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Abstract
In this paper, we study some identities on Euler numbers and polynomials, and those
on degenerate Euler numbers and polynomials which are derived from the fermionic
p-adic integrals on Zp. Specifically, we obtain a recursive formula for alternating
integer power sums and representations of alternating integer power sum
polynomials in terms of Euler polynomials and Stirling numbers of the second kind, as
well as various properties about Euler numbers and polynomials. In addition, we
deduce representations of degenerate alternating integer power sum polynomials in
terms of degenerate Euler polynomials and degenerate Stirling numbers of the
second kind, as well as certain properties on degenerate Euler numbers and
polynomials.
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1 Introduction
Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will denote
the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the
algebraic closure of Qp, respectively. The p-adic norm is normalized as |p|p = 1

p .
Let f be a Cp-valued continuous function on Zp. Then the fermionic p-adic integral of

f on Zp is defined by Kim as

∫
Zp

f (x) dμ–1(x) = lim
N→∞

pN –1∑
x=0

f (x)μ–1
(
x + pN

Zp
)

= lim
N→∞

pN –1∑
x=0

f (x)(–1)x (see [11, 12]). (1.1)

From (1.1), we note that

∫
Zp

f (x + 1) dμ–1(x) = –
∫
Zp

f (x) dμ–1(x) + 2f (0) (see [5, 8]), (1.2)
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and by induction, for any n ∈N, we get

∫
Zp

f (x + n) du–1(x) = (–1)n
∫
Zp

f (x) du–1(x) + 2
n–1∑
l=0

(–1)n–1–lf (l). (1.3)

It is well known that the Euler polynomials are defined by

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
(see [1–21]). (1.4)

When x = 0, En = En(0) are called the Euler numbers.
From (1.4), we note that

En(x) =
n∑

l=0

(
n
l

)
Elxn–l, n ≥ 0 (see [1–21]), (1.5)

where n is a nonnegative integer.
By (1.4) and (1.5), we get

En(1) + En =
n∑

l=0

(
n
l

)
El + En =

⎧⎨
⎩

2, if n = 0,

0, if n > 0.
(1.6)

Let

Tp(n) = 2
n∑

k=1

(–1)k–1kp, n, p ∈N. (1.7)

Then, by (1.4) and (1.5), we get

∞∑
p=0

Tp(n)
tp

p!
= 2

n∑
k=1

(–1)k–1ekt =
2

et + 1
(
e(n+1)t + et)

=
∞∑

p=0

(
Ep(n + 1) + Ep(1)

) tp

p!
, (1.8)

where n ∈N, with n ≡ 1 (mod 2). Thus we have, for n, p ∈N, with n ≡ 1 (mod 2),

Tp(n) = Ep(n + 1) – Ep. (1.9)

From (1.2), we can derive the following equation (1.10):

∫
Zp

e(x+y)t dμ–1(y) =
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
. (1.10)

Thus, by (1.10), we get

∫
Zp

(x + y)n dμ–1(y) = En(x), n ≥ 0 (see [11]). (1.11)
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Thus, by (1.9) and (1.11), we have

Tp(n) =
∫
Zp

(x + n + 1)p dμ–1(x) –
∫
Zp

xp dμ–1(x), (1.12)

where n, p ∈N with n ≡ 1 (mod 2).
We recall here that the Stirling numbers of the second kind are given by the exponential

generating function

1
k!

(
et – 1

)k =
∞∑

n=k

S2(n, k)
tn

n!
. (1.13)

The purpose of this paper is to investigate some identities on Euler numbers and poly-
nomials, and those on degenerate Euler numbers and polynomials which are derived from
the fermionic p-adic integrals on Zp.

