
Samraiz et al. Journal of Inequalities and Applications        (2019) 2019:263 
https://doi.org/10.1186/s13660-019-2218-0

R E S E A R C H Open Access

On an extension of Hadamard fractional
derivative
Muhammad Samraiz1, Erhan Set2, Muhammad Hasnain1* and Gauhar Rahman3

*Correspondence:
rhasnainshahzad@gmail.com
1Department of Mathematics,
University of Sargodha, Sargodha,
Pakistan
Full list of author information is
available at the end of the article

Abstract
In this paper, we introduce a new approach to the fractional derivation which
generalizes the classical Hadamard fractional derivative. We prove some properties of
this new approach and also establish some results by addressing some standard
functions.

MSC: 26D15; 26D10; 26A33

Keywords: Fractional calculus; Hadamard fractional derivative

1 Introduction
The subject of evaluating integrals and derivatives of any arbitrary real or complex order
has gained considerable attention of mathematicians and scientists because of its exhib-
ited applications in science, engineering and other related fields. The scientists working in
the fields of inequalities and control theory found interesting outcomes when they apply
the fractional calculus in their fields [1, 9, 15, 16]. It was observed by several authors that
fractional derivatives and integrals are more suitable for describing real materials. Some
physical problems were also treated by using derivatives of non-integer orders. Nowadays,
some of the application areas of fractional calculus include fluid flow, dynamical processes
in self-similar, electrical networks, probability and statistics, control theory of dynamical
systems, viscoelasticity, electrochemistry of corrosion, chemical physics etc. The gener-
alization of fractional differential calculus operators were subjected to an intense debate
in the last few years. For current progress on fractional calculus, the reader may also see
[5, 13]. There are different familiar forms of the fractional derivatives which have been
studied broadly [3, 5, 10, 13, 14]. The first is the Riemann–Liouville fractional derivatives
of order μ ∈C, R(μ) ≥ 0, defined by

(
Dμ

a+f
)
(x) :=

(
d

dx

)m(
In–μ

a+ f
)
(x)

=
1

Γ (m – μ)

(
d

dx

)m ∫ x

a

f (t)
(x – t)μ–m+1 dt, m =

[
R(μ)

]
+ 1; x > a, (1.1)
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and

(
Dμ

b–f
)
(x) :=

(
–

d
dx

)m(
Im–μ

b– f
)
(x)

=
1

Γ (m – μ)

(
–

d
dx

)m ∫ x

a

f (t)
(t – x)μ–m+1 dt, m =

[
R(μ)

]
+ 1; x < b, (1.2)

respectively, where

(
Iμ

a+f
)
(x) =

1
Γ (μ)

∫ x

a

f (t)
(x – t)1–μ

dt

and

(
Iμ

b–f
)
(x) =

1
Γ (μ)

∫ b

x

f (t)
(t – x)1–μ

dt

are the left and right sided Riemann–Liouville fractional integrals.
Diaz et al. in [4] introduced the k-gamma function as follows.

Definition 1.1 Let k > 0 and R(μ) > 0. The k-gamma function is given by the following
integral:

Γk(μ) =
∫ ∞

0
tμ–1 exp

(
–

tk

k

)
dt.

The fractional integrals introduced by Hadamard [8] are given in the next definition.

Definition 1.2 Let (a, b) be a finite or infinite interval of the half-axis R+ and let R(μ) > 0.
We consider the left and right sided Hadamard fractional integrals of order μ ∈C, R(μ) >
0, defined as

(
I

μ

a+ g
)
(x) =

1
Γ (μ)

∫ x

a

(
log

x
u

)μ–1 g(u)
u

du, a < x < b,

and

(
I

μ

b– g
)
(x) =

1
Γ (μ)

∫ b

x

(
log

u
x

)μ–1 g(u)
u

du, a < x < b,

respectively.

Hadamard fractional derivatives are introduced by using Hadamard fractional integrals
as in the following.

Definition 1.3 ([8]) Let δ = xD (D = d
dx ) be the delta derivative see [11, p. 2]. The left and

right sided Hadamard fractional derivatives of order μ ∈C, m = [R(μ)] + 1 with R(μ) ≥ 0
on (a, b) are defined by

(H
D

μ
a+f

)
(x) := (δ)m(

I
m–μ
a+ f

)
(x)

=
(–1)mΓ (μ + 1)

B(μ – m + 1, m – μ)

∫ x

a

(
log

x
u

)–μ–1 f (u)
u

du; a < x < b, (1.3)
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and

(H
D

μ

b–f
)
(x) := (–δ)m(

I
m–μ

b– f
)
(x)

=
(–1)mΓ (μ + 1)

B(μ – m + 1, m – μ)

∫ b

x

(
log

u
x

)–μ–1 f (u)
u

du; a < x < b, (1.4)

respectively, where Iμ
a+ and I

μ

b– are the left and right sided Hadamard fractional integrals.

The k extension of Hadamard fractional integral introduced by Farid et al. is given in
the following.

Definition 1.4 ([6]) Let k, μ and a be positive real numbers with u > a, then the Hadamard
k-fractional integral of order μ is defined as

k
HI

μ

(a,u)g(x) =
1

kΓk(μ)

∫ x

a

(
log

x
u

)μ
k –1 g(u)

u
du. (1.5)

Now we give the definition of the Caputo–Hadamard fractional derivative presented in
[2].

Definition 1.5 The fractional derivative CH
a Dμ

t of order 0 < μ < 1 on (a, b) is defined as:

CH
a Dμ

t x(t) =
t

Γ (1 – μ)
d
dt

∫ t

a

(
log

t
τ

)–μ x(τ ) – x(a)
τ

dτ , (1.6)

which can be written as

CH
a Dμ

t x(t) =
1

Γ (1 – μ)

∫ t

a

(
log

t
τ

)–μ

x′(τ ) dτ . (1.7)

Diaz et al. introduced the following definition of the k-beta function and the Pochham-
mer k-symbol in [4].

Definition 1.6 Let μ be a complex number, k be a real number and m be a natural number.
Then the Pochhammer k-symbol is given as

(μ)m,k = (μ)(μ + k)(μ + 2k) · · · (μ + (m – 1)k
)
.

The formula which relates the k-gamma function and the Pochhammer k-symbol is given
as

(μ)m,k =
Γk(μ + mk)

Γk(μ)
.

Definition 1.7 The k-beta function Bk(μ,ν) is defined by the formula

Bk(μ,ν) =
1
k

∫ 1

0
τ

μ
k –1(1 – τ )

ν
k –1 dτ , R(μ) > 0,R(ν) > 0
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and the identity which relates it with the Γk function is

Bk(μ,ν) =
Γk(μ)Γk(ν)
Γk(μ + ν)

.

The following definition of the incomplete gamma function is given in [7, p. 899].

Definition 1.8 The incomplete gamma function γ (μ, x) is defined by the formula

γ (μ, x) =
∫ x

0
exp(–t)tμ–1 dt, R(μ) > 0.

In [12, p. 664], Fubini’s theorem is stated as follows.

Definition 1.9 Let (�,Σ1, θ ), (Λ,Σ2,φ) be two measure spaces. Suppose that θ and φ

are complete and μ : � × Λ → [–∞,∞] be (θ × φ)-integrable. Then, for θ -a.e. t ∈ �, the
function α(t, ·) is φ-integrable and the function

∫
Λ

μ(·, τ ) dφ(τ ) is θ -integrable. Similarly,
for φ-a.e. τ ∈ Ω2 the function α(·, τ ) is θ -integrable and the function

∫
�

α(t, ·) dθ (t) is φ-
integrable. Moreover,

∫

�

(∫

Λ

α(t, τ ) dφ(τ )
)

dθ (t) =
∫

Λ

(∫

�

α(t, τ ) dθ (t)
)

dφ(τ ). (1.8)

Tonelli’s theorem is given by the following [12, p. 664].

Definition 1.10 Let (�,Σ1, θ ), (Λ,Σ2,φ) be two measure spaces and suppose that θ and
φ are complete and σ -finite and let α : �×Λ → [0,∞] be (Σ1 ×Σ1)-measurable function.
Then, for θ -a.e. t ∈ �, the function α(t, ·) measurable and the function

∫
Λ

α(·, τ ) dφ(τ ) is
measurable. Similarly, for φ-a.e. τ ∈ Λ the function α(·, τ ) is measurable and the function
∫
�

α(t, ·) dθ (t) is measurable. Moreover,

∫

�

(∫

Λ

α(t, τ ) dφ(τ )
)

dθ (t) =
∫

Λ

(∫

�

α(t, τ ) dθ (t)
)

dφ(τ ). (1.9)

2 Main results
In continuation of the extensions of different fractional integrals and derivatives, we are
going to define the following extension of the Hadamard fractional derivative.

Definition 2.1 Let (a, b) be a finite or infinite interval of half-axisR+ and letR(α–m+k) >
0, R(m – μ) > 0, μ ∈ C with R(μ) > 0. Then the left and right sided extended Hadamard
fractional derivatives of order μ are defined by

(H
D

μ,k
a+ f

)
(x) = δm(

HI
m–μ,k
a+ f

)
(x)

=
(–1)mΓk(μ – m + k + nk)
km+1Bk(μ – m + k, m – μ)

∫ x

a

(
log

x
u

) m–μ
k –m–1 f (u)

u
du

(a < x < b) (2.1)
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and

(H
D

μ,k
b– f

)
(x) = (–δ)m(k

HI
m–μ

b– f
)
(x)

=
(–1)mΓk(μ – m + k + nk)
km+1Bk(μ – m + k, m – μ)

∫ b

x

(
log

u
x

) m–μ
k –m–1 f (u)

u
du

(a < x < b), (2.2)

respectively, where m = [R(μ)] + 1, k > 0 and δ = x d
dx (delta derivative).

Remark 2.2 By setting k = 1 in (2.1), we get

(H
D

μ

a+ f
)
(x)

=
(–1)mΓ (μ – m + 1 + m)
1m+1B(μ – m + 1, m – μ)

∫ x

a

(
log

x
u

)m–μ–m–1 f (u)
u

du

=
(–1)mΓ (μ + 1)

B(μ – m + 1, m – μ)

∫ x

a

(
log

x
u

)–μ–1 f (u)
u

du,

which is the left side classical Hadamard fractional derivative.
Similarly, on substituting k = 1 in (2.2) we can obtain the right sided classical Hadamard

fractional derivative.

The following result proves the boundedness of the operator (2.1).

Theorem 2.3 Let k > 0, R( p(m–μ)–k(mp+p–1)
k ) > 0 and HD

μ,k
a+ f be the extended Hadamard

fractional derivative of order μ ∈ C such that R(μ) > 0 with m = [R(μ)] + 1 defined on
(a, b). Then the following result holds:

∣
∣(H

D
μ,k
a+ f

)
(x)

∣
∣ ≤ C

∥
∥f (u)

∥
∥

q, (2.3)

where C = Γk (μ–m+k+mk)x
1–p

p (1–p)1+m– (m–μ)
k

km+1Bk (μ–m+k,m–μ) (Υ ( p(m–μ)–k(mp+p–1)
k , log x

a ))
1
p and Υ (μ, x) is the in-

complete gamma function given by Definition 1.8.

Proof

∣∣(H
D

μ,k
a+ f

)
(x)

∣∣ ≤ Γk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

∫ x

a

(
log

x
u

) m–μ
k –m–1 |f (u)|

u
du.

By applying Hölder’s inequality, we obtain

∣∣(H
D

μ,k
a+ f

)
(x)

∣∣ ≤ Γk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

×
(∫ x

a

(
log

x
u

) p(m–μ)
k –mp–p 1

up du
) 1

p ∥∥f (u)
∥∥

Lq(a,x). (2.4)
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Substituting log x
u = z, using the incomplete gamma function and after simple calculation,

we get

∣∣(H
D

μ,k
a+ f

)
(x)

∣∣ ≤ Γk(μ – m + k + mk)x
1–p

p (1 – p)1+m– (m–μ)
k

km+1Bk(μ – m + k, m – μ)

×
(

Υ

(
p(m – μ) – k(mp + p – 1)

k
, log

x
a

)) 1
p ∥
∥f (u)

∥
∥

Lq(a,x). �

The next theorem proves that the derivative defined by (2.1) is well defined.

Theorem 2.4 Let f ∈ L1[u′, v′], k > 0 and R(μ) > 0, then the derivative HD
μ,k
a+ f of order

μ ∈C with m = [R(μ)] + 1 exists for every x ∈ (u′, v′).

Proof Let � := [u′, v′] × [u′, v′] and K : � →R,

K+(x, y) =

⎧
⎨

⎩

(–1)mΓk (μ–m+k+mk)
km+1Bk (μ–m+k,m–μ) (log x

y )
m–μ

k –m–1 1
y , u′ ≤ y ≤ x ≤ v′;

0, u′ ≤ x ≤ y ≤ v′,

K–(x, y) =

⎧
⎨

⎩

(–1)mΓk (μ–m+k+mk)
km+1Bk (μ–m+k,m–μ) (log y

x )
m–μ

k –m–1 1
y , u′ ≤ x ≤ y ≤ v′;

0, u′ ≤ y ≤ x ≤ v′.

Since K+(x, y) is measurable on �, we have

∫ v′

u′
K(x, y) dy =

(–1)m+1Γk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

(
log

x
u′

) m–μ
k –m

.

By integrating repeatedly, we obtain

∫ v′

u′

(∫ v′

u′
K(x, y)

∣∣f (x)
∣∣dy

)
dx

=
∫ v′

u′

∣∣f (x)
∣∣
(∫ v′

u′
K(x, y) dy

)
dx

≤ (–1)m+1Γk(μ – m + k + mk)
kmBk(μ – m + k, m – μ)

∫ v′

u′

∣
∣f (x)

∣
∣
(

log
v′

u′

) m–μ
k –m

dx

=
(–1)m+1Γk(μ – m + k + mk)(log v′

u′ )
m–μ

k –m

kmBk(μ – m + k, m – μ)
∥
∥f (x)

∥
∥

L1[u′ ,v′] < ∞.

Therefore, by applying Tonelli’s theorem the function H : � → R, where H(x, y) :=
K(x, y)f (x) is integrable over �. Hence

∫ v′
u′ K(x, y)f (x) dx in integrable on [u′, v′], as a func-

tion of y ∈ [u′, v′] by using Fubini’s theorem, i.e., (HD
μ,k
a+ f )(x) exists. �

Theorem 2.5 Let k > 0 and R(μ), R(β) be positive with n = [R(μ)] + 1, then

H
D

μ,k
a+

(k
HI

ν
a+f (x)

)
=

(H
D

μ–ν,k
a+ f

)
(x). (2.5)
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Proof By applying Definition 2.1, we have

H
D

μ,k
a+

(k
HI

ν
a+f (x)

)
= δmk

HI
m–μ
a+

(k
HI

ν
a+f (x)

)
.

Now by using Definition 1.4 and Fubini’s formula, we get

k
HI

m–μ
a+

(k
HI

ν
a+f (x)

)

=
1

k2Γk(m – μ)Γk(ν)

×
∫ x

a

[∫ x

u

(
log

x
τ

) m–μ
k –1(

log
τ

u

) ν
k –1 dτ

τ

]
f (u)

u
du

=
1

k2Γk(m – μ)Γk(ν)

×
∫ x

a

[∫ x

u

(
log

x
u

) m–μ
k –1(

1 –
log τ

u
log x

u

) m–μ
k –1(

log
τ

u

) ν
k –1 dτ

τ

]
f (u)

u
du.

Substituting log τ
u = s log x

u , we get

HI
m–μ,k
a+

(
HI

ν,k
a+ f (x)

)

=
1

k2Γk(m – μ)Γk(ν)

×
∫ x

a

f (u)
u

[∫ 1

0

(
log

x
u

) m–μ+ν
k –1

(s)
ν
k –1(1 – s)

m–μ
k –1 ds

]
du.

By using the k-beta function, its property and Definition 1.4, we obtain

HI
m–μ,k
a+

(
HI

ν,k
a+ f (x)

)

=
Bk(ν, m – μ)

kΓk(m – μ)Γk(ν)

∫ x

a

(
log

x
u

) m–μ+ν
k –1 f (u)

u
du

=
1

kΓk(m – μ + ν)

∫ x

a

(
log

x
u

) m–μ+ν
k –1 f (u)

u
du

=
(k

HI
m–(μ–ν)
a+ f

)
(x).

By using Definition 2.1, we get

H
D

μ,k
a+

(
HI

ν,k
a+ f (x)

)
= H

D
μ–ν,k
a+ f (x).

This completes the proof. �

The following theorem proves the linearity of our operator.

Theorem 2.6 Let a, b be scalars and all the assumptions of Theorem 2.5 be true. Then the
following result holds:

H
D

μ,k
a

(
af (x) + bg(x)

)
= a

(H
D

μ,k
a

)
f (x) + b

(H
D

μ,k
a

)
g(x).
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Proof By applying Definition 2.1, we obtain

H
D

μ,k
a

(
af (x) + bg(x)

)
=

1
kΓk(m – μ)

(
x

d
dx

)m ∫ x

a

(
log

x
u

) m–μ
k –1 (af (u) + bg(u))

u
du.

Now by using the linearity of integration, we have

H
D

μ,k
a

(
af (x) + bg(x)

)
=

a
kΓk(m – μ)

(
x

d
dx

)m ∫ x

a

(
log

x
u

) m–μ
k –1 f (u)

u
du

+
b

kΓk(m – μ)

(
x

d
dx

)m ∫ x

a

(
log

x
u

) m–μ
k –1 g(u)

u
du,

which gives the required result. �

Lemma 2.7 The extended Hadamard fractional derivative operator of any constant C of
order μ such that R(μ) > 0 with m = [R(μ)] + 1, is

(H
D

μ,k
a+

)
C =

(–1)m+1CΓk(μ – m + mk)
kmBk(μ – m + k, m – μ)

(
log

x
a

) m–μ
k –m

, (2.6)

i.e., the extended Hadamard fractional derivative of constant function does not vanish.

Proof

(H
D

μ,k
a+

)
C =

(–1)mCΓk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

∫ x

a

(
log

x
u

) m–μ
k –m–1 1

u
du.

By integrating the right hand side, we get (2.6). �

Lemma 2.8 Let R(μ) > 0, R( m–μ–nk
k ) > 0, then extended Hadamard fractional derivative

of the function f (x) = x2 + 2x of order μ with m = [R(μ)] + 1, is given by

(H
D

μ,k
a+

)(
x2 + 2x

)

=
(–1)m2xΓk(μ – m + k + mk)Υ ( m–μ–mk

k , log x
a )

km+1Bk(μ – m + k, m – μ)
[
2

mk–m+μ
k x + 1

]
. (2.7)

Proof By applying the definition of left sided extended Hadamard fractional derivative, we
have

(H
D

μ,k
a+

)(
x2 + 2x

)
=

(–1)mΓk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

∫ x

a

(
log

x
u

) m–μ
k –m–1

(u + 2) du.

Substituting log x
u = z and using the definition of incomplete gamma function, we obtain

Eq. (2.7). �

Theorem 2.9 Let R(μ) > 0, R(ν) > 0, with n = [R(μ)] + 1 and m = [R(ν)] + 1 such that n
and m are even. Let f and g be synchronous on [0,∞). Then for all u > a ≥ 0 the following
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inequalities hold for extended Hadamard fractional derivative:

H
D

μ,k
a+ fg(u) ≥ 1

HD
μ,k
a+ (1)

H
D

μ,k
a+ f (u)H

D
μ,k
a+ g(u) (2.8)

and

H
D

μ,k
a+ fg(u)H

D
ν,k
a+ (1) + H

D
ν,k
a+ fg(u)H

D
μ,k
a+ (1)

≥ H
D

μ,k
a+ f (u)H

D
ν,k
a+ g(u) + H

D
μ,k
a+ g(u)H

D
ν
a+f (u). (2.9)

Proof For the synchronous functions f and g on [0,∞), we have

(
f (t) – f (τ )

)(
g(t) – g(τ )

) ≥ 0 ∀t, τ ≥ 0.

Therefore

f (t)g(t) + f (τ )g(τ ) ≥ f (t)g(τ ) + f (τ )g(t). (2.10)

Multiplying both sides of (2.10) with Γk (μ–n+k+nk)
kn+1Bk (μ–n+k,n–μ) (log u

t )
n–μ

k –n–1 1
t , then integrating the

resulting inequality with respect to t over (a, u), we obtain

Γk(μ – n + k + nk)
kn+1Bk(μ – n + k, n – μ)

∫ u

a

(
log

u
t

) n–μ
k –n–1 1

t
f (t)g(t) dt

+
Γk(μ – n + k + nk)

kn+1Bk(μ – n + k, n – μ)

∫ u

a

(
log

u
t

) n–μ
k –n–1 1

t
f (τ )g(τ ) dt

≥ Γk(μ – n + k + nk)
kn+1Bk(μ – n + k, n – μ)

∫ u

a

(
log

u
t

) n–μ
k –n–1 1

t
f (t)g(τ ) dt

+
Γk(μ – n + k + nk)

kn+1Bk(μ – n + k, n – μ)

∫ u

a

(
log

u
t

) n–μ
k –n–1 1

t
f (τ )g(t) dt,

H
D

μ,k
a+ fg(u) + f (τ )g(τ )H

D
μ,k
a+ (1) ≥ g(τ )H

D
μ,k
a+ f (u) + f (τ )H

D
μ,k
a+ g(u).

(2.11)

By multiplying Γk (μ–n+k+nk)
kn+1Bk (μ–n+k,n–μ) (log u

τ
)

n–μ
k –n–1 1

τ
with both sides of (2.11) and then integrat-

ing the obtained inequality with respect to τ over (a, u), we obtain

H
D

μ,k
a+ fg(u)

Γk(μ – n + k + nk)
kn+1Bk(μ – n + k, n – μ)

∫ u

a

(
log

u
τ

) n–μ
k –n–1 1

τ
dτ

+ H
D

μ,k
a+ (1)

Γk(μ – n + k + nk)
kn+1Bk(μ – n + k, n – μ)

∫ u

a

(
log

u
τ

) n–μ
k –n–1 1

τ
f (τ )g(τ ) dτ

≥ H
D

μ,k
a+ f (u)

Γk(μ – n + k + nk)
kn+1Bk(μ – n + k, n – μ)

∫ u

a

(
log

u
τ

) n–μ
k –n–1 1

τ
g(τ ) dτ

+ H
D

μ,k
a+ g(u)

Γk(μ – n + k + nk)
kn+1Bk(μ – n + k, n – μ)

∫ u

a

(
log

u
τ

) n–μ
k –n–1 1

τ
f (τ ) dτ ,

which proves the result (2.8).
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By multiplying Γk (ν–m+k+mk)
km+1Bk (ν–m+k,m–μ) (log u

τ
)

m–ν
k –m–1 1

τ
with both sides of (2.11) and then inte-

grating the obtained inequality with respect to τ over (a, u), we get

H
D

μ,k
a+ fg(u)

Γk(ν – m + k + mk)
km+1Bk(ν – m + k, m – μ)

∫ u

a

(
log

u
τ

) m–ν
k –m–1 1

τ
dy

+ H
D

μ,k
a+ (1)

Γk(ν – m + k + mk)
km+1Bk(ν – m + k, m – μ)

∫ u

a

(
log

u
τ

) m–ν
k –m–1 1

τ
f (τ )g(τ ) dy

≥ H
D

μ,k
a+ f (u)

Γk(ν – m + k + mk)
km+1Bk(ν – m + k, m – μ)

∫ u

a

(
log

u
τ

) m–ν
k –m–1 1

τ
g(τ ) dy

+ H
D

μ,k
a+ g(u)

Γk(ν – m + k + mk)
km+1Bk(ν – m + k, m – μ)

∫ u

a

(
log

u
τ

) m–ν
k –m–1 1

τ
f (τ ) dy.

Hence the result (2.9) is proved. �

Corollary 2.10 Let all the assumptions of Theorem 2.9 hold with m and n odd. Then the
following inequalities hold:

H
D

μ,k
a+ fg(u) ≤ 1

HD
μ,k
a+ 1

H
D

μ,k
a+ f (u)H

D
μ,k
a+ g(u)

and

H
D

μ,k
a+ fg(u)H

D
ν,k
a+ (1) + H

D
ν,k
a+ fg(u)H

D
μ,k
a+ (1)

≤ H
D

μ,k
a+ f (u)H

D
ν,k
a+ g(u) + H

D
μ,k
a+ g(u)H

D
ν
a+f (u).

To establish the next results, we need the following lemma.

Lemma 2.11 Let R(μ) and R(ν) be positive with m = [R(μ)] + 1 and 0 < a < b < ∞, then

(
I

m–μ,k
a+

(
log

x
a

) ν
k –1)

=
Γk(ν)

Γk(m – μ + ν)

(
log

x
a

) m–μ+ν
k –1

. (2.12)

Proof We have

(
I

m–μ,k
a+

(
log

x
a

) ν
k –1)

=
1

kΓk(m – μ)

∫ x

a

(
log

x
u

) m–μ
k –1(

log
u
a

) ν
k –1 du

u

=
1

kΓk(m – μ)

∫ x

a

(
log

x
a

) m–μ
k –1(

1 –
log u

a
log x

a

) m–μ
k –1(

log
u
a

) ν
k –1 du

u
.

Substituting log u
a = s log x

a , then using the definition of the k-beta function and its prop-
erty,we obtain inequality (2.12). �

Lemma 2.12 Let R(μ) and R(ν) be positive with m = [R(μ)] + 1 and 0 < a < b < ∞, then

(
H
D

μ,k
a+

(
log

x
a

) ν
k –1)

=
Γk(ν)Γk(μ – m – ν + k + mk)

kmBk(m – μ + ν,μ – m – ν + k)

(
log

x
a

) m–μ+ν
k –m–1

.
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Proof By applying Definition 2.1, we get

(
H
D

μ,k
a+

(
log

x
a

) ν
k –1)

= xm dm

dxm

(
I

m–μ,k
a+

(
log

x
a

) ν
k –1)

.

Now by using (2.12) and after a small calculation, we arrive at the required result. �

Remark 2.13 In particular, if ν = 1, k = 1 and m – 1 < μ < m, we get the classical Hadamard
fractional derivative of one which is also not equal to zero;

(H
D

μ

a+ 1
)
(x) =

(–1)mΓ (μ)
Γ (m – μ + 1)Γ (μ – m)

(
log

x
a

)–μ

.

Remark 2.14 Let R(m–μ–mk) > 0 and R(μ–m+k +mk) > 0. Then, for x > 1 and positive
real numbers k, μ and ν , we have

(H
D

μ,k
(1,x)(log x)

ν
k –1) =

(–1)mBk(m – μ – mk,ν)Γk(μ – m + k + mk)
kmBk(μ – m + k, m – μ)

× (
log(x)

) m–μ+ν
k –m–1. (2.13)

Proof

(H
D

μ,k
(1,x)(log x)

ν
k –1) =

(–1)mΓk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

×
∫ x

1

(
log

x
u

) m–μ
k –m–1

(log u)
ν
k –1 du

u

=
(–1)mΓk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

×
∫ x

1
(log x)

m–μ
k –m–1

(
1 –

log(u)
log(x)

) m–μ
k –m–1

(log u)
ν
k –1 du

u
.

Substituting log(u) = s log(x), we obtain

(H
D

μ,k
(1,x)(log x)

ν
k –1) =

(–1)mΓk(μ – m + k + mk)(log(x))
m–μ+ν

k –m–1

km+1Bk(μ – m + k, m – μ)

×
∫ 1

0
(1 – s)

m–μ
k –m–1(s)

ν
k –1 ds.

Now by using k-beta function and its property, we get (2.13). �

Remark 2.15 Let R(m–μ–mk) > 0 and R(μ–m+k +mk) > 0. Then, for u > 1 and positive
real numbers k and μ, we get

(H
D

μ,k
(1,x)

(
log(x)

))
=

(–1)mBk(μ – m + k + mk, m – μ – mk)(log(x))
m–μ

k –m+1

km–1Bk(μ – m + k, m – μ)Γk(m – μ – mk + 2k)
. (2.14)
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Proof By applying the definition of the extended Hadamard fractional derivative, we get

(H
D

μ,k
(1,x)

(
log(x)

))
=

(–1)mΓk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

×
∫ x

1

(
log

x
u

) m–μ
k –m–1

(log u)
du
u

=
(–1)mΓk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

×
∫ x

1
(log x)

m–μ
k –m–1

(
1 –

log(u)
log(x)

) m–μ
k –m–1

(log u)
2k
k –1 du

u
.

Substituting log(u) = s log(x), we have

(H
D

μ,k
(1,x)(log x)

ν
k –1)

=
(–1)mΓk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

(log x)
m–μ

k –m+1
∫ 1

0
(1 – s)

m–μ
k –m–1(s)

2k
k –1 ds.

Now by using the k-beta function, its property and after simple calculation, we obtain
(2.14). �

Remark 2.16 Let k and μ be positive real numbers. Then, for x > 1 and γ > –1, we get

(H
D

μ,k
(1,x)

(
log(x)

)γ )

= (–1)m Bk(μ – m + k + mk, m – μ – mk)Γk(γ + 1)k)(log(x))
m–μ

k +γ –m

kmBk(μ – m + k, m – μ)Γk(m – μ + (γ – m + 1)k)
.

Proof

(H
D

μ,k
(1,x)

(
log(x)

)γ )
(u) =

(–1)mΓk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

×
∫ x

1

(
log

x
u

) m–μ
k –m–1

(log u)γ
du
u

=
(–1)mΓk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

×
∫ x

1
(log x)

m–μ
k –m–1

(
1 –

log(u)
log(x)

) m–μ
k –m–1

(log u)
γ k
k +1–1 du

u
.

Substituting log(u) = s log(x), we have

(H
D

μ,k
(1,x)(log x)

ν
k –1)(u)

=
(–1)mΓk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

(log x)
m–μ

k +γ –m

×
∫ 1

0
(1 – s)

m–μ–mk
k –1(s)

γ k+k
k –1 ds.
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Now by using the k-beta function, its property and after simple calculation, we obtain
(2.14). �

Lemma 2.17 Let R(μ) > 0, R(μ – m + k) > 0 and R(μ – m + mk) > 0. Then the fractional
derivatives Dμ,k

a+ f and Dμ,k
b– f exist on (a, b] and [a, b), respectively, and are represented in

the forms

(H
D

μ,k
a+ f

)
(x)

=
(–1)m+1Γk(μ – m + mk)f (a)

kmBk(μ – m + k, m – μ)

(
log

x
a

) m–μ
k –m

+
(–1)m+1Γk(μ – m + mk)
kmBk(μ – m + k, m – μ)

∫ x

a

(
log

x
u

) m–μ
k –m

f ′(u) du (2.15)

and

(H
D

μ,k
b– f

)
(x)

=
(–1)mΓk(μ – m + mk)f (b)
kmBk(μ – m + k, m – μ)

(
log

b
x

) m–μ
k –m

–
(–1)m+1Γk(μ – m + mk)
kmBk(μ – m + k, m – μ)

∫ b

x

(
log

u
x

) m–μ
k –m

f ′(u) du, (2.16)

respectively.

Proof By using the definitions given by (2.1), (2.2) and then integrating by parts, we can
obtain (2.15) and (2.16). �

Lemma 2.18 If R(μ – m + k) > 0, R(μ) > 0 with m = [R(μ)] + 1, k > 0 and f ∈ C[a, b], then

(H
D

μ,k
a+ f

)
(a) = lim

u→a

(H
D

μ,k
a+ f

)
(u) = 0,

(H
D

μ,k
b– f

)
(b) = lim

u→b

(H
D

μ,k
b– f

)
(u) = 0.

Proof

(H
D

μ,k
a+ f

)
(x) =

(–1)mΓk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

∫ x

a

(
log

x
u

) m–μ
k –m–1 f (u)

u
du

=
(–1)m–1(m – μ – mk)Γk(μ – m + mk)

km+1Bk(μ – m + k, m – μ)

∫ x

a

(
log

x
u

) m–μ
k –m–1 f (u)

u
du.

Since f ∈ C[a, b], there is a constant C such that |f (u)| ≤ C. Therefore,

∣∣(Dμ,k
a+ f

)
(u)

∣∣ ≤ (m – μ – mk)Γk(μ – m + mk)
km+1Bk(μ – m + k, m – μ)

∫ u

a

(
log

u
x

) m–μ
k –m–1∣∣f (x)

∣∣dx
x

≤ C(m – μ – mk)Γk(μ – m + mk)
km+1Bk(μ – m + k, m – μ)

∫ u

a

(
log

u
x

) m–μ
k –m–1 dx

x
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≤ CΓk(μ – m + mk)
kmBk(μ – m + k, m – μ)

(
log

u
a

) m–μ
k –m

,

(H
D

μ,k
a f

)
(a) = lim

u→a

(H
D

μ,k
a+ f

)
(u) = 0.

In a similar manner, we prove the second part of the lemma. �

Theorem 2.19 If HD
μ,k
a+ f = HD

μ,k
a+ g , then f = g .

Proof Since

(H
D

μ,k
a f

)
(x) =

(–1)mΓk(μ – m + k + mk)
km+1Bk(μ – m + k, m – μ)

∫ x

a

(
log

x
u

) m–μ
k –m–1 f (u)

u
du

and HD
μ,k
a+ f = HD

μ,k
a+ g , due to linearity of the integral, we can write

∫ x

a

1
u

(
log

x
u

) m–μ
k –m–1(

f (u) – g(u)
)

du = 0,

f (u) – g(u) = 0,

which implies f (u) = g(u). �

3 Conclusion
The article includes a new approach to the fractional derivation which generalizes the clas-
sical Hadamard fractional derivative. The boundedness and existence of a newly defined
operator are also proved.
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