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1 Introduction and main results
In 1969, M. Troisi (cf. [1]) found an important inequality. Its classical form can be de-
scribed as: given 1 ≤ pi < ∞, i = 1, . . . , n, for a smooth function u compactly supported in
R

n, the following inequality holds:

‖u‖s ≤ C
n∏

i=1

‖∂xi u‖ 1
n
pi ,

n∑

i=1

1
pi

> 1, s =
n

∑n
i=1

1
pi

– 1
, (1.1)

where ‖u‖q = (
∫
Rn |u|q dx)

1
q with 1 ≤ q < ∞ and C is independent of u. It is the well-known

Troisi’s inequality that can be used to study the existence of multiple nonnegative solutions
to the anisotropic critical problem (cf. [2])

–
n∑

i=1

∂

∂xi

(∣∣∣∣
∂u
∂xi

∣∣∣∣
pi–2

∂u
∂xi

)
= |u|s–2u, in R

n, (1.2)

where 1 < pi < ∞ for i = 1, 2, . . . , n,
∑n

i=1
1
pi

> 1, s = n/(
∑n

i=1
1
pi

– 1) is anisotropic critical
exponent and max1≤i≤n{pi} < s. Applications of (1.1) also can be found in [3] to study the
existence of fundamental solutions to anisotropic elliptic equations. Another generaliza-
tion of (1.1) in [4] is used to prove regularity of the weak solution to the Navier–Stokes
equations based on one component of velocity. By arithmetic and geometric mean in-
equality, (1.1) becomes an anisotropic Sobolev inequality presented as

‖u‖s ≤ C
n

n∑

i=1

‖∂xi u‖pi ,
n∑

i=1

1
pi

> 1, s =
n

∑n
i=1

1
pi

– 1
. (1.3)
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In particular, if pi = p in (1.3) for i = 1, . . . , n, then (1.1) finally reduces to the classical
Gagliardo–Nirenberg–Sobolev inequality

‖u‖s ≤ C
n

n∑

i=1

‖∂xi u‖p, 1 ≤ p < n, s =
np

n – p
. (1.4)

Here the methods to prove (1.3) and (1.4) are similar as that in Adams and Vancouver
[5] by using mixed norms and permutation inequalities and that in Kružkov [6, p. 282] to
establish a new proof based on fundamental theorem of calculus.

Motivations of this paper mainly come from the attention to studying the anisotropic
elliptic equations as (1.2) with conical singularity, edge singularity, and corner singularity
respectively. For instance, (1.2) including conical singularity corresponds to

–
n∑

i=1

Dc,i
(|Dc,iu|pi–2Dc,iu

)
= |u|s–2u in R

n+1
+ , (1.5)

where Dc,0 = t∂t , Dc,i = ∂xi , 1 < pi < ∞ for i = 0, 1, 2, . . . , n, and anisotropic critical ex-
ponent s := (n + 1)/(

∑n
i=0

1
pi

– 1). As indicated above, the anisotropic elliptic equations
with singularities of edge type or corner type parallel to (1.2) can be formulated as
well.

Considering the pivotal role of Troisi’s inequality in studying such kinds of singular
anisotropic elliptic equations like (1.5) (e.g., see the results in our upcoming papers), we
need, in the first place, to deduce it being of different forms in different weighted p-Sobolev
spaces. To be specific, we will generalize (1.1) to some singular weighted p-Sobolev
spaces (see Sect. 2 below) in which the usual gradient operator ∇ = (∂x1 , ∂x2 , . . . , ∂xn )
becomes the cone type, edge type, and corner type gradient operators such as Dc =
(t∂t , ∂x1 , . . . , ∂xn ) in R

n+1
+ , De = (t∂t , ∂x1 , ∂x2 , . . . , ∂xn , t∂yn+1 , . . . , t∂yn+q ) in R+ × R

n × R
q, and

Dcor = (r∂r , ∂x1 , ∂x2 , . . . , ∂xn , rt∂t) in R+ × R
n × R+ respectively. Now we present our main

conclusions of this paper as follows.

