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Abstract
This paper consider the existence, uniqueness and exponential stability in the pth
moment of mild solution for impulsive neutral stochastic integro-differential
equations driven simultaneously by fractional Brownian motion and by standard
Brownian motion. Based on semigroup theory, the sufficient conditions to ensure the
existence and uniqueness of mild solutions are obtained in terms of fractional power
of operators and Banach fixed point theorem. Moreover, the pth moment exponential
stability conditions of the equation are obtained by means of an impulsive integral
inequality. Finally, an example is presented to illustrate the effectiveness of the
obtained results.
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1 Introduction
The differential equation is an important tool to describe the law of development and
change of things, and random disturbance is inevitable, thus many practical problems can
be modeled by stochastic differential equations. The existence, uniqueness and stability
of solutions of stochastic differential equations have been studied by many researchers
[1–10]. Besides, many dynamical systems include not only time delays but also derivatives
with delays. Neutral differential equations, firstly introduced by Hale and Meyer [11], are
used to describe this kind of systems. It worth pointing out that in many cases the time
delay or derivative with delay is the source of instability in dynamical systems. So, many
researchers have increased their interests in investigating the stability of neutral stochastic
functional differential equations (NSFDEs) with delays, for instance, Chen [12] discussed
the exponential stability in pth moment and almost surely exponential stability of mild
solutions for NSFDEs. Boufoussi and Hajji [13] considered the existence and asymptotic
behavior of mild solutions for NSFDEs in Hilbert space. Very recently, Zhang and Ruan
[14] studied the existence, uniqueness and exponential stability in the pth moment of mild
solution for NSFDEs driven by mixed fractional Brownian motion. However, the impulsive
effects were not considered in [12, 13] and [14].
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Impulsive phenomena have gained a lot of attention in the last decades due to their
wide applications, Lakshmikantham [15] and Samoilenko [16] elaborated on the theory
and application of impulsive differential equations in their monographs. In addition, the
approximate controllability [17, 18], global attractiveness and quasi-invariant sets [19],
existence and stability [20–25] of the impulsive stochastic differential equation were in-
vestigated. Furthermore, the concept “aftereffect” introduced in scientific and engineering
disciplines is very important, it is well known that the integro-differential equation is an
effective tool to model a system with aftereffect. Recently, Ma et al. [23] discussed the ex-
istence, uniqueness and mean-square exponential stability of a mild solution of impulsive
neutral stochastic integro-differential equation. Ren et al. [26] proved the existence and
uniqueness of mild solutions for impulsive neutral stochastic integro-differential equation
under the assumptions of non-Lipschitz conditions.

As a Gaussian stochastic process, fractional Brownian motion heavily relies on the Hurst
index H ∈ (0, 1) introduced by Kolmogorov [27], it is an effective tool in modelling many
stochastic systems since its stationary increments and long-range dependence properties.
Such as financial market time series displays long-range dependence and momentum.
Long-range dependence has an important feature, which explains the well-documented
evidence of volatility persistence, especially when the Hurst index H ∈ (1/2, 1), which is
most frequently encountered in real financial data. Peters [28] pointed out the exchange
rate of the dollar against the Japanese yen from January 1972 to December 1990 followed
the fBm with Hurst index H = 0.642. One can study the option pricing problem when the
option contract is driven by a geometric fBm. A fractional Brownian motion reduces to a
standard Brownian motion when H = 1/2. Due to the good nature and wide application
of fBm, the differential equations driven by fBm have been studied by many scholars and
have been reported in the literature [4, 5, 7, 9, 13, 14, 17–26]. Mixed fBm is a stochastic
process that contains both standard Brownian motion and fractional Brownian motion,
which has gained a lot of attention since Cheridito [29] had studied the statistical prop-
erties of it. It is an effective tool in different applications. For instance, we can use mixed
fBm-driven stochastic differential equations to model systems that contain not only white
random noise but also long memory random noise. In the field of finance, one can distin-
guish between microstructure and randomness coming from the economical situation. In
recent years, there were many researchers who discussed the stochastic differential equa-
tions driven by mixed fBm; see [14, 30–33] and the references therein.

In recent years the NSFDEs with impulsive effects have received much attention since
they have wide applications, but the corresponding theory has not been fully explored. To
the best of our knowledge, there is no paper considering the exponential stability of impul-
sive neutral stochastic integro-differential equation driven by mixed fractional Brownian
motion. Thus we consider the following impulsive neutral stochastic integro-differential
equation driven by mixed fractional Brownian motion:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[x(t) – p(t, xt)]

= [Ax(t) + f (t, xt) +
∫ t

0 h(t, s, xs) ds] dt + g(t, xt) dW (t)

+ σ (t) dBH(t), t ∈ [0, +∞), t �= tk ,

�x(tk) = Ik
(
x
(
t–
k
))

, t = tk , k = 1, 2, . . . ,

x(t) = φ(t) ∈PC
(
[–r, 0]; X

)
, t ∈ [–r, 0],

(1)
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where A is the infinitesimal generator of an analytic semigroup (T(t))t≥0 of bounded linear
operators in a Hilbert space X, W (t) and {BH(t), H ∈ ( 1

2 , 1)} are for standard Brownian mo-
tion (also called Wiener process) and fractional Brownian motion, respectively, in this pa-
per, they are mutually independent. The impulsive moments tk satisfy 0 < t1 < t2 < · · · < tk <
· · · , and limk→+∞ tk = ∞. Ik : X → X, �x(tk) = x(t+

k ) – x(t–
k ) represents the jump size in the

state x at tk , where x(t+
k ) and x(t–

k ) are the right and left limits of x(t) at tk , respectively. The
initial state φ ∈ PC([–r, 0]; X) (the space of all functions that are continuous everywhere
except for a finite number of points from [–r, 0] to X) and ‖φ‖PC = sups∈[–r,0] ‖φ(s)‖ < +∞.
For every continuous function x(t), t ∈ [0, +∞), we denote by xt the element of PC defined
by xt(θ ) = x(t + θ ), –r ≤ θ ≤ 0. The functions p : [0, +∞)×PC → X, f : [0, +∞)×PC → X,
g : [0, +∞) × PC → X, h : [0, +∞) × [0, +∞) × PC → X, and σ : [0, +∞) → L0

B(Y , X) are
all Borel measurable, we will specify this later. Our purpose of this paper is to consider the
existence, uniqueness and exponential stability in pth moment of mild solution of system
(1).