The outline of this paper is as follows. In Sect. 1, we will review some necessary results
about fermionic p-adic integrals, Euler polynomials, and alternating integer power sums.
In Sect. 2, we will introduce the alternating integer power sum polynomials and represent
them in terms of Euler polynomials and Stirling numbers of the second kind, and derive
various properties about Euler numbers and polynomials. In Sect. 3, we will introduce
the degenerate alternating integer power sum polynomials and express them in terms of
degenerate Euler polynomials and degenerate Stirling numbers of the second, and derive
some properties on degenerate Euler numbers and polynomials.

2 Some identities of Euler numbers and polynomials
In this section, we will introduce the alternating integer power sum polynomials and rep-
resent them in terms of Euler polynomials and Stirling numbers of the second kind, and
derive various properties about Euler numbers and polynomials.

For p ∈ N, we have

(–1)j(j + 1)p + (–1)jjp =
p∑

i=0

(
p
i

)
ji(–1)j + (–1)jjp

= 2(–1)jjp +
p–1∑
i=1

(
p
i

)
ji(–1)j + (–1)j. (2.1)

From (2.1), for n, p ∈N with n ≡ 1 (mod 2), we note that

(–1)n(n + 1)p =
n∑

j=0

{
(–1)j(j + 1)p + (–1)jjp}

= 2
n∑

j=0

(–1)jjp +
p–1∑
i=1

(
p
i

) n∑
j=0

(–1)jji +
n∑

j=0

(–1)j

= 2
n∑

j=1

(–1)jjp +
p–1∑
i=1

(
p
i

) n∑
j=1

(–1)jji. (2.2)
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By (1.7) and (2.2), we get

Tp(n) = (n + 1)p –
1
2

p–1∑
i=1

(
p
i

)
Ti(n), (2.3)

where n, p ∈N with n ≡ 1 (mod 2).
Therefore, by (2.3), we obtain the following theorem.

Theorem 2.1 Let n, p ∈N with n ≡ 1 (mod 2). Then we have

∫
Zp

(x + n + 1)p dμ–1(x) –
∫
Zp

xp dμ–1(x)

= (n + 1)p –
1
2

p–1∑
i=1

(
p
i

){∫
Zp

(x + n + 1)i dμ–1(x) –
∫
Zp

xi dμ–1(x)
}

. (2.4)

From (1.11) and Theorem 2.1, we note the following corollary.

Corollary 2.2 Let n, p ∈N with n ≡ 1 (mod 2). Then we have

Ep(n + 1) – Ep = (n + 1)p –
1
2

p–1∑
i=1

(
p
i

)(
Ei(n + 1) – Ei

)
. (2.5)

For n ∈N0 = N∪ {0}, we have

∫
Zp

(y + 1 – x)n dμ–1(y) = (–1)n
∫
Zp

(y + x)n dμ–1(y). (2.6)

Thus, by (2.6), we get

En(1 – x) = (–1)nEn(x), n ≥ 0.

For n ∈N0, and by (1.2), we have

∫
Zp

(x + 2)n dμ–1(x) =
n∑

l=0

(
n
l

)∫
Zp

(x + 1)l dμ–1(x)

= 1 +
n∑

l=1

(
n
l

)∫
Zp

(x + 1)l dμ–1(x)

= 1 –
n∑

l=1

(
n
l

)∫
Zp

xl dμ–1(x)

= 2 –
n∑

l=0

(
n
l

)∫
Zp

xl dμ–1(x). (2.7)

Thus, by using (1.2) and (2.7), we get the next theorem.
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Theorem 2.3 For n ∈ N∪ {0}, we have
∫
Zp

(x + 2)n dμ–1(x) = 2 +
∫
Zp

xn dμ–1(x) – 2δ0,n,

where δn,k is the Kronecker’s delta.

By combining Theorem 2.3 with (1.11), we arrive at the following corollary.