Theorem 1.1 Let γ ∈R, 1 ≤ pi < ∞ for 0 ≤ i ≤ n, and
∑n

i=0
1
pi

> 1. Set 1
s = 1

n+1 (
∑n

i=0
1
pi

–1).
Then we have the following cone type Troisi’s inequality for all u(t, x) ∈ C∞

0 (Rn+1
+ ):

‖u‖Lγ
s

≤ (
c01‖u‖ 1

n+1

L
γ ∗

0
p0

+ c02‖t∂tu‖ 1
n+1

L
γ ∗

0
p0

) n∏

i=1

ci‖∂xi u‖ 1
n+1

L
γ ∗

i
pi

, (1.6)

where ‖u‖Lγ
p

= (
∫
Rn

∫
R+

tn+1|t–γ u(t, x)|p dt
t dx)

1
p , γ ∗

j = –( n+1
s – γ – n+1

pj
) for 0 ≤ j ≤ n, c01 =

1
2 [(1 + s(p0–1)

p0
)| n+1

s – γ |] 1
n+1 , c02 = 1

2 (1 + s(p0–1)
p0

)
1

n+1 , and ci = (1 + s(pi–1)
pi

)
1

n+1 for 1 ≤ i ≤ n.

Moreover, as a special case, we obtain the following cone type Sobolev inequality which
was first proved by [7, Theorem 2.1] in studying Dirichlet problem for nonlinear elliptic
boundary value problem on a manifold with conical singularities.
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Corollary 1.2 In addition to the conditions included in Theorem 1.1, if pi = p ≥ 1 for 0 ≤
i ≤ n, then we have the following cone type Sobolev inequality:

‖u‖Lγ
s

≤ ĉ0‖u‖Lγ +1
p

+ ĉ1

(
∥∥(t∂t)u

∥∥
Lγ +1

p
+

n∑

i=1

‖∂xi u‖Lγ +1
p

)
,

where ĉ0 = n|n+1–p(γ +1)|
2(n+1)(n+1–p) , ĉ1 = np

2(n+1)(n+1–p) , 1
s = 1

p – 1
n+1 , and p < n + 1.

Secondly, we consider the following edge type Torisi’s inequality.

Theorem 1.3 Given 1 ≤ pi < ∞ for 0 ≤ i ≤ n + q, and
∑n+q

i=0
1
pi

> 1. Let 1
s = 1

n+q+1 (
∑n+q

i=0
1
pi

–
1). Then we have the following edge type Troisi’s inequality for all u(t, x, y) ∈ C∞

0 (R+ ×R
n ×

R
q) and γ ∈ R:

‖u‖Lγ
s

≤ (
c01‖u‖

1
n+q+1

L
γ ∗

0
p0

+ c02‖t∂tu‖
1

n+q+1

L
γ ∗

0
p0

) n∏

i=1

ci‖∂xi u‖
1

n+q+1

L
γ ∗

i
pi

×
n+q∏

i=n+1

ci
∥∥(t∂yi )u

∥∥
1

n+q+1

L
γ ∗

i
pi

, (1.7)

where ‖u‖Lγ
p

= (
∫
R

N
+

tn+q+1|t–γ u(t, x, y)|p dt
t dx dy

t )
1
p , γ ∗

j = –( n+q+1
s – γ – n+q+1

pj
) for 0 ≤ j ≤ n +

q, c01 = 1
2 [(1 + s(p0–1)

p0
)| n+q+1

s – γ |] 1
n+q+1 , c02 = 1

2 (1 + s(p0–1)
p0

)
1

n+q+1 , and ci = (1 + s(pi–1)
pi

)
1

n+q+1 for
1 ≤ i ≤ n + q.

In particular, the following edge type Sobolev inequality can be regarded as a special
case of the edge type Troisi’s inequality above. This kind of edge type Sobolev inequality
was first given by [8, Proposition 3.2] in studying Dirichlet problem for semilinear edge-
degenerate elliptic equations.

Corollary 1.4 Under the assumptions in Theorem 1.3, if pi = p ≥ 1 for 0 ≤ i ≤ n + q, then
we have the following edge type Sobolev inequality:

‖u‖Lγ
s

≤ ĉ0‖u‖Lγ +1
p

+ ĉ1

(
∥∥(t∂t)u

∥∥
Lγ +1

p
+

n∑

i=1

‖∂xi u‖Lγ +1
p

+
n+q∑

i=n+1

∥∥(t∂yi )u
∥∥
Lγ +1

p

)
,

where ĉ0 = (n+q)|n+q+1–p(γ +1)|
2(n+q+1)(n+q+1–p) and ĉ1 = (n+q)p

2(n+q+1)(n+q+1–p) , 1
s = 1

p – 1
n+q+1 and p < n + q + 1.

