N = 400

n xn = (x1n , x
2
n) yn = (y1n , y

2
n)

1 (–10.0000, 10.0000) (10.0000, –10.0000)
2 (–6.0784, 8.0448) (8.1639, –7.2059)
3 (–4.2192, 7.3380) (7.5048, –5.8538)
4 (–3.0380, 6.9152) (7.1109, –4.9143)
...

...
...

250 (–0.0050, –7.7785) (–7.5696, –0.0076)
...

...
...

396 (–0.0043, –9.9937) (–9.9937, –0.0065)
397 (–0.0042, –9.9937) (–9.9937, –0.0064)
398 (–0.0042, –9.9937) (–9.9937, –0.0064)
399 (–0.0042, –9.9937) (–9.9937, –0.0064)
400 (–0.0042, –9.9937) (–9.9937, –0.0064)

Figure 1 The convergence of {xn} and {yn} with
x1n = –10, x2n = 10, y1n = 10, y2n = –10, and n = N = 400
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Table 2 The values of {xn} with x1n = –10, x2n = 10, and n = N = 400

n xn = (x1n , x
2
n)

1 (–10.0000, 10.0000)
2 (–7.0308, 8.9972)
3 (–5.2235, 8.5685)
4 (–3.9531, 8.2876)
...

...
250 (0.0000,-6.2974)
...

...
396 (0.0000, –9.9958)
397 (0.0000, –9.9958)
398 (0.0000, –9.9958)
399 (0.0000, –9.9958)
400 (0.0000, –9.9958)

Figure 2 The convergence of {xn} with x1n = –10,
x2n = 10, and n = N = 400

Remark 1 If we choose f ≡ g and xn = yn in Example 1, we can rewrite (36) as follows:

xn+1 =
(

4n – 1
7n

)
xn +

(
3n + 1

7n

)
PC

(
1

4n
f (xn) +

(
4n – 1

4n

)
Tf̃

nxn

)
,

where PC(x1, x2) = (max{min{x1, 10}, –10}, max{min{x2, 10}, –10}) and also PC(I – λn∇ f̃ ) =
snI + (1 – sn)Tf̃

n and sn = 2–λn(16)
4 , where λn = n2

8n2+1 . From Corollary 1, we can conclude that
the sequence {xn} converges strongly to (0, –10). Table 2 shows the values of {xn} with
x1

n = –10, x2
n = 10, and n = N = 400.

Conclusion
1. Theorem 1 guarantees the convergence of {xn} and {yn} in Example 1.
2. Corollary 1 guarantees the convergence of {xn} in Remark 1.
3. By using the concepts of an intermixed algorithm and gradient-projection algorithm

(GPA), we give a new iteration for solving two constrained convex minimization
problems.
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