The rest of this paper is organized as follows. In Sect. 2, we recall some basic concepts
and lemmas needed in this paper. In Sect. 3, we get the sufficient conditions that ensure
the existence and uniqueness of mild solution of system (1). In Sect. 4, we discuss the
exponential stability in pth moment by an impulsive integral inequality. In Sect. 5, we give
an example to illustrate the effectiveness of the obtained results. In Sect. 6, we present our
conclusion.

2 Preliminaries
In this section, we introduce some notations and recall the basic concepts and lemmas
as regards the Wiener process, fractional Brownian motion and the Wiener integral with
respect to fractional Brownian motion. Furthermore, we state some basic properties of
analytic semigroups and fractional powers of their infinitesimal generators.

Let (Ω ,F ,P) be a complete probability space satisfying the normal assumptions, the
mathematical expectation operator is denoted by E(·). Denote W = {W (t), t ∈ [0, +∞)}, B =
{BH (t), t ∈ [0, +∞)} by the standard Brownian motion and fractional Brownian motion
with Hurst parameter H ∈ (1/2, 1), respectively. Let X, Ki (i = W , B) denote separable
Hilbert spaces, and let L(Ki, X) be two spaces of all bounded linear operators from Ki

to X. We assume that {e(i)
n }n∈N+ are complete orthonormal bases in Ki. Let Q(i) ∈ L(Ki, Ki)

be two non-negative self-adjoint operators defined by Q(i)e(i)
n = λ

(i)
n e(i)

n with finite trace
tr Q(i) =

∑∞
n=1 λ

(i)
n < ∞, where {λ(i)

n }n∈N+ are non-negative real numbers. Let L0
i (Ki, X) be

the spaces of all ξ (i) ∈ L(Ki, X) such that ξ (i)
√

Q(i) is a Hilbert–Schmidt operator with norm

∣
∣ξ (i)∣∣2

L0
i (Ki ,X) =

∣
∣ξ (i)

√
Q(i)

∣
∣2
HS = tr

(
ξ (i)Q(i)ξ (i)∗) =

∞∑

n=1

∥
∥
√

λ
(i)
n ξ (i)ei

n
∥
∥2

X < ∞,

such ξ (i) is called a Q(i)-Hilbert–Schmidt operator, and the spaces L0
i (Ki, X) equipped with

the inner product 〈φ,ψ〉L0
i

=
∑∞

n=1〈φe(i)
n ,ψe(i)

n 〉 are separable Hilbert spaces. Then there
exist the real, independent standard Brownian motions sequences {wt

n}n∈N+ such that

W (t) =
∞∑

n=1

√

λW
n eW

n wn(t), t ≥ 0.
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The infinite dimensional cylindrical KB-valued BH (t) is defined by

BH (t) =
∞∑

n=1

√

λB
neB

nβH
n (t), t ≥ 0,

where {βH
n (t)}n∈N+ are real, independent fractional Brownian motions, we know BH (t) is

a centered Gaussian process with covariance function

RH (s, t) =
1
2
(
t2H + s2H – |t – s|2H)

.

Furthermore, BH (t) has the following Wiener integral:

BH (t) =
∫ t

0
KH (t, s) dB(s),

where {B(t), t ∈ [0, +∞)} is a standard Brownian motion, and KH (t, s) is the kernel,

KH (t, s) =

⎧
⎨

⎩

cHs1/2–H ∫ t
s (u – s)H–3/2uH–1/2 du, t > s,

0, t ≤ s,

where cH =
√

H(2H–1)
B(2–2H,H– 1

2 )
, B(·, ·) denotes the beta function.

The next lemmas are of prime importance to prove the existence and uniqueness of
the mild solution of system (1). Lemma 2.1 and Lemma 2.3 give us a connection between
stochastic integral and Riemann integral, and Lemma 2.2 is a bridge of pth moment and
mean-square moment of centered Gaussian random variable.

Lemma 2.1 ([34]) For any p > 0 and L0
W -valued process ϕ(·), there exists

sup
s∈[0,t]

E
∥
∥
∥
∥

∫ s

0
ϕ(u) dW (u)

∥
∥
∥
∥

2p

X
≤ (

p(2p – 1)
)p

(∫ t

0

(
E
∥
∥ϕ(s)

∥
∥2p

L0
W

)1/p ds
)p

.

Lemma 2.2 ([35]) For arbitrary T > 0,
∫ T

0 ψ(s) dBH(s) is a centered Gaussian random vari-
able, for every p > 0, there exists a constant k(p) such that

E
∥
∥
∥
∥

∫ T

0
ψ(s) dBH (s)

∥
∥
∥
∥

p

≤ k(p)
(

E
∥
∥
∥
∥

∫ T

0
ψ(s) dBH (s)

∥
∥
∥
∥

2) p
2

.

Lemma 2.3 ([36]) For any ψ : [0, +∞) → L0
B(Y , X) such that

∑∞
n=1 ‖ψQ 1

2 en‖L1/H ([0,+∞);X) <
∞ holds and for any a, b ≥ 0,

E
∥
∥
∥
∥

∫ b

a
ψ(s) dBH(s)

∥
∥
∥
∥

2

X
≤ cHH(2H – 1)(b – a)2H–1

∞∑

n=1

∫ b

a

∥
∥ψ(s)Q

1
2 en

∥
∥2

X ds,

moreover, if
∑∞

n=1 ‖ψ(t)Q 1
2 en‖X is uniformly convergent for t ∈ [0, +∞), then

E
∥
∥
∥
∥

∫ b

a
ψ(s) dBH(s)

∥
∥
∥
∥

2

X
≤ cHH(2H – 1)(b – a)2H–1

∫ b

a

∥
∥ψ(s)

∥
∥2

L0
B

ds.
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We end this section by the introduction of some basic concepts about analytic semi-
groups and fractional powers of operators, for a comprehensive understanding of analytic
semigroup theory we refer to [37]. If the dynamical system’s present state is given by a
point x in a Banach space X and the future state at time t is T(t)x, then the operators
{T(t), t ≥ 0} in X defines a semigroup of linear operators, the term semigroup arises from
the property T(t + s)x = T(t)T(s)x, which means that the state at time t + s starting at x
agrees with the state at time t starting at T(s)x (note that T(0) = I). Let A : D(A) → X be
the infinitesimal generator of an analytic semigroup of bounded linear operators (T(t))t≥0

on X. We assume that (T(t))t≥0 is a uniformly bounded and analytic semigroup such that
0 ∈ ρ(A), where ρ(A) is the resolvent set of A. Now we can define the fractional power
(–A)α for 0 < α ≤ 1 as a closed linear operator on its domain D(–A)α , which is dense in X
and the equality ‖ρ‖α = ‖(–A)αρ‖ defines a norm in D(–A)α . Also Xα represents the space
D(–A)α endowed with the norm ‖ · ‖α .

Lemma 2.4 ([37]) Suppose that the above conditions are satisfied.
(1) If 0 < α ≤ 1, then Xα is a Banach space.
(2) If 0 < β ≤ α, then the injection Xα ↪→ Xβ is continuous.
(3) There exist Mα > 0, λ > 0 such that

∥
∥(–A)αT(t)

∥
∥ ≤ Mα

tα
e–λt , t > 0,

for every 0 < α ≤ 1.

Definition 2.1 ([37]) A semigroup T(t), t ≥ 0 of bounded linear operators on X is strongly
continuous if

lim
t→0

(
T(t) – I

)
x = 0,

for every x ∈ X.

3 Existence and uniqueness of mild solution
In this section, we obtain some new sufficient conditions to ensure the existence and
uniqueness of mild solutions of system (1) by means of the Banach fixed point theorem,
before proceeding, let us give the definition of a mild solution.

Definition 3.1 A X-valued stochastic process x(t), t ∈ [–r, a] is called a mild solution of
the Cauchy problem (1) if

(i) x(t) = φ(t), for t ∈ [–r, 0].
(ii) x(·) ∈PC([–r, a], Lp(Ω , X)) (the space of all functions that continuous everywhere

except a finite number of points from [–r, a] to Lp(Ω , X), provided with the
supremum norm ‖ξ‖p = sups∈[–r,a](E‖ξ (s)‖p), 1 < p < +∞.

(iii) For t ∈ [0, +∞), x(t) satisfies the following integral equation:

x(t) = T(t)
[
φ(0) – p(0,φ)

]
+ p(t, xt) +

∫ t

0
AT(t – s)p(s, xs) ds

+
∫ t

0
T(t – s)f (s, xs) ds



Zhou et al. Journal of Inequalities and Applications        (2019) 2019:262 Page 6 of 19

+
∫ t

0
T(t – s)

(∫ s

0
h(s,η, xη) dη

)

ds +
∫ t

0
T(t – s)g(s, xs) dW (s)

+
∫ t

0
T(t – s)σ (s) dBH(s) +

∑

0<tk<t

T(t – tk)Ik
(
x
(
t–
k
))

P-a.s. (2)

To ensure the existence and the uniqueness of the above mild solution, we assume that
the following hypotheses hold.

(H1) A is the infinitesimal generator of an analytic semigroup (T(t))t≥0 of bounded lin-
ear operators on X and satisfies 0 ∈ σ (A), together with Lemma 2.4, there exist constants
M, M1–α such that

∥
∥T(t)

∥
∥ ≤ M,

∥
∥(–A)1–αT(t)

∥
∥ ≤ M1–α

t1–α
.

(H2) For φ,ψ ∈ PC and t ∈ [0, a], there exist constants 1
2 < α < 1 and L1 > 0 such that

the mapping p : [0, +∞) ×PC → X satisfies the condition

∥
∥(–A)αp(t,φ) – (–A)αp(t,ψ)

∥
∥ ≤ L1‖φ – ψ‖,

also, (–A)αp is a continuous function in pth moment sense

lim
t→s

E
∥
∥(–A)αp(t, xt) – (–A)αp(s, xs)

∥
∥p = 0.

(H3) For any φ,ψ ∈ PC and t ∈ [0, a], the mappings f , h, g, Ik satisfy the following Lips-
chitz conditions, namely, there exist some constants L2, L3, L4, qk(

∑∞
k=1 qk < ∞) such that

∥
∥f (t,φ) – f (t,ψ)

∥
∥ ≤ L2‖φ – ψ‖,

∥
∥
∥
∥

∫ t

0
h(t, s,φ) – h(t, s,ψ) ds

∥
∥
∥
∥ ≤ L3‖φ – ψ‖,

∥
∥g(t,φ) – g(t,ψ)

∥
∥

L0
W

≤ L4‖φ – ψ‖,
∥
∥Ik(φ) – Ik(ψ)

∥
∥ ≤ qk‖φ – ψ‖, k = 1, 2, . . . ,

for simplicity, we may take f (t, 0) = h(t, s, 0) = g(t, 0) = Ik(0) = 0.
By employing the above hypotheses, we can establish the existence and uniqueness re-

sults for system (1).

Theorem 3.1 If Hypotheses (H1), (H2), (H3) hold and

k +
(

5
1 – k

)p–1

Mp

( ∞∑

k=1

qk

)p

< 1, (3)

where k = ‖(–A)–α‖L1, 1 < p < ∞, then system (1) has a unique mild solution.

Proof Fix a > 0, we first introduce the set Λa = {PC([–r, a], Lp(Ω , X))}, 1 < p < +∞, then
define an operator π as follows:

(πx)(t) = T(t)
[
φ(0) – p(0,φ)

]
+ p(t, xt) +

∫ t

0
AT(t – s)p(s, xs) ds
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+
∫ t

0
T(t – s)f (s, xs) ds

+
∫ t

0
T(t – s)

(∫ s

0
h(s,η, xη) dη

)

ds +
∫ t

0
T(t – s)g(s, xs) dW (s)

+
∫ t

0
T(t – s)σ (s) dBH(s) +

∑

0<tk <t

T(t – tk)Ik
(
x
(
t–
k
))

, t ∈ [0, a],

and (πx)(t) = φ(t), t ∈ [–r, 0]. Now our problem changes into a Banach fixed point prob-
lem, we will show the operator π has a fixed point on interval [–r, a]. We divide our proof
into two steps.

Step 1: It is obvious that the operator π is continuous on [–r, 0], now we will show it is
continuous in pth moment on [0, a]. Let x ∈ Λa, 0 < t < a, and let r > 0 be sufficiently small,
then using the Cp inequality: E‖∑n

i=1 xi(t)‖p ≤ np–1 ∑n
i=1 E‖xi(t)‖p, where p > 1 and n > 1.

we have

E
∥
∥(πx)(t + r) – (πx)(t)

∥
∥p

≤ 8p–1
{

E
∥
∥
(
T(t + r) – T(t)

)(
φ(0) – p(0,φ)

)∥
∥p + E

∥
∥p(t + r, xt+r) – p(t, xt)

∥
∥p

+ E
∥
∥
∥
∥

∫ t

0

(
T(r) – I

)
AT(t – s)p(s, xs) ds +

∫ t+r

t
AT(t + r – s)p(s, xs) ds

∥
∥
∥
∥

p

+ E
∥
∥
∥
∥

∫ t

0

(
T(r) – I

)
T(t – s)f (s, xs) ds +

∫ t+r

t
T(t + r – s)f (s, xs) ds

∥
∥
∥
∥

p

+ E
∥
∥
∥
∥

∫ t

0

(
T(r) – I

)
T(t – s)

(∫ s

0
h(s,η, xη) dη

)

ds

+
∫ t+r

t
T(t + r – s)

(∫ s

0
h(s,η, xη) dη

)

ds
∥
∥
∥
∥

p

+ E
∥
∥
∥
∥

∫ t

0

(
T(r) – I

)
T(t – s)g(s, xs) dW (s) +

∫ t+r

t
T(t + r – s)g(s, xs) dW (s)

∥
∥
∥
∥

p

+ E
∥
∥
∥
∥

∫ t

0

(
T(r) – I

)
T(t – s)σ (s) dBH(s) +

∫ t+r

t
T(t + r – s)σ (s) dBH(s)

∥
∥
∥
∥

p

+ E
∥
∥
∥
∥

∑

0<tk <t

(
T(r) – I

)
T(t – tk)Ik

(
x
(
t–
k
))

+
∑

0<tk<t

T(t + r – tk)Ik
(
x
(
t–
k
))

∥
∥
∥
∥

p}

:= 8p–1
8∑

i=1

E
∥
∥Gi(t + r) – Gi(t)

∥
∥p.

By virtue of the semigroup property and strong continuity of T(t), we have

lim
r→0

(
T(t + r) – T(t)

)(
φ(0) – p(0,φ)

)
= lim

r→0

(
T(r) – I

)
T(t)

(
φ(0) – p(0,φ)

)
= 0,

by using Hypothesis (H1), we arrive at

∥
∥
(
T(r) – I

)
T(t)

(
φ(0) – p(0,φ)

)∥
∥ ≤ 2M2∥∥

(
φ(0) – p(0,φ)

)∥
∥,
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hence in terms of Lebesgue dominated convergence theory, we obtain

E
∥
∥G1(t + r) – G1(t)

∥
∥p −→ 0, as r −→ 0.

Since the operator (–A)–α is bounded and by Hypothesis (H2) we get

E
∥
∥G2(t + r) – G2(t)

∥
∥p −→ 0, as r −→ 0.

As for the third term, by using the Cp inequality, we have

E
∥
∥G3(t + r) – G3(t)

∥
∥p

≤ 2p–1E
∥
∥
∥
∥

∫ t

0

(
T(r) – I

)
(–A)1–αT(t – s)(–A)αp(s, xs) ds

∥
∥
∥
∥

p

+ 2p–1E
∥
∥
∥
∥

∫ t+r

t
(–A)1–αT(t + r – s)(–A)αp(s, xs) ds

∥
∥
∥
∥

p

.

It follows from Hypotheses (H1) and (H2) that

∥
∥
(
T(r) – I

)
(–A)1–αT(t – s)(–A)αp(s, xs)

∥
∥ ≤ 2MM1–αL1

(t – s)1–α
‖xs‖,

∥
∥(–A)1–αT(t + r – s)(–A)αp(s, xs)

∥
∥ ≤ M1–αL1

(t + r – s)1–α
‖xs‖.

Thus, by Lebesgue dominated convergence theorem, we obtain

E
∥
∥G3(t + r) – G3(t)

∥
∥p −→ 0, as r −→ 0.

By Hypotheses (H1) and (H3), and using the same argument as in the proof of the third
term, we can easily calculate that

E
∥
∥G4(t + r) – G4(t)

∥
∥p −→ 0, as r −→ 0.

and

E
∥
∥G5(t + r) – G5(t)

∥
∥p −→ 0, as r −→ 0.

Further, by using Lemma 2.1 and the Cp inequality we have

E
∥
∥G6(t + r) – G6(t)

∥
∥p

≤ 2p–1C(p)
(∫ t

0

(
E
∥
∥
(
T(r) – I

)
T(t – s)g(t, xs)

∥
∥p

L0
W

) 2
p ds

) p
2

+ 2p–1C(p)
(∫ t+r

t

(
E
∥
∥T(t + r – s)g(t, xs)

∥
∥p

L0
W

) 2
p ds

) p
2

,

where C(p) = (p(p – 1)/2)p/2.
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By Hypotheses (H1) and (H3), the right hand side of the above inequality becomes

∥
∥
(
T(r) – I

)
T(t – s)g(t, xs)

∥
∥

L0
W

≤ 2M2L4‖xs‖

and

∥
∥T(t + r – s)g(s, xs)

∥
∥

L0
W

≤ ML4‖xs‖.

Applying Lebesgue dominated convergence theorem, we conclude that

E
∥
∥G6(t + r) – G6(t)

∥
∥p −→ 0, as r −→ 0.

Now we consider the seventh term, by using the Cp inequality, we have

E
∥
∥G7(t + r) – G7(t)

∥
∥p ≤ 2p–1E

∥
∥
∥
∥

∫ t

0

(
T(r) – I

)
T(t – s)σ (s) dBH(s)

∥
∥
∥
∥

p

+ 2p–1E
∥
∥
∥
∥

∫ t+r

t
T(t + r – s)σ (s) dBH(s)

∥
∥
∥
∥

p

:= K1 + K2.

By virtue of Lemma 2.2 and Lemma 2.3, respectively, together with Hypothesis (H1) we
arrive at

K1 ≤ 2p–1k(p)E
(∥

∥
∥
∥

∫ t

0

(
T(r) – I

)
T(t – s)σ (s) dBH(s)

∥
∥
∥
∥

2) p
2

≤ 2p–1Mpk(p)
(
cH H(2H – 1)t2H–1)

p
2

(∫ t

0

∥
∥
(
T(r) – I

)
σ (s)

∥
∥2

L0
B

ds
) p

2 → 0 as r → 0,

this is because T(r)σ (s) → σ (s) as r → 0 and ‖T(r)σ (s)‖L0
B

≤ M‖σ (s)‖L0
B

for any s > 0.
Similarly, we have

K2 ≤ 2p–1Mpk(p)
(
cH H(2H – 1)r2H–1)

p
2

(∫ t+r

t

∥
∥σ (s)

∥
∥2

L0
B

ds
) p

2 −→ 0, as r −→ 0.

Hence

E
∥
∥G7(t + r) – G7(t)

∥
∥p −→ 0, as r −→ 0.

As for the last term, by the Cp inequality, we have

E
∥
∥G8(t + r) – G8(t)

∥
∥p ≤ 2p–1E

∥
∥
∥
∥

∑

0<tk <t

(
T(r) – I

)
T(t – tk)Ik

(
x
(
t–
k
))

∥
∥
∥
∥

p

+ 2p–1E
∥
∥
∥
∥

∑

t<tk <t+r
T(t + r – tk)Ik

(
x
(
t–
k
))

∥
∥
∥
∥

p

.
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By Hypothesis (H3) we get

∥
∥
(
T(r) – I

)
T(t – tk)Ik

(
x
(
t–
k
))∥

∥ ≤ ∥
∥2M2qk‖x

(
t–
k
)∥
∥,

∥
∥T(t + r – tk)Ik

(
x
(
t–
k
))∥

∥ ≤ Mqk
∥
∥x

(
t–
k
)∥
∥.

Thus from the Lebesgue dominated convergence theorem, we have

E
∥
∥G8(t + r) – G8(t)

∥
∥p −→ 0, as r −→ 0.

The combination of all the estimations of E‖Gi(t + r) – Gi(t)‖p, i = 1, 2, . . . , 8, yields

lim
r→0

E
∥
∥(πx)(t + r) – (πx)(t)

∥
∥p = 0. (4)

Hence, we conclude that the mapping π is continuous in pth moment on [–r, a].
Step 2: We show the mapping π is a contraction.
By using the Cp inequality and the elementary inequality |u + v|p ≤ |u|p

kp–1 + |v|p
(1–k)p–1 for

u, v ∈ X and k ∈ (0, 1), we get

E
∥
∥(πx)(t) – (πy)(t)

∥
∥p

≤ k1–pE
∥
∥p(t, xt) – p(t, yt)

∥
∥p

+
(

5
1 – k

)p–1

E
{∥
∥
∥
∥

∫ t

0
AT(t – s)

(
p(s, xs) – p(s, ys)

)
ds

∥
∥
∥
∥

p

+
∥
∥
∥
∥

∫ t

0
T(t – s)

(
f (s, xs) – f (s, ys)

)
ds

∥
∥
∥
∥

p

+
∥
∥
∥
∥

∫ t

0
T(t – s)

[∫ s

0

(
h(s,η, xη) – h(s,η, yη)

)
dη

]

ds
∥
∥
∥
∥

p

+
∥
∥
∥
∥

∫ t

0
T(t – s)

(
g(s, xs) – g(s, ys)

)
dw(s)

∥
∥
∥
∥

p

+
∥
∥
∥
∥

∑

0<tk<t

T(t – tk)
[
Ik

(
x
(
t–
k
))

– Ik
(
y
(
t–
k
))]

∥
∥
∥
∥

p}

:= k1–pF1 +
(

5
1 – k

)p–1 6∑

i=2

Fi. (5)

From Hypothesis (H2), we obtain

F1 ≤ ∥
∥(–A)–α

∥
∥pLp

1E‖xt – yt‖p ≤ kp sup
s∈[–r,t]

E
∥
∥x(s) – y(s)

∥
∥p. (6)

By Hypotheses (H1) and (H2) and the Hölder inequality, we get

F2 = E
∥
∥
∥
∥

∫ t

0
(–A)1–αT(t – s)(–A)α

(
p(s, xs) – p(y, ys)

)
ds

∥
∥
∥
∥

p

≤
[∫ t

0
Mq

1–α(t – s)qα–q ds
]p–1

E
∫ t

0
Lp

1‖xs – ys‖p ds
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≤ Mp
1–αLp

1tpα

(1 + qα – q)p–1 sup
s∈[–r,t]

E
∥
∥x(s) – y(s)

∥
∥p, (7)

where 1 < p < ∞, 1
p + 1

q = 1.
Using Hypotheses (H1) and (H3), we have

F3 ≤
(∫ t

0
ML2‖xs – ys‖ds

)p

≤ MpLp
2tp sup

s∈[–r,t]

∥
∥x(s) – y(s)

∥
∥p. (8)

Similarly, by Hypotheses (H1), (H3) we have

F4 ≤ MpLp
3tp sup

s∈[–r,t]

∥
∥x(s) – y(s)

∥
∥p. (9)

As for the fifth term, by Lemma 2.1 and Hypothesis (H3) we can arrive at

F5 ≤ C(p)
{∫ t

0

[
E
∥
∥T(t – s)

(
g(s, xs) – g(s, ys)

)∥
∥p

L0
w

] 2
p ds

} p
2

≤ C(p)E
{∫ t

0

[
MpLp

4E‖xs – ys‖p] 2
p ds

} p
2

≤ C(p)MpLp
4t

p
2 sup

s∈[–r,t]

∥
∥x(s) – y(s)

∥
∥p, (10)

where C(p) = (p(p – 1)/2)p/2.
From Hypothesis (H1), (H3) and the Hölder inequality, we get

F6 = E

{ ∞∑

k=1

∥
∥T(t – tk)

[
Ik

(
x
(
t–
k
))

– Ik
(
y
(
t–
k
))]∥

∥

}p

≤ MpE

{ ∞∑

k=1

qk
∥
∥x

(
t–
k
)

– y
(
t–
k
)∥
∥

}p

= MpE

{ ∞∑

k=1

q
1
q
k q

1
p
k
∥
∥x

(
t–
k
)

– y
(
t–
k
)∥
∥

}p

≤ MpE

{( ∞∑

k=1

qk

)p–1 ∞∑

k=1

qk
∥
∥x

(
t–
k
)

– y
(
t–
k
)∥
∥p

}

= Mp

( ∞∑

k=1

qk

)p

E
∥
∥x

(
t–
k
)

– y
(
t–
k
)∥
∥p

≤ Mp

( ∞∑

k=1

qk

)p

sup
s∈[–r,t]

E
∥
∥x(s) – y(s)

∥
∥p. (11)

Substituting (6)–(11) into (5) yields

sup
s∈[–r,t]

E
∥
∥(πx)(s) – (πy)(s)

∥
∥p ≤ ρ(t) sup

s∈[–r,t]
E
∥
∥x(s) – y(s)

∥
∥p,
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where

ρ(t) = k +
(

5
1 – k

)p–1
[

Mp
1–αLp

1tpα

(1 + qα – q)p–1 + Mp(Lp
2 + Lp

3
)
tp

+ C(p)MpLp
4t

p
2 + Mp

( ∞∑

k=1

qk

)p]

.

Thus, it follows from inequality(3) that

ρ(0) = k +
(

5
1 – k

)p–1

Mp

( ∞∑

k=1

qk

)p

< 1.

Then there exists 0 < a1 ≤ a such that 0 < ρ(a1) < 1, so the operator π is a contraction
on Λa1 and thus it has a unique fixed point on [–r, a1], which is a mild solution of system
(1). Obviously, this process can be repeated for the entire interval [–r, a] in finitely many
steps, this completes the proof. �

4 Exponential stability in the pth moment
In this section, we establish some sufficient conditions to ensure the exponential stability
in pth moment of a mild solution for system (1). Before proceeding, let us introduce the
following additional hypotheses and Definition 4.1.

(H4) We suppose that the semigroup T(t) is exponentially stable, i.e., there exist λ > 0
and M > 0 such that ‖T(t)‖ ≤ Me–λt , ∀t ≥ 0.

(H5) The mapping σ : [0, +∞) 
→ L0
B(Y , X) satisfies

∫ +∞

0
eλs∥∥σ (s)

∥
∥p

L0
B

ds < ∞.

Definition 4.1 ([14]) Let p be an integer p ≥ 2. The mild solution of system (1) is said to
be exponentially stable in the pth moment if, for any initial value φ, there exist a pair of
constants α > 0 and C > 0 such that

E
∥
∥x(t)

∥
∥p ≤ Ce–αt , t ≥ 0.

In particular, if p = 2, then system (1) is said to be mean-square exponentially stable.

The next lemma is essential to the proof of exponential stability in pth moment of mild
solution of system (1), for a brief proof we refer to [38].

Lemma 4.1 ([38]) For any μ > 0, suppose that there exist some positive constants αi (i =
1, 2, 3),βk (k – 1, 2, . . . , m) and a function φ : [–r,∞) 
→ [0,∞) such that

⎧
⎪⎪⎨

⎪⎪⎩

φ(t) ≤ α1e–μt , t ∈ [–r, 0),

φ(t) ≤ α1e–μt + α2 supθ∈[–r,0] φ(t + θ ) + α3
∫ t

0 e–μ(t–s) supθ∈[–r,0] φ(s + θ ) ds

+
∑

tk <t βke–μ(t–tk )φ(t–
k ), t ∈ [0,∞).
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If α2 + α3
μ

+
∑m

k=1 βk < 1, then there exist constants N > 0 and μ > 0 such that φ(t) ≤ Ne–μt

for t ≥ –r.

Now we state our results to the exponential stability of mild solution of system (1).

Theorem 4.1 Assume that Hypotheses (H1)–(H5) hold. Then the mild solution of system
(1) is exponentially stable in the pth moment if

7p–1
{

Mp
1–αλ–pαLp

1Γ
p–1(1 + qα – q) + Mpλ–p(Lp

2 + Lp
3
)

+ C(p)MpLp
4λ

– p
2

(
2p – 2
p – 2

)1– p
2

+ Mp
( ∑

0<tk<t

qk

)p}

< (1 – k)p (12)

holds, where C(p) = (p(p – 1)/2)p/2, k = ‖(–A)–α‖L1.

Proof From inequality (12), we can find a number ε > 0 small enough and suppose that
μ = λ – ε satisfies the following inequality:

k +
7p–1

μ(1 – k)p–1

{

Mp
1–αλ1–pαLp

1Γ
p–1(1 + qα – q) + Mpλ1–p(Lp

2 + Lp
3
)

+ C(p)MpLp
4

(
2λp – 2λ

p – 2

)1– p
2
}

+
(

7
1 – k

)p–1

Mp
( ∑

0<tk <t

Lk

)p

< 1. (13)

From Eq. (2), by the Cp inequality and the inequality |u + v|p ≤ |u|p
kp–1 + |v|p

(1–k)p–1 , we get

E
∥
∥x(t)

∥
∥p ≤ k1–pE

∥
∥p(t, xt)

∥
∥p +

(
7

1 – k

)p–1

E
{
∥
∥T(t)

[
φ(0) – p(0,φ)

]∥
∥p

+
∥
∥
∥
∥

∫ t

0
T(t – s)p(s, xs) ds

∥
∥
∥
∥

p

+
∥
∥
∥
∥

∫ t

0
T(t – s)f (s, xs) ds

∥
∥
∥
∥

p

+
∥
∥
∥
∥

∫ t

0
T(t – s)

(∫ s

0
h(s,η, xη) dη

)

ds
∥
∥
∥
∥

p

+
∥
∥
∥
∥

∫ t

0
T(t – s)g(s, xs) dW (s)

∥
∥
∥
∥

p

+
∥
∥
∥
∥

∫ t

0
T(t – s)σ (s) dBH(s)

∥
∥
∥
∥

p

+
∥
∥
∥
∥

∑

0<tk<t

T(t – tk)Ik
(
x
(
t–
k
))

∥
∥
∥
∥

p}

:= k1–pJ1 +
(

7
1 – k

)p–1 8∑

i=2

Ji. (14)

It follows from Hypothesis (H2) that

J1 ≤ ∥
∥(–A)–α

∥
∥pLp

1E‖xt‖p ≤ kp sup
θ∈[–r,0]

∥
∥x(s + θ )

∥
∥p. (15)

By Hypotheses (H2) and (H4) we get

J2 ≤ Mpe–λpt(2p–1E
∥
∥φ(0)

∥
∥p + 2p–1∥∥(–A)–α

∥
∥pLp

1E‖φ‖p)

≤ 2p–1Mp(E
∥
∥φ(0)

∥
∥p +

∥
∥(–A)–α

∥
∥pLp

1E‖φ‖p)e–μt
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:= C1e–μt . (16)

Combining Hypotheses (H2) and Lemma 2.4 with the Hölder inequality, noting that
(
∫ t

0 e–λ(t–s) ds)
p
q ≤ ( 1

λ
)p–1, we obtain

J3 = E
∥
∥
∥
∥

∫ t

0
(–A)1–αT(t – s)(–A)αp(s, xs) ds

∥
∥
∥
∥

p

≤ Mp
1–αLp

1

(∫ t

0
e–λ(t–s)(t – s)αq–q ds

)p–1

×
∫ t

0
e–λ(t–s)E‖xs‖p ds

≤ Mp
1–αλ1–pαLp

1Γ
p–1(1 + qα – q) ×

∫ t

0
e–λ(t–s) sup

θ∈[–r,0]
E
∥
∥x(s + θ )

∥
∥p ds. (17)

Similarly, from Hypotheses (H3) and (H4) and the Hölder inequality we have

J4 ≤ MpLp
2λ

1–p
∫ t

0
e–λ(t–s) sup

θ∈[–r,0]
E
∥
∥x(s + θ )

∥
∥p ds, (18)

J5 ≤ MpLp
3λ

1–p
∫ t

0
e–λ(t–s) sup

θ∈[–r,0]
E
∥
∥x(s + θ )

∥
∥p ds. (19)

By virtue of Lemma 2.1, Hypotheses (H3) and (H4) and the Hölder inequality, we get

J6 ≤ C(p)MpLp
4

(∫ t

0
e–2λ(t–s)(E‖xs‖p) 2

p ds
) p

2

≤ C(p)MpLp
4

(
2λp – 2λ

p – 2

)1– p
2
∫ t

0
e–λ(t–s) sup

θ∈[–r,0]
E
∥
∥x(s + θ )

∥
∥p ds. (20)

As for the seventh term, using Lemma 2.2 and Lemma 2.3 successively, together with Hy-
pothesis (H4) and the Hölder inequality, we obtain

J7 ≤ k(p)E
(∥

∥
∥
∥

∫ t

0
T(t – s)σ (s) dBH(s)

∥
∥
∥
∥

2) p
2

≤ k(p)
(
CHH(2H – 1)t2H–1)

p
2

(∫ t

0

∥
∥T(t – s)σ (s)

∥
∥2

L0
B

ds
) p

2

≤ Mpk(p)
(
CHH(2H – 1)t2H–1)

p
2

(
2pλ – 2λ

p – 2

)1– p
2

e–μte–εt
∫ t

0
eλs∥∥σ (s)

∥
∥p

L0
B

ds,

and thanks to Hypothesis (H5) there exists a positive constant C2 > 0, for all t ≥ 0 such
that

Mpk(p)
(
CHH(2H – 1)t2H–1)

p
2

(
2pλ – 2λ

p – 2

)1– p
2

e–εt
∫ t

0
eλs∥∥σ (s)

∥
∥p

L0
B

ds < C2,

so we have

J7 ≤ C2e–μt . (21)
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From Hypotheses (H3) and (H4) and the Hölder inequality, we obtain

J8 ≤ Mp
( ∑

0<tk <t

qk

)( ∑

0<tk <t

qk

)p–1

e–μ(t–tk )E
∥
∥x

(
t–
k
)∥
∥p. (22)

Thus, by inequalities (15)–(22) we have

E
∥
∥x(t)

∥
∥p ≤

(
7

1 – k

)p–1

(C1 + C2)e–μt + k sup
θ∈[–r,0]

E
∥
∥x(t + θ )

∥
∥p

+
(

7
1 – k

)p–1(

Mp
1–αλ1–pαLp

1Γ
p–1(1 + qα – q) + Mpλ1–p(L2 + L3)

+ C(p)MpLp
4

(
2λp – 2λ

p – 2

)1–p/2)∫ t

0
e–μ(t–s) sup

θ∈[–r,0]

∥
∥x(s + θ )

∥
∥p ds

+ Mp
( ∑

0<tk<t

qk

)p

e–μ(t–tk )E
∥
∥x

(
t–
k
)∥
∥p.

According to Lemma 4.1 and inequality (13), it follows that there exist constants N > 0
and μ > 0 such that E‖x(t)‖p ≤ Ne–μt for all t ≥ –r. Then the proof is completed. �

Corollary 4.1 Suppose that Hypotheses (H1)–(H5) hold with p = 2. Then the mild solution
of system (1) is exponentially stable in mean square provided that

7
{

M2
1–αL2

1Γ (2α – 1)λ–2α + M2(L2
2 + L2

3
)
λ–2 + M2L2

4λ
–1 + M2

( ∑

0<tk<t

qk

)2}

< (1 – k)2,

where k = ‖(–A)–α‖L1.

Remark 4.1 In [26], Ren et al. considered the existence and uniqueness of the mild solution
for a similar system, but they did not investigate the exponential stability.

Remark 4.2 When
∫ t

0 h(t, x, xs) ds = 0 and the impulsive items �x(tk) = Ik(·) = 0, k = 1, 2, . . .
then the system (1) reduces to a NSFPDE driven by mixed fractional Brownian motion,
which is studied by Zhang and Ruan [14]. By utilizing the same technique as in our paper,
we can easily address the sufficient conditions to ensure the existence, uniqueness and
exponential stability in pth moment of mild solution. In this sense, our work generalized
the results in [14].

Remark 4.3 When p = 2 and the Brownian motion W (t) is absent, then the system (1)
reduces to a NSFPDE driven by fractional Brownian motion with impulsive effects, in
which the mean-square exponential stability of mild solution has been studied by Ma et
al. [23]. Obviously, the given result in [23] can be seen as a special case of the result of this
paper. In this sense, the exponential stability result in this paper is a generalization of the
result in [23].

Remark 4.4 In [9], the authors considered the existence and uniqueness of delayed im-
pulsive stochastic Volterra integro-differential equation driven by fBm in a Hilbert space,
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the impulses in [9] are linear and delayed impulses, which not only depend on the cur-
rent states but also on historical states. But they did not consider the neutral term and the
standard Brownian motion.

Remark 4.5 In [24], the authors studied the stability of delayed impulsive stochastic dif-
ferential equations driven by a fBm with time-varying delay, the impulses are delayed im-
pulses, we would like to mention that our method used in Theorem 4.1 is also valid in the
case of delayed impulses, but the process is very tedious, here we omit the details.

Remark 4.6 The results obtained in this manuscript can be generalized to a class of im-
pulsive stochastic neutral systems, for instance, we could add a distributed delay term to
the left hand side of system (1), namely, system (1) extends to the following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[x(t) – p(t, xt) –
∫ t

0 q(s, xs) ds]

= [Ax(t) + f (x, xt)

+
∫ t

0 h(t, s, xs) ds] dt + g(t, xt) dW (t)

+ σ (t) dBH(t), t ∈ [0, +∞), t �= tk ,

�x(tk) = Ik
(
x
(
t–
k
))

, t = tk , k = 1, 2, . . . ,

x(t) = φ(t) ∈PC
(
[–r, 0]; X

)
, t ∈ [–r, 0].

(23)

Here the function q : [0, +∞) ×PC → X is integrable. By using the same method as in this
manuscript, we could study the existence, uniqueness and exponential stability of a mild
solution of system (23).

5 Example
In the present section, we give an example as an application of the obtained results. Let
X = Y = L2[0,π ] and A = ∂2

∂τ2 with domain D(A) = H1
0 (0,π ) ∩ H2(0,π ). Then there exists a

complete orthonormal set en(n ∈ N) of eigenvectors of A with en(x) =
√

2/π sin nx(n ∈ N),
and

Ax = –
+∞∑

n=1

n2〈x, en〉en, x ∈ D(A),

is the infinitesimal generator of the semigroup T(t)(t ≥ 0) in X, T(t) is

T(t)x =
+∞∑

n=1

e–n2t〈x, en〉en, x ∈ X.

We know that ‖T(t)‖ ≤ e–π2t , t ≥ 0, the bounded linear operator (–A) 3
4 is defined by

(–A)
3
4 x =

+∞∑

n=1

n
3
2 〈x, en〉Xen

with domain

D
(
(–A)

3
4
)

=

{

x ∈ X,
+∞∑

n=1

n
3
2 〈x, en〉Xen ∈ X

}

.
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Now we consider the following impulsive neutral stochastic integro-differential equation
with delays:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[x(t, τ ) – β1(t, x(t – ζ , τ ))]

= [ ∂2

∂τ2 x(t, τ ) + β2(t, x(t – ζ , τ ))

+
∫ s

0 β3(t, s, x(s – ζ , τ )) ds] dt + β4(t, x(t – ζ , τ )) dW (t)

+ σ (t) dBH(t), t ∈ [0, a], t �= tk ,

x(t, 0) = x(t,π ) = 0,

�x(tk , ·)(τ ) = β̃5
k2 x

(
t–
k , τ

)
, t = tk , k = 1, 2, . . . ,

x(t, τ ) = φ(t, τ ) ∈PC
(
[–r, 0], L2[0,π ]

)
, t ∈ [–r, 0], r ≥ 0,

(24)

where ζ ∈ (–∞, t] and σ : [0, +∞) → L0
B(Y , X) is a continuous function satisfying Hypoth-

esis (H5).
Let

β1
(
t, x(t – ζ , τ )

) ≤ β̃1x(t – ζ , τ ),

β2
(
t, x(t – ζ , τ )

) ≤ β̃2x(t – ζ , τ ),
∫ s

0
β3

(
t, s, x(s – ζ , τ )

)
ds ≤ β̃3x(t – ζ , τ ),

β4
(
t, x(t – ζ , τ )

) ≤ β̃4x(t – ζ , τ ),

where β̃i > 0 (i = 1, 2, 3, 4) are all constants.
It is apparent that all the hypotheses are satisfied with

λ = π2, M = 1, r = 1, L1 = β̃1
∥
∥(–A)

3
4
∥
∥

Li = β̃i (i = 2, 3, 4), qk =
β̃5

k2 (k = 1, 2, 3, . . .).

From the definition of a bounded linear operator (–A)– 3
4 (see [37]), we obtain

∥
∥(–A)– 3

4
∥
∥ ≤ 1

Γ ( 3
4 )

∫ +∞

0
t– 1

4
∥
∥T(t)

∥
∥dt ≤ 1

π
3
2

and ‖(–A) 3
4 ‖ = 1.

Consequently, by Theorem 3.1, we can deduce that if

5π2

36
<

(

1 –
β̃1

π
3
2

)2

,

then system (24) has a unique mild solution (here p = 2 and k = ‖(–A)– 3
4 ‖β̃1). Moreover,

by virtue of Corollary 4.1, the mild solution of system (24) is exponentially stable in mean-
square moment if the following inequality holds:

7
(

β̃2
1

π
5
2

+
β̃2

2 + β̃2
3

π4 +
β̃2

4
π2 +

β̃2
5π4

36

)

<
(

1 –
β̃1

π
3
2

)2

.
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6 Conclusion
In this paper, we have studied the existence, uniqueness and exponential stability in the
pth moment of mild solution of impulsive neutral stochastic integro-differential equations
driven by fractional Brownian motion and standard Brownian motion. Firstly, we have got
sufficient conditions ensuring the existence and uniqueness of a mild solution of system
(1) by using the Banach fixed point theorem. Secondly, based on the impulsive integral in-
equality, we have investigated the exponential stability in the pth moment of mild solution
of system (1), the results obtained in this paper can be generalized to a class of impulsive
stochastic neutral systems, for instance, our results generalized and improved the results
due to Zhou et al. [9, 24], Zhang and Ruan [14], Ma et al. [23] and Ren et al. [26].

In our future work, we mainly consider the following three problems. Firstly, we will
consider dynamical systems that depend not only on past and present states, but also on
derivative with delays and distributed delays, just like the case of Remark 4.6. Secondly, we
will study another kind of stability of system (1), such as stochastic asymptotic stability,
almost sure stability and probabilistic stability. Thirdly, inspired on our stability results
of integer order impulsive NSFDEs in this paper, we will study the stability of impulsive
NSFDEs in which the derivative is a fractional derivative.
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