Finally, we give the corner type Troisi’s inequality.

Theorem 1.5 If 1 ≤ pi < ∞ for 0 ≤ i ≤ n + 1,
∑n+1

i=0
1
pi

> 1, 1
s = 1

n+2 (
∑n+1

i=0
1
pi

– 1) and γ̄ ,γ ∈
R, then the following corner type Troisi’s inequality holds for all u(r, x, t) ∈ C∞

0 (R+ ×R
n ×

R+):

‖u‖
L

γ̄ ,γ
s

≤ (
ĉ0‖u‖ 1

n+2

L
γ̄ ∗

0 ,γ ∗
0

p0

+ c0
∥∥(r∂r)u

∥∥ 1
n+2

L
γ̄ ∗

0 ,γ ∗
0

p0

) n∏

i=1

ci‖∂xi u‖ 1
n+2

L
γ̄i∗ ,γ ∗

i
pi

× (
ĉn+1‖u‖ 1

n+2

L
γ̄ ∗

n+1–1,γ ∗
n+1

pn+1

+ cn+1
∥∥(rt∂t)u

∥∥ 1
n+2

L
γ̄ ∗

n+1,γ ∗
n+1

pn+1

)
, (1.8)
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where ‖u‖
L

γ1,γ2
p

= (
∫
R+×Rn×R+

|r n+2
p –γ1 t

n+2
p –γ2 u(r, x, t)|p dr

r dx dt
rt )

1
p , γ̄ ∗

i = –( n+2
s – γ̄ – n+2

pi
), γ ∗

i =

–( n+2
s – γ – n+2

pi
), c0 = 1

2 (1 + s(p0–1)
p0

)
1

n+2 , ci = (1 + s(pi–1)
pi

)
1

n+2 for 1 ≤ i ≤ n + 1, ĉ0 = 1
2 [(1 +

s(p0–1)
p0

)| n+2
s – γ̄ |] 1

n+2 , ĉn+1 = [(1 + s(pn+1–1)
pn+1

)| n+2
s – γ |] 1

n+2 .

Likewise, it follows from Theorem 1.5 that we can derive the corner type Sobolev in-
equality as follows, which was first obtained by [9, Proposition 3.1] in studying the exis-
tence of multiple solutions for semi-linear corner degenerate elliptic equations.

Corollary 1.6 Based on Theorem 1.5, further if we choose pi = p ≥ 1 for 0 ≤ i ≤ n + 1, then
we have the following corner type Sobolev inequality:

‖u‖
L

γ̄ ,γ
s

≤ μ̃0‖u‖
L

γ̄ +1,γ +1
p

+ μ0
∥∥(r∂r)u

∥∥
L

γ̄ +1,γ +1
p

+
n∑

i=1

μi‖∂xi u‖
L

γ̄ +1,γ +1
p

+ μ̂n+1‖u‖
L

γ̄ ,γ +1
p

+ μn+1
∥∥(rt∂t)u

∥∥
L

γ̄ +1,γ +1
p

,

where μ̃0 = (n+1)|n+2–p(γ̄ +1)|
2(n+2)(n+2–p) , μi = p(n+1)

2(n+2)(n+2–p) for 0 ≤ i ≤ n + 1, μ̂n+1 = (n+1)|n+2–p(γ +1)|
2(n+2)(n+2–p) , 1

s =
1
p – 1

n+2 and p < n + 2.

The outline of this paper is as follows. In Sect. 2, we introduce cone type, edge type, and
corner type weighted p-Sobolev spaces respectively. Then, in Sect. 3, we give the proof
of Theorem 1.1. Finally, the proofs of Theorem 1.3 and Theorem 1.5 will be provided in
Sect. 4.

2 Definitions of singular weighted p-Sobolev spaces
Let X be a closed compact C∞ manifold and X� = (R+ × X)/({0} × X) be a local model
considered as a cone with the base X. In particular, let X ⊂ Sn be a bounded open set in
the unit sphere of Rn+1, and the straight cone X� is defined as

X� =
{

x̃ ∈ R
n+1 : x̃ = 0 or

x̃
|x̃| ∈ X

}
.

