Samraiz et al. Journal of Inequalities and Applications (2019) 2019:263 ® Journal of Inequalities and Applications
https://doi.org/10.1186/513660-019-2218-0 a SpringerOpen Journal

RESEARCH Open Access

Check for
updates

On an extension of Hadamard fractional
derivative

Muhammad Samraiz', Erhan Set?, Muhammad Hasnain'* and Gauhar Rahman?

“Correspondence:
rhasnainshahzad@gmail.com Abstract

'Department of Mathematics, . . . L .
University of Sargodha, Sargodha In this paper, we introduce a new approach to the fractional derivation which

Pakistan generalizes the classical Hadamard fractional derivative. We prove some properties of

Full list of author information is this new approach and also establish some results by addressing some standard
available at the end of the article functions

MSC: 26D15;26D10; 26A33

Keywords: Fractional calculus; Hadamard fractional derivative

1 Introduction

The subject of evaluating integrals and derivatives of any arbitrary real or complex order
has gained considerable attention of mathematicians and scientists because of its exhib-
ited applications in science, engineering and other related fields. The scientists working in
the fields of inequalities and control theory found interesting outcomes when they apply
the fractional calculus in their fields [1, 9, 15, 16]. It was observed by several authors that
fractional derivatives and integrals are more suitable for describing real materials. Some
physical problems were also treated by using derivatives of non-integer orders. Nowadays,
some of the application areas of fractional calculus include fluid flow, dynamical processes
in self-similar, electrical networks, probability and statistics, control theory of dynamical
systems, viscoelasticity, electrochemistry of corrosion, chemical physics etc. The gener-
alization of fractional differential calculus operators were subjected to an intense debate
in the last few years. For current progress on fractional calculus, the reader may also see
[5, 13]. There are different familiar forms of the fractional derivatives which have been
studied broadly [3, 5, 10, 13, 14]. The first is the Riemann—Liouville fractional derivatives
of order € C, JR(u) > 0, defined by

CHET CIRGHE

1 aN" (*_ f® ) ‘
_m<%) g mdt, m-[iﬁ(u)]+1,x>a, (1.1)
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and
A", i
LN = (-5 ) wn)e

o1 d\" " _ S0 ) '
‘W(‘E) /ﬂmdt' m=[Rw]+Lx<b, (12

respectively, where

R
(15+f)(x)_1~ )/a ( dt

(1 x— )k

and

L0
() J, (E—x)t-+

(7 ) @) =

are the left and right sided Riemann-Liouville fractional integrals.
Diaz et al. in [4] introduced the k-gamma function as follows.

Definition 1.1 Let k > 0 and 93(u) > 0. The k-gamma function is given by the following
integral:

00 tk
() = / e exp(——) dt.
0 k

The fractional integrals introduced by Hadamard [8] are given in the next definition.

Definition 1.2 Let (a, b) be a finite or infinite interval of the half-axis R* and let R(u) > 0.
We consider the left and right sided Hadamard fractional integrals of order u € C, R(u) >
0, defined as

x -1
(35+g)(x)=%m/ (Ing>/ ‘Mdu, a<x<b,

u

u
and

N 1 b u\ " g(u)

(3-2)(x) = ™ /; <log ;) - du, a<x<b,
respectively.

Hadamard fractional derivatives are introduced by using Hadamard fractional integrals
as in the following.

Definition 1.3 ([8]) Letd =x® (D = %) be the delta derivative see [11, p. 2]. The left and
right sided Hadamard fractional derivatives of order u € C, m = [PR(1t)] + 1 with R(u) >0
on (a, b) are defined by

(DL f) () = ()" (T f) ()

_ (=1)"T(n +1) x<10 f)_”_lf(_u)du' a<x<b (1.3)
Blp-m+1,m—-p) J, S w o , .
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and

("9, f) @) = (=8 (3,71 f) ()

I Vil MRS VI R A ()
_B(M—m+1,m—p¢)fx (1°g;) —, 4w a<x<b (1.4)

respectively, where J;, and J},_ are the left and right sided Hadamard fractional integrals.

The k extension of Hadamard fractional integral introduced by Farid et al. is given in
the following.

Definition 1.4 ([6]) Letk, u and a be positive real numbers with # > a, then the Hadamard
k-fractional integral of order u is defined as

k i (x)—L/x o f)%lf@du (1.5)
@8 kG Jo (O u) e '

Now we give the definition of the Caputo—Hadamard fractional derivative presented in

[2].

Definition 1.5 The fractional derivative SHD;L of order 0 < u < 1 on (a, b) is defined as:

CH _ t d ‘ t " x(t) - x(a)
s Dfx(t)—ir(l_ﬂ) dt/a <10gr) — dr, (1.6)

which can be written as

SHDfx(t) = ﬁ /t<log §>_Hx’(t)dr. (1.7)

Diaz et al. introduced the following definition of the k-beta function and the Pochham-

mer k-symbol in [4].

Definition 1.6 Let 1« be acomplex number, k be a real number and m be a natural number.
Then the Pochhammer k-symbol is given as

(Wmk = (1 + B) (e +2K) -+ (1 + (m = 1k).

The formula which relates the k-gamma function and the Pochhammer k-symbol is given
as

Definition 1.7 The k-beta function Bx(u, v) is defined by the formula

1! . v
Bk(u,v):%/ tE N (1- )k tdr, R(w) > 0,%1) >0
0
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and the identity which relates it with the I'; function is

() I (v)
Bi(u,v) = m

The following definition of the incomplete gamma function is given in [7, p. 899].

Definition 1.8 The incomplete gamma function y (u, x) is defined by the formula

y(u,x) = /Ox exp(-t)t“tdt, PR(u)> 0.

In [12, p. 664], Fubini’s theorem is stated as follows.

Definition 1.9 Let (A, X1,0), (A, X5, ¢) be two measure spaces. Suppose that 6 and ¢
are complete and p : A X A — [-00,00] be (0 x ¢)-integrable. Then, for 6-a.e. t € A, the
function «(z, ) is ¢-integrable and the function |’ 4 u(,7)de(t) is O-integrable. Similarly,
for ¢-a.e. T € £2, the function «(-, 7) is O-integrable and the function fA alt,)do(t) is ¢-

integrable. Moreover,

/(/ a(t,t)dq)(r))d@(t):/(/ ot(t,t)d@(t)) de(t). (1.8)
a\Ja a\Ja

Tonelli’s theorem is given by the following [12, p. 664].

Definition 1.10 Let (A, X1,0), (A, X5, ¢) be two measure spaces and suppose that 6 and
¢ are complete and o -finite and let o : A x A — [0, 00] be (X; x X;)-measurable function.
Then, for #-a.e. t € A, the function «(z, -) measurable and the function fA al,1)de() is
measurable. Similarly, for ¢-a.e. T € A the function «(:, 7) is measurable and the function

/ A a(t,-)dO(t) is measurable. Moreover,

/([ a(t,r)dd)(r))d@(t):/(/ a(t,r)d@(t)) do(x). (1.9)
A A A A

2 Main results
In continuation of the extensions of different fractional integrals and derivatives, we are

going to define the following extension of the Hadamard fractional derivative.

Definition 2.1 Let (a, b) be a finite or infinite interval of half-axis R* and let R(a —m + k) >
0, R(m — ) >0, u € C with R(w) > 0. Then the left and right sided extended Hadamard

fractional derivatives of order p are defined by

(TD8EF) () = 8™ (T F) ()

(=1)" (g — m + k + nk) x<10 x>$’”1f(u)

= —d
k" By (w —m+k,m— 1) J, u "

u

(a<x<b) (2.1)
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and

(D5 () = (=8)" (5,30 f) ()

= ()" Tl = m + k + nk) /b log u %_WHM du
k™1Bi(u —m+k,m— ) J, u

X

(a<x<b), (2.2)

respectively, where m = [R(u)] + 1, k>0and § = xdix (delta derivative).

Remark 2.2 By setting k = 1 in (2.1), we get

("D5f) ()

)" (=—malem) [*( x\" """ fw)
) log ~ —du
1"1B(u—-m+1,m—u) J, u

u
(D)) ”(lo x)‘”]@d
TBu—mrLm—pm) Jo % ’

u

which is the left side classical Hadamard fractional derivative.
Similarly, on substituting k = 1 in (2.2) we can obtain the right sided classical Hadamard

fractional derivative.
The following result proves the boundedness of the operator (2.1).

Theorem 2.3 Let k > 0, m(w) >0 and "D"'f be the extended Hadamard
fractional derivative of order . € C such that R() > 0 with m = [R(u)] + 1 defined on
(a,b). Then the following result holds:

(D) ()] < C||f () 2.3)

q1

(m—p)
1+m— 13

1p
_ Ti(p—m+k+mk)x P (1-p)
where C = K1 By (- m—po)

complete gamma function given by Definition 1.8.

1
(T(”(m_“)_l;((’"p”’_l),log )7 and T (1, x) is the in-

Proof

m=p
Lp-m+k+mk) (% x\F "f@)

HDI ) ()| < log = du.
( ”f)(x)|_km+13k(u—m+k,m—ﬂ) L U8 u
By applying Holder’s inequality, we obtain

Ii(n — m + k + mk)

H gy 1ok
’( ©a+ )(x)| = km+lBk(//L_rn+k’m_M)

plm=-p)

x x kMR 117
><< | <log;> ;du) )l 0 2.4
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Substituting log 7 = z, using the incomplete gamma function and after simple calculation,

we get
1p n-n)
()| < s Kemkia 7 (0 p)
a* — km+1Bk(M_m+k,m—M)
1
plm—p) —k(mp +p—1) 2\ \ 7
X (T( . ,log - (i) ||Lq(ﬂ,x), 0

The next theorem proves that the derivative defined by (2.1) is well defined.

Theorem 2.4 Let f € Li[u/,V], k > 0 and R() > 0, then the derivative H@Z;k of order
w € Cwith m=[R(u)] + 1 exists for every x € (u/,Vv').

Proof Leto:=[u/,V] x [u/,v] and R: 0 — R,

CO" pmmekimk) 100 e\ -m-11
Ru(y) < | Bk (08 5) LW sysxs<v;
0 W <x<y<v,
V" D(p=mskemk) 4 0o 7yt -m=11 .
ﬁ—(xry) = kLB (u—n+k,m—p1) (10g x) y? U =x= Y =v;
0. u<y<x<v.
Since R, (x,y) is measurable on g, we have
4 m+1 mep
(1" (e — m + k + mk) x\ F
Rx,y)dy = T log x .
W Bi(u —m+k,m— ) u

By integrating repeatedly, we obtain

/ | (f st N dy) dx
fuv | If (%)| ( /u :/ R(x,9) dy) dx

/ m—u
(1" (e — m + k + mk) /“’ s R
= k"Br(u-m+km—p) Jy ()] ( Tog o x

(=1 (e = m + k + mk)(log &) “F" =
k™ By (ju — m + k,m — 1)

Hf(x) ||L1[u’,v’] <00,
Therefore, by applying Tonelli’s theorem the function $ : ¢ — R, where $(x,y) :=
R(x, y)f (x) is integrable over 0. Hence f;, R(x,y)f (x) dx in integrable on [«,V], as a func-

tion of y € [/, ] by using Fubini’s theorem, i.e., (*/ @Z;kf )(x) exists. O

Theorem 2.5 Let k > 0 and R(1), R(B) be positive with n = [R(w)] + 1, then

"0 (4 7e S @) = (D) ). (2.5)
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Proof By applying Definition 2.1, we have
MO (5T () = 07530 (5,70 f ).
Now by using Definition 1.4 and Fubini’s formula, we get

M (30 @)
_ 1
K2Ti(m - ) T(v)

AINCHE

1
K Ti(m — ) Tx(v)

X[ px x\ F log £\ "% T\ 'dr fu)
g M (‘°g;) (“ma) (‘°ga) 7]7 ”'

Substituting log - = slog 7, we get

HIL (T (%)
_ 1
K2 (m - ) Te(v)

x 1 mopey_y
X./a %[/{; (logg) ‘ (s)z_l(l—s)mkﬂ_lds]du.

By using the k-beta function, its property and Definition 1.4, we obtain

#3132 )

a+.

m-p+v g
Bi(v,m - * Tk
_ Blvm-—p) (L fe .
kI (m— ) Ii(v) J, u u
1 NN ()
= log — —d
krk(m—uw)/ﬂ("gu) u
= (57 @).
By using Definition 2.1, we get
D (S ) = DU o)
This completes the proof. d
The following theorem proves the linearity of our operator.

Theorem 2.6 Let a, b be scalars and all the assumptions of Theorem 2.5 be true. Then the
following result holds:

"D (af () + bg()) = a("DLX)f () + b(TDL ) g ().
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Proof By applying Definition 2.1, we obtain

d m x %—1 b
DL (af )+ be) = e s (nlq — <x%) / <log g) Wb

Now by using the linearity of integration, we have

d m x mok g
H@ka(af(x) + bg(x)) = m <x%) / <log 2) ' % du

m Lo |
b d * x\ kT gu)
—x— log — >— du,
+/(Fk(m—u) (xdx) _/,l <Ogu) u

which gives the required result. O

Lemma 2.7 The extended Hadamard fractional derivative operator of any constant C of
order w such that R(u) > 0 with m = [ R(n)] + 1, is

(1™ C = m + mik) (10 x> W (26)

k™ Bi(ie —m + k,m — 1) a

Heyok —~ _
( ga" )C_ a

i.e., the extended Hadamard fractional derivative of constant function does not vanish.

Proof

-D)"CLi(uw—m+k+mk) [* x\ F
Hgky e / log — = du.
( “ ) k"B (u—m+k,m—u) J, Ogu u “

By integrating the right hand side, we get (2.6). d

Lemma 2.8 Let R(u) > 0, %(%"’k) > 0, then extended Hadamard fractional derivative
of the function f(x) = x> + 2x of order ju with m = [R(u)] + 1, is given by
(* @Z;k) (x* +2x)

_ (-1)"2xIp(u —m + k + mk)T(%‘mk,log )
- k™ ABr(uw —m + k,m — 1)

[2"F % % + 1], 2.7)

Proof By applying the definition of left sided extended Hadamard fractional derivative, we
have

e |
-)"i(u—m+k +mk) [* x\ K
Hiy) (52 4 2) = ¢ log = 2) du.
( a )(x + x) K" B —m+kom—p) J, Ogu (u+2)du

Substituting log * = z and using the definition of incomplete gamma function, we obtain
Eq. (2.7). 0

Theorem 2.9 Let R(u) >0, R(v) > 0, with n = [R(u)] + 1 and m = [R()] + 1 such that n
and m are even. Let f and g be synchronous on [0,00). Then for all u > a > 0 the following
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inequalities hold for extended Hadamard fractional derivative:

"o e (u) HDL S ()" Dl () (2.8)

= k)
and

1L (u) D (1) + M0 g DL ()
> Mk f() D% g(w) + 1D/ gD, f (1) 2.9)

Proof For the synchronous functions f and g on [0, 00), we have
(F©O () (g®) —g(r)) =0 Vt,T>0.
Therefore
S@O)g®) +£(r)g(r) = f(t)g(T) +f(T)g(?). (2.10)

Multiplying both sides of (2.10) with %(l g )7_” ! 1 , then integrating the

resulting inequality with respect to ¢ over (a, i), we obtain

n—p
Ii(p —n + k + nk) /” u\ & "1
1 —f(t)g(t)dt
kK™*1B(u —n+k,n—pn) J, 8 f()g()

n-p

Ii(p —n + k + nk) u AN
log — — dt
B —n+kon—p) J, (Og t) A

n-p

T(p = n + k + nk) u u\ Flg (2.11)
log — Z
_kyHlBk(:u“_n‘Fk,Vl—l,L) g <Ogt) tf(t)g(f)dt

g
Ti(p — n + k + nk) /u u\ F 1
log = - t)dt,
k"1 By(p — n + kym — 1) 08 S (D)g(t)

HDekfa(u) + f(0)g(t)1DEK(1) > g(r)TDEKF () + f ()T DK g ().

By multiplying %(l gL ) Tl 1 with both sides of (2.11) and then integrat-

ing the obtained inequality with respect to T over (a, &), we obtain

HD 1 fa(u)

T —n + k + nk) u u\
log — —drt
k™1Bi(w—n+kn—p) J, T T

n—p
T —n + k + nk) u u\ *F "1
Hork log — = d
+ 0 )k"“Bk(,u, —-n+kn-p) /), %87 Tf(r)g(r) ‘

n—p

T —n + k + nk) u uw\ & "
> ek log ¥ Ze(n)d
S B —n k- ), <°gr> AR

+10 glu)

L
(i — n + k + nk) u u\ & 1
log — - dr,
kK" 1Bp(w—n+kn—p) J, o8 rf(f) ’

which proves the result (2.8).
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By multiplying - T (v—mm+k+mk)

Bk ) (log L) & e om-l 1 with both sides of (2.11) and then inte-
grating the obtained 1nequahty with respect to t over (a, u), we get

(v —m + k + mk) u N
H@ﬂ | _d
f( )kWI+lBk(v—m+k,m—p,) u T 'y

- k + mk) " AL
S Hguk(qy Tk —m+ 1 —) - d
( )k’””Bk(v m+k,m—pu) J, o8 rf(T)g(T) 4

> Hohf () 0 = K k) M(logﬁ)k

1
- d
k™ B (v —m + k,m — 1) tg(r) Y

m—

(v —m+ k + mk) u u mly
Hguk log — —f(z)dy.
+ e k"B (v-—m+k,m—p) J, %87 rf(T) )
Hence the result (2.9) is proved. |

Corollary 2.10 Let all the assumptions of Theorem 2.9 hold with m and n odd. Then the
following inequalities hold:

1
H:Du fg(u) < H@ﬁ;k H@/L f(lfl)HgaJr g(u)

and
DL Se @)D (1) + "0, fe ) DL (1)
<MW ("D g(u) + "DMFg () DY f(u).
To establish the next results, we need the following lemma

Lemma 2.11 Let R(u) and R(v) be positive with m = [R(u)] + 1 and 0 < a < b < 0o, then

%_1 1" m—];:w -1
(o)) ons) ™
a

o= z (2.12)

Proof We have

v
(3 ee3)")
1 xl x el ) u\ & dy
‘krk(m—u)/a<°gﬁ> <°g2) w
1 "1 x\ F L ) log 2 %_11 u\ Edu
“wmor ) (ez) T (o) ()

u
Substituting log £ = slog Z, then using the definition of the k-beta function and its prop-
erty,we obtain inequality (2.12). O

Lemma 2.12 Let R(u) and R(v) be positive with m = [R(u)] + 1 and 0 < a < b < 0o, then

EN )T —m— v + k + mk ool
<H©Zik<10gg> >: tW) k(e —m —v + k + mk) (1gx> '

kMmBr(m—p+ v, —m—v + k)
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Proof By applying Definition 2.1, we get

¥ am ¥
(o)) (o) )

Now by using (2.12) and after a small calculation, we arrive at the required result. O

Remark2.13 In particular,ifv =1,k =1and m—1 < p < m, we get the classical Hadamard

fractional derivative of one which is also not equal to zero;

’ Y X\
(e ) = G <l°g2) '

Remark2.14 Let R(m—p—mk) > 0and R(u—m +k +mk) > 0. Then, for x > 1 and positive

real numbers &, ;4 and v, we have

(=1)"Bi(m — u — mk,v) I .(u — m + k + mk)
kmBr(o —m + k,m — 1)

(Hi)ﬁl; (logx)%_l) =
x (log(x)) £ ", (2.13)
Proof

D" (u — m + k + mk)
kM B (w —m + k,m — 1)

m—p
x % -m-1 du
x/ <log f) (logu) 1=
1 u u

(=) (u = m + k + mk)
T kB —m+ kym— 1)

/x(logx)_‘m 1(1 - log(u)> L (log )__ld
1 log(x) u

Substituting log(x) = slog(x), we obtain

(D% (logx)E 1) =

(~1)" (e — m + k + mk)(log(x)) ™ &
k™ B (i —m + k,m— )

(Hgﬁl;)(logx)"l)
! m—p v
x/ (1-s) % ™ Ys)x s
0

Now by using k-beta function and its property, we get (2.13). d

Remark2.15 Let R(m—p—mk) > 0and R(u—m + k+mk) > 0. Then, for u > 1 and positive

real numbers k and p, we get

m R el
(ngk (=1)"Br( — m + k + mk,m — u — mk)(log(x)) & (2.14)

(1,%) ( g(x))) - Jom— lBk(M m+k,m— ) [(m — o — mk + 2k)

Page 11 0of 15
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Proof By applying the definition of the extended Hadamard fractional derivative, we get

()" = m + k + mk)
© kM Br(w —m+ k,m — 1)

( @ﬁ];) (log(x)))

m—p

x % —m-1
X / (log f) (log u)@
1 u u
B (-1)" I (e — m + k + mk)
kB (e —m+ k,m — )

m—p
x m, 1 5 —m-1 d

X f (logx)TM’”’_1 (1 - _og(u)) (log u)%_l—u.
1 log(x) u

Substituting log(x) = slog(x), we have

("D logx) £

_ (=D)"T(u — m + k + mk)
kB —m + k= 1)

m—p

_ 1
(logx) "7 —m+1 f (1— )" 71 (5) T 1 ds.
0

Now by using the k-beta function, its property and after simple calculation, we obtain
(2.14). 0

Remark 2.16 Let k and p be positive real numbers. Then, for x > 1 and y > -1, we get

(* ’Dﬁ’ﬁ) (log(x)) 4 )

Bi(uw—m +k +mk,m — . — mk) i (y + 1)k)(10g(x))%+y-m

:(_l)m kVﬂBk(M—m+k,m_M)Fk(m_M+(y_m+1)k)

Proof

B D" I(u — m + k + mk)
T kB - m o+ ko — 1)

m—p

x —x —m-1 d
X / <log f) (logu)” a
1 u u

(=) Ii(p = m + k + mk)
C kB —m+ kym— 1)

Ll |
x m—p 1 k d
xf (logx)T/_m’1 1- og(x) (logu)y7k+1_l—u.

1 log(x) u

(DL, (log(x))”) (w)

Substituting log(u) = slog(x), we have

(HCDG”];)(log x)%_l)(u)

~1)" (e - me
_( " (e m+k+mk)(10gx)Tu+y_m

T kB —m + k- )

1 m—pu—mk k+k
x/ (L—s) % Ys) % Lds.
0
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Now by using the k-beta function, its property and after simple calculation, we obtain
(2.14). |

Lemma 2.17 Let R(u) > 0, R(u — m + k) > 0 and R(u — m + mk) > 0. Then the fractional
derivatives Da;kf and DZka exist on (a,b] and [a,b), respectively, and are represented in

the forms

("DL )@

_ ()" (i = m+ mk)f (a) (1
T k"B —m+ kym— )

m—p
x\ £ 7"
og ~
a

-1 (e —m + mk) [* X\ E
]((MB)k m _qu‘;+ i M; (log —> f'(u) du (2.15)
and
(125f) )
_ VT = m R O) (| g) o
C kmBi(pw—m+ k,m— ) gx
()™ i —m+mk) (20 w\E
- log — du, 2.16
k"MBi(uw —m +k,m— 1) J, ng fluydu 216
respectively.

Proof By using the definitions given by (2.1), (2.2) and then integrating by parts, we can
obtain (2.15) and (2.16). O

Lemma 2.18 IfR(u—m+k) >0, R(un) >0withm=[R(w)] +1,k>0andf € Cla,b], then

("D4f) (@) = lim ("5 f) w) =0,

("Df)(®) = lim ("D}f) ) = 0.

Proof

u

(H@M,kf)(x) (=) Ii(p = m + k + mk) /x<log x) %_m_lf(u)

T kB (e —m + kym— ) u

u
) o gk k) (6T )
kM 1By (e — m + k, m — 1) . u u

Since f € Cla, b], there is a constant C such that |f(u)| < C. Therefore,

k (m—M—WIk)Fk(,LL—m+mk) u u %—m—l dx
’(DZf)(u)‘ = K" By (i — m + k, m— ) j (10 —) lf(x)’7

C(m—,u—mk)]"k(u—m+mk)/” o u\
k™M Br(u —m + k,m — 1) a gx

“m-1
"t dx

X
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Cli(uw — m + mk) log R
~ kmBi(u—m+ k,m — 1) ga ’

(D) (@) = lim (1) @) = 0.

In a similar manner, we prove the second part of the lemma. g
Theorem 2.19 IfHQZ;k = H@Z;kg, thenf =g.

Proof Since

(HQZ’kf)(x) (=) I(u = m + k + mk) x(log x) %—mqﬂ—u) "

Tk B(w-m+k,m—p) ), u u

and DMk f - H Dg;kg, due to linearity of the integral, we can write

M=

L) 5 du=0
fu ;<0g;> (f(w) - gw)) du =0,
S(u) —gu) =0,
which implies f () = g(u). O

3 Conclusion

The article includes a new approach to the fractional derivation which generalizes the clas-
sical Hadamard fractional derivative. The boundedness and existence of a newly defined
operator are also proved.
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