Corollary 2.4 For n ∈N, we have

En(2) = 2 + En. (2.8)

For the next result, we note that, for any n ∈N,

En = (–1)n–1En. (2.9)

For m, n ∈N, and by (1.11) and (2.9), we have

∫
Zp

xm(x – 1)n dμ–1(x) =
n∑

i=0

(
n
i

)
(–1)n–i

∫
Zp

xm+i dμ–1(x)

=
n∑

i=0

(
n
i

)
(–1)n–iEm+i

= (–1)m+n–1
n∑

i=0

(
n
i

)
Em+i. (2.10)

On the other hand, by (2.6) and (2.8), we get

∫
Zp

xm(x – 1)n dμ–1(x) =
m∑

i=0

(
m
i

)∫
Zp

(x – 1)n+i dμ–1(x)

=
m∑

i=0

(
m
i

)
(–1)n+i

∫
Zp

(x + 2)n+i dμ–1(x)

=
m∑

i=0

(
m
i

)
(–1)n+i(En+i + 2)

=
m∑

i=0

(
m
i

)
(–1)n+iEn+i

= –
m∑

i=0

(
m
i

)
En+i. (2.11)

Therefore, by (2.10) and (2.11), we obtain the following theorem.

Theorem 2.5 For m, n ∈ N, the following symmetric identity holds:

(–1)n
n∑

i=0

(
n
i

)
Em+i = (–1)m

m∑
i=0

(
m
i

)
En+i. (2.12)
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Now, we define the alternating integer power sum polynomials by

Tp(n|x) = 2
n∑

k=0

(–1)k–1(k + x)p, n, p ∈ N0. (2.13)

Note that Tp(n|0) = Tp(n), n ∈ N0, p ∈N.
For N ∈N with N ≡ 1 (mod 2), by (1.3), we get

2
N∑

k=0

(–1)k–1e(k+x)t

=
∫
Zp

e(N+1+x+y)t dμ–1(y) –
∫
Zp

e(x+y)t dμ–1(y)

=
∞∑

n=0

{∫
Zp

(N + 1 + x + y)n dμ–1(y) –
∫
Zp

(x + y)n dμ–1(y)
}

tn

n!
. (2.14)

Now, we see that (2.14) is equivalent to the next theorem.

Theorem 2.6 For N ∈N, with N ≡ 1 (mod 2), and n ∈N0, we have

Tn(N |x) = En(x + N + 1) – En(x). (2.15)

From (2.14), and recalling (1.13), we note that

2
N∑

k=0

(–1)k–1e(k+x)t = ext(e(N+1)t – 1
) ∫

Zp

eyt dμ–1(y)

=
2

et + 1
ext

(N+1∑
m=0

(
N + 1

m

)(
et – 1

)m – 1

)

=

( ∞∑
j=0

Ej(x)
tj

j!

)( ∞∑
l=0

( l∑
m=0

(
N + 1

m

)
m!S2(l, m)

)
tl

l!
– 1

)

=
∞∑

n=0

{ n∑
l=0

l∑
m=0

(
N + 1

m

)(
n
l

)
m!S2(l, m)En–l(x) – En(x)

}
tn

n!
, (2.16)

where N ∈N with N ≡ 1 (mod 2) and S2(l, m) is the Stirling number of the second kind.
Therefore, by (2.16), we obtain the following theorem.

Theorem 2.7 For N ∈N with N ≡ 1 (mod 2) and n ∈N0, we have

Tn(N |x) =
n∑

l=0

l∑
m=0

(
N + 1

m

)(
n
l

)
m!S2(l, m)En–l(x) – En(x),

where S2(n, m) is the Stirling number of the second kind.
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For m, k ∈N with m – k ≥ 1, and making use of (1.2) and (2.9), we have

(–1)m–k
∫
Zp

xm–k dμ–1(x)

= –
∫
Zp

xm–k dμ–1(x) =
∫
Zp

(x + 1)m–k dμ–1(x)

=
m–k∑
j=0

(
m – k

m – k – j

)∫
Zp

xm–k–j dμ–1(x) =
m∑

j=k

(
m – k
m – j

)∫
Zp

xm–j dμ–1(x)

=
1(m
k
)

m∑
j=k

(
m
j

)(
j
k

)∫
Zp

xm–j dμ–1(x). (2.17)

Theorem 2.8 For m, k ∈N with m – k ≥ 1, we have

(–1)m–k
(

m
k

)
Em–k =

m∑
j=k

(
m
j

)(
j
k

)
Em–j.

3 Some identities of degenerate Euler numbers and polynomials
In this section, we will introduce the degenerate alternating integer power sum polyno-
mials and express them in terms of degenerate Euler polynomials and degenerate Stirling
numbers of the second, and derive some properties on degenerate Euler numbers and
polynomials.

Throughout this section, we assume that λ ∈ Cp with |λ|p < p– 1
p–1 . The degenerate ex-

ponential function is defined as

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = e1

λ(t), n ≥ 0 (see [3, 4, 14–16]).

Note that limλ→0 ex
λ(t) = ext .

It is well known that the degenerate Euler polynomials are defined by L. Carlitz as

2
eλ(t) + 1

ex
λ(t) =

2
(1 + λt)

1
λ + 1

(1 + λt)
x
λ =

∞∑
n=0

En,λ(x)
tn

n!
. (3.1)

When x = 0, En,λ = En,λ(0) are called the degenerate Euler numbers (see [3, 4, 14–17]).
From (3.1), we note that

En,λ(x) =
n∑

l=0

(
n
l

)
(x)n–l,λEl,λ, n ≥ 0 (see [3, 4, 14–17]), (3.2)

where (x)n,λ = x(x – λ) · · · (x – (n – 1)λ), n ≥ 1, (x)0,λ = 1.
From (3.1), we can derive the following recurrence relation for En,λ, n ≥ 0.

n∑
l=0

(
n
l

)
(1)n–l,λEl,λ + En,λ =

⎧⎨
⎩

2, if n = 0,

0, if n > 0.
(3.3)
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From (3.2) and (3.3), we have

En,λ(1) = –En,λ + 2δ0,n, n ≥ 0.

For N ∈N with N ≡ 1 (mod 2), we have

2
N∑

k=0

(–1)k–1ek+x
λ (t) =

2
eλ(t) + 1

(
eN+1+x
λ (t) – ex

λ(t)
)

=
∞∑

n=0

{
En,λ(N + 1 + x) – En,λ(x)

} tn

n!
. (3.4)

On the other hand,

2
N∑

k=0

(–1)k–1ek+x
λ (t) =

∞∑
n=0

(
2

N∑
k=0

(–1)k–1(k + x)n,λ

)
tn

n!
. (3.5)

Let us define a degenerate version of the alternating integer power sum polynomials,
called the degenerate alternating integer power sum polynomials, by

Tp,λ(n|x) = 2
n∑

k=0

(–1)k–1(k + x)p,λ, n ≥ 0. (3.6)

Note that limλ→0 Tp,λ(n|x) = Tp(n|x), n ≥ 0.
Therefore, by (3.5) and (3.6), we obtain the following theorem.

Theorem 3.1 For n ∈ N0, and N ∈N, with N ≡ 1 (mod 2), we have

Tn,λ(N |x) = En,λ(N + 1 + x) – En,λ(x).

From (1.2), we note that

∫
Zp

ex+y
λ (t) dμ–1(y) =

2
eλ(t) + 1

ex
λ(t) =

∞∑
n=0

En,λ(x)
tn

n!
. (3.7)

On the other hand,

∫
Zp

ex+y
λ (t) dμ–1(y) =

∞∑
n=0

∫
Zp

(x + y)n,λ dμ–1(y)
tn

n!
. (3.8)

By (3.7) and (3.8), we get

∫
Zp

(x + y)n,λ dμ–1(y) = En,λ(x), n ≥ 0. (3.9)
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For d ∈N with d ≡ 1 (mod 2), by (1.3), we get

∫
Zp

ex+y
λ (t) dμ–1(y)

=
2

ed
λ(t) + 1

d–1∑
l=0

(–1)lex+l
λ (t)

=
2

e λ
d

(dt) + 1

d–1∑
l=0

(–1)le
x+l
d

λ
d

(dt) =
d–1∑
l=0

(–1)l
∞∑

n=0

En, λd

(
x + l

d

)
dntn

n!

=
∞∑

n=0

(
dn

d–1∑
l=0

(–1)lEn, λd

(
x + l

d

))
tn

n!
. (3.10)

From (3.9) and (3.10), we have

En,λ(x) = dn
d–1∑
l=0

(–1)lEn, λd

(
x + l

d

)
, (3.11)

where n ∈N0 and d ∈N with d ≡ 1 (mod 2).
From (3.7) and (3.9), we have

∫
Zp

(1 – x + y)n,λ dμ–1(y) = (–1)n
∫
Zp

(x + y)n,–λ dμ–1(y), (3.12)

where n is a nonnegative integer.
Hence, by (3.7), we get

En,λ(1 – x) = (–1)nEn,–λ(x), n ≥ 0. (3.13)

Now, we observe that

2
N∑

k=0

(–1)k–1ex+k
λ (t) =

2
eλ(t) + 1

(
eN+1+x
λ (t) – ex

λ(t)
)

=
2

eλ(t) + 1
((

eλ(t) – 1 + 1
)N+1 – 1

)
ex
λ(t)

=
2

eλ(t) + 1

(N+1∑
m=0

(
N + 1

m

)(
eλ(t) – 1

)m – 1

)
ex
λ(t), (3.14)

where N ∈N, with N ≡ 1 (mod 2).
As is well known, the degenerate Stirling numbers of the second kind are given by the

generating function as

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(see [14, 16, 18]). (3.15)
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From (3.14) and (3.15), we have

2
N∑

k=0

(–1)k–1ex+k
λ (t) =

∞∑
j=0

Ej,λ(x)
tj

j!

( ∞∑
l=0

l∑
m=0

(
N + 1

m

)
m!S2,λ(l, m)

tl

l!
– 1

)

=
∞∑

n=1

( n∑
l=1

l∑
m=1

(
n
l

)(
N + 1

m

)
m!En–l,λ(x)S2,λ(l, m)

)
tn

n!
. (3.16)

The left-hand side of (3.16) is given by

2
N∑

k=0

(–1)k–1ex+k
λ (t) =

∞∑
n=0

(
2

N∑
k=0

(–1)k–1(x + k)n,λ

)
tn

n!
.

=
∞∑

n=1

Tn,λ(N |x)
tn

n!
, (3.17)

where N ∈N with N ≡ 1 (mod 2).
Therefore, by (3.16) and (3.17), we obtain the following theorem.

Theorem 3.2 For n, N ∈N, with N ≡ 1 (mod 2), we have

Tn,λ(N |x) =
n∑

l=1

l∑
m=1

(
n
l

)(
N + 1

m

)
m!En–l,λ(x)S2,λ(l, m).

4 Conclusions
As is well known, the alternating integer power sums can be expressed in terms of some
values of Euler polynomials. In this paper, we studied some identities on Euler numbers
and polynomials, and those on degenerate Euler numbers and polynomials, which are
derived from certain fermionic p-adic integrals on Zp. Here we mention that fermionic
p-adic integrals were introduced by Kim and have been used fruitfully in investigations of
combinatorial and number-theoretic aspects of many special numbers and polynomials.

Specifically, we obtained a recursive formula for alternating integer power sums and
representations of alternating integer power sum polynomials in terms of Euler polyno-
mials and also of Euler polynomials together with Stirling numbers of the second kind.
Along the way, various properties of Euler numbers and polynomials were derived as well.
As to the degenerate alternating integer power sum polynomials associated with the al-
ternating integer power sums, we obtained their representations in terms of degenerate
Euler polynomials and also of degenerate Euler polynomials together with the degenerate
Stirling numbers of the second kind. Along the way, we also derived some properties of
degenerate Euler numbers and polynomials.
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