Thus, X∧ = R+ ×X is called as corresponding open stretched cone with the base X. In local
coordinates, R+ ×R

n can be interpreted as an open stretched cone. The typical differential
operators, defined on a manifold with conical singularities, are called Fuchs type, i.e.,

A = t–m
m∑

k=0

ak(t)(–t∂t)k = t–mAX� , (2.1)

where (t, x) ∈R+ ×R
n, ak(t) ∈ C∞(R+, Diffm–k(Rn)), Diff j(Rn) refers to the set of differen-

tial operators of order j on R
n, and AX� are called degenerated cone operators.

Let g be Riemannian metrics on R+ ×R
n, then

g := dt2 + t2 dx2 = t2
[(

dt
t

)2

+ dx2
]

. (2.2)

Hence the cone type gradient operator here is defined as Dc := (t∂t , ∂x1 , . . . , ∂xn ). Now we
introduce the following cone type weighted Lp-spaces.
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Definition 2.1 For (t, x) ∈R
n+1
+ (:= R+ ×R

n), 1 ≤ p < +∞, and u(t, x) in distribution space
D′(Rn+1

+ ), then we consider that u(t, x) ∈ Lp(Rn+1
+ , dt

t dx) if

‖u‖Lp(Rn+1
+ ) =

(∫

Rn

∫

R+

tn+1∣∣u(t, x)
∣∣p dt

t
dx

) 1
p

< +∞. (2.3)

Furthermore, the weighted cone type Lp-spaces with weight data γ ∈ R are denoted by
Lγ

p (Rn+1
+ , dt

t dx). Namely, if u(t, x) ∈ Lγ
p (Rn+1

+ , dt
t dx), then t–γ u(t, x) ∈ Lp(Rn+1

+ , dt
t dx), and

‖u‖Lγ
p (Rn+1

+ ) =
(∫

Rn

∫

R+

tn+1∣∣t–γ u(t, x)
∣∣p dt

t
dx

) 1
p

< +∞. (2.4)

Now we give the definition of singular weighted p-Sobolev spaces on stretched cone
R+ ×R

n as follows (cf. [7]).

Definition 2.2 For γ ∈ R, m ∈ N, and 1 ≤ p < +∞, the singular weighted p-Sobolev spaces
are defined as

Hm,γ
p

(
R

n+1
+

)
:=

{
u ∈D′(

R
n+1
+

)
: (t∂t)α∂β

x u(t, x) ∈ Lγ
p

(
R

n+1
+ ,

dt
t

dx
)}

(2.5)

for arbitrary α ∈N, β ∈N
n, and |α| + |β| ≤ m.

Moreover, the spaces Hm,γ
p (Rn+1

+ ) will be Banach spaces endowed with the norm

‖u‖Hm,γ
p (Rn+1

+ ) =
∑

|α|+|β|≤m

(∫∫

R
n+1
+

tn+1∣∣t–γ (t∂t)α∂β
x u(t, x)

∣∣p dt
t

dx
) 1

p
. (2.6)

Next, we introduce the following edge type p-Sobolev spaces. First, we assume X� is
a straight cone, then for a bounded domain Y in R

q, W := X� × Y is a corresponding
wedge in R

1+n+q. Thus the stretched wedge W to W is R+ × X × Y , which is a manifold
with smooth boundary {0} × X × Y . In local coordinates, the open stretched wedge will
be R+ ×R

n ×R
q.

The typical degenerate differential operator on the open stretched wedge R+ ×R
n ×R

q

has the form of

t–ν
∑

j+|α|≤ν

ajα(t, y)(t∂t)j(t∂y)α = t–νAW, (2.7)

where AW is a degenerate edge operator, ajα ∈ C∞(R+ × R
q, Diffν–(j+|α|)(Rn)) for all j, α,

and Diff i(Rn) denotes the set of differential operators of order i on R
n.

Furthermore, let g be Riemannian metrics on R+ ×R
n ×R

q. Then

g := dt2 + t2 dx2 + dy2 = t2
[(

dt
t

)2

+ dx2 +
(

dy
t

)2]
. (2.8)

Thus, the edge type gradient operator is defined as De = (t∂t , ∂x1 , ∂x2 , . . . , ∂xn , t∂yn+1 , . . . ,
t∂yn+q ). At present, we give the following definition of edge type weighted Lp-spaces.
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Definition 2.3 Assume N = 1 + n + q, (t, x, y) ∈ R
N
+ (:= R+ × R

n × R
q), and u(t, x, y) ∈

D′(RN
+ ). We consider that u(t, x, y) ∈Lp(RN

+ , dt
t dx dy

t ) if

‖u‖Lp =
(∫

R
N
+

tN ∣∣u(t, x, y)
∣∣p dt

t
dx

dy
t

) 1
p

< +∞. (2.9)

Moreover, the weighted edge type Lp-spaces with weight γ ∈ R are denoted by Lγ
p (RN

+ ,
dt
t dx dy

t ), which include functions u(t, x, y) such that

‖u‖Lγ
p

=
(∫

R
N
+

tN ∣∣t–γ u(t, x, y)
∣∣p dt

t
dx

dy
t

) 1
p

< +∞. (2.10)

The edge type weighted p-Sobolev spaces (cf. [8]) can be defined for all 1 ≤ p < +∞ as
follows.

Definition 2.4 Taking γ ∈R, m ∈N, and N = 1 + n + q, the edge type weighted p-Sobolev
spaces are defined as

Hm,γ
p

(
R

N
+
)

:=
{

u ∈D′(
R

N
+
)

: (t∂t)k∂α
x (t∂y)βu ∈Lγ

p

(
R

N
+ ,

dt
t

dx
dy
t

)}
(2.11)

for k ∈N, multi-indexes α ∈N
n, β ∈N

q, and k + |α| + |β| ≤ m.

The edge type p-Sobolev spaces Hm,γ
p (RN

+ ) are Banach spaces with the norm

‖u‖Hm,γ
p (RN

+ ) =
∑

k+|α|+|β|≤m

(∫

R
N
+

tN ∣∣t–γ (t∂t)k∂α
x (t∂y)βu(t, x, y)

∣∣p dt
t

dx
dy
t

) 1
p

. (2.12)

Finally, a corner can be defined as (cf. [9])

E� =
(
R+ × X�

)
/
({0} × X�

)
,

where X� is a cone. Then the corresponding stretched corner will be E
� := [0, r) × X ×

[0, t), t, r ∈ R+ with the boundary {0} × X × {0}. Thus, under the local coordinates, the
open stretched corner is R+ × R

n × R+. The typical degenerate differential operator on
the open stretched corner R+ ×R

n ×R+ will be

(rt)–ν
∑

j+k≤ν

ajk(r, t)(r∂r)j(rt∂t)k = (rt)–νAE� (2.13)

with coefficients ajk(r, t) ∈ C∞(R+, Diffν–j–k(Rn)) and AE� is called a degenerate corner
operator. Indeed, we have the following Riemannian metric on the corner R+ ×R

n ×R+:

g := dt2 + t2(dr2 + r2 dx2) = (rt)2
[(

dt
rt

)2

+
(

dr
r

)2

+ dx2
]

. (2.14)

Then the corner type gradient operator will be Dcor := (r∂r , ∂x1 , ∂x2 , . . . , ∂xn , rt∂t).
Further, we give the definition of corner type weighted Lp-spaces as follows.
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Definition 2.5 Let (r, x, t) ∈R+ ×R
n ×R+, weight data γ1,γ2 ∈R, and 1 ≤ p < +∞. Then

L
γ1,γ2
p (R+ × R

n × R+, dr
r dx dt

rt ) denote the spaces of all u(r, x, t) ∈ D′(R+ × R
n × R+) such

that

‖u‖
L

γ1,γ2
p

=
(∫

R+×Rn×R+

∣∣r
N
p –γ1 t

N
p –γ2 u(r, x, t)

∣∣p dr
r

dx
dt
rt

) 1
p

< +∞. (2.15)

From the weighted L
γ1,γ2
p -spaces, we can define the following weighted p-Sobolev spaces

over stretched corner R+ ×R
n ×R+ (cf. [9]).

Definition 2.6 Given γ1,γ2 ∈ R, m ∈ N, 1 ≤ p < +∞, and N = n + 2, the corner type
weighted p-Sobolev spaces can be defined by

H
m,(γ1,γ2)
p

(
R+ ×R

n ×R+
)

=
{

u ∈D′(
R+ ×R

n ×R+
)

:

(r∂r)l∂α
x (rt∂t)ku(r, x, t) ∈ L

γ1,γ2
p

(
R+ ×R

n ×R+,
dr
r

dx
dt
rt

)}
(2.16)

for k, l ∈N, multi-index α ∈N
n, and k + |α| + l ≤ m.

It can be proved that Hm,(γ1,γ2)
p (R+ ×R

n ×R+) are Banach spaces equipped with the norm

‖u‖
H

m,(γ1,γ2)
p (R+×Rn×R+)

=
∑

k+|α|+l≤m

(∫

R+×Rn×R+

∣∣r
N
p –γ1 t

N
p –γ2 (r∂r)l∂α

x (rt∂t)ku(r, x, t)
∣∣p dr

r
dx

dt
rt

) 1
p

. (2.17)

3 Proof of Theorem 1.1
In this section, we give the proof of Theorem 1.1.

Proof Let σi = 1 + s(1 – 1
pi

) ≥ 1 and vi(t, x) = (t n+1
s –γ |u(t, x)|)σi for 0 ≤ i ≤ n. From 1

s =
1

n+1 (
∑n

i=0
1
pi

– 1), then it holds that
∑n

i=0 σi = ns.
Since u(t, x) ∈ C∞

0 (Rn+1
+ ), then we have, for i = 0 and t > 0,

2v0(t, x) =
∫ t

0
τ

∂v0(τ , x)
∂τ

dτ

τ
–

∫ +∞

t
τ

∂v0(τ , x)
∂τ

dτ

τ
.

Thus

∣∣2v0(t, x)
∣∣ ≤

∫ t

0

∣∣∣∣τ
∂v0(τ , x)

∂τ

∣∣∣∣
dτ

τ
+

∫ +∞

t

∣∣∣∣τ
∂v0(τ , x)

∂τ

∣∣∣∣
dτ

τ

=:
∫ +∞

0

∣∣(t∂t)v0(t, x)
∣∣dt

t
.

Analogously, for 1 ≤ i ≤ n,

∣∣2vi(t, x)
∣∣ ≤

∫ +∞

–∞

∣∣∣∣
∂vi(t, x)

∂xi

∣∣∣∣dxi.
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After multiplying the n + 1 inequalities above, we have

2
n+1

n
(
t

n+1
s –γ

∣∣u(t, x)
∣∣)s ≤

(∫ +∞

0

∣∣(t∂t)v0(t, x)
∣∣dt

t

) 1
n n∏

i=1

(∫ +∞

–∞

∣∣∣∣
∂vi(t, x)

∂xi

∣∣∣∣dxi

) 1
n

.

Now integrating the inequality above over the interval (0, +∞) with respect to dt
t and using

Hölder’s inequality, we obtain

2
n+1

n

∫ +∞

0

(
t

n+1
s –γ

∣∣u(t, x)
∣∣)s dt

t

≤
(∫ +∞

0

∣∣(t∂t)v0(t, x)
∣∣dt

t

) 1
n n∏

i=1

(∫ +∞

0

∫ +∞

–∞

∣∣∣∣
∂vi(t, x)

∂xi

∣∣∣∣dxi
dt
t

) 1
n

.

Then integrating above inequality again over the interval (–∞, +∞) with respect to
x1, x2, . . . , xn and using Hölder’s inequality respectively, we can deduce that

2
n+1

n

∫

Rn

∫

R+

(
t

n+1
s –γ

∣∣u(t, x)
∣∣)s dt

t
dx

≤
(∫

Rn

∫

R+

∣∣(t∂t)v0(t, x)
∣∣dt

t
dx

) 1
n n∏

i=1

(∫

Rn

∫

R+

∣∣∣∣
∂vi(t, x)

∂xi

∣∣∣∣
dt
t

dx
) 1

n
. (3.1)

For 1 ≤ i ≤ n, |∂xi |u(t, x)|| = |∂xi (uū) 1
2 | = 1

2 |(ūu)– 1
2 (ū∂xi u + u∂xi ū)| ≤ 1

2 |u|–1(|ū∂xi u| +
|u∂xi ū|) ≤ |∂xi u(t, x)|. Thus we obtain

∣∣∂xi vi(t, x)
∣∣ ≤ σi

(
t

n+1
s –γ

∣∣u(t, x)
∣∣)σi–1t

n+1
s –γ

∣∣∂xi u(t, x)
∣∣. (3.2)

Similarly, |(t∂t)|u(t, x)| ≤ |(t∂t)u(t, x)|, then we have

∣∣(t∂t)v0(t, x)
∣∣

≤ σ0
(
t

n+1
s –γ

∣∣u(t, x)
∣∣)σ0–1

[∣∣∣∣
n + 1

s
– γ

∣∣∣∣t
n+1

s –γ
∣∣u(t, x)

∣∣ + t
n+1

s –γ
∣∣(t∂t)u(t, x)

∣∣
]

. (3.3)

Replace the corresponding parts of (3.1) by (3.2) and (3.3), we derive that

2
n+1

n

∫

Rn

∫

R+

(
t

n+1
s –γ

∣∣u(t, x)
∣∣)s dt

t
dx

≤
[
σ0

∣∣∣∣
n + 1

s
– γ

∣∣∣∣
∫

Rn

∫

R+

(
t

n+1
s –γ

∣∣u(t, x)
∣∣)σ0–1(t

n+1
s –γ

∣∣u(t, x)
∣∣)dt

t
dx

+ σ0

∫

Rn

∫

R+

(
t

n+1
s –γ

∣∣u(t, x)
∣∣)σ0–1(t

n+1
s –γ

∣∣(t∂t)u(t, x)
∣∣)dt

t
dx

] 1
n

×
n∏

i=1

(∫

Rn

∫

R+

σi
(
t

n+1
s –γ

∣∣u(t, x)
∣∣)σi–1t

n+1
s –γ

∣∣∂xi u(t, x)
∣∣dt

t
dx

) 1
n

=: (I1 + I2)
1
n · I3. (3.4)
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Case 1: pi > 1 for 0 ≤ i ≤ n.
If p′

i satisfies 1
p′

i
+ 1

pi
= 1, then (σi – 1)p′

i = s(1 – 1
pi

)p′
i = s for 0 ≤ i ≤ n. By Hölder’s inequal-

ity, we can acquire that

I1 = σ0

∣∣∣∣
n + 1

s
– γ

∣∣∣∣
∫

Rn

∫

R+

(
t

n+1
s –γ

∣∣u(t, x)
∣∣)σ0–1(t

n+1
s –γ

∣∣u(t, x)
∣∣)dt

t
dx

≤ σ0

∣∣∣∣
n + 1

s
– γ

∣∣∣∣‖u‖
s

p′
0

Lγ
s
‖u‖

L
–( n+1

s –γ – n+1
p0 )

p0

,

I2 = σ0

∫

Rn

∫

R+

(
t

n+1
s –γ

∣∣u(t, x)
∣∣)σ0–1(t

n+1
s –γ

∣∣(t∂t)u(t, x)
∣∣)dt

t
dx

≤ σ0‖u‖
s

p′
0

Lγ
s

∥∥(t∂t)u
∥∥

L
–( n+1

s –γ – n+1
p0 )

p0

,

I3 =
n∏

i=1

(∫

Rn

∫

R+

σi
(
t

n+1
s –γ

∣∣u(t, x)
∣∣)σi–1t

n+1
s –γ

∣∣∂xi u(t, x)
∣∣dt

t
dx

) 1
n

≤
n∏

i=1

σi
1
n ‖u‖

s
np′

i
Lγ

s
‖∂xi u‖ 1

n

L
–( n+1

s –γ – n+1
pi )

pi

.

Returning to (3.4) and setting γ ∗
i = –( n+1

s – γ – n+1
pi

) for 0 ≤ i ≤ n, we get

2
n+1

n ‖u‖s
Lγ

s
≤

(
σ0

∣∣∣∣
n + 1

s
– γ

∣∣∣∣‖u‖
L
γ ∗

0
p0

+ σ0
∥∥(t∂t)u

∥∥
L
γ ∗

0
p0

) 1
n n∏

i=0

‖u‖
s

np′
i

Lγ
s

×
n∏

i=1

σi
1
n ‖∂xi u‖ 1

n

L
γ ∗

i
pi

. (3.5)

In view of n+1
s + 1 =

∑n
i=0

1
pi

, we deduce
∑n

i=0
s

np′
i

= s
n (n + 1 –

∑n
i=0

1
pi

) = s – n+1
n . According

to (3.5), we find that

2
n+1

n ‖u‖ n+1
n

Lγ
s

≤
(

σ0

∣∣∣∣
n + 1

s
– γ

∣∣∣∣‖u‖
L
γ ∗

0
p0

+ σ0
∥∥(t∂t)u

∥∥
L
γ ∗

0
p0

) 1
n
( n∏

i=1

σi‖∂xi u‖
L
γ ∗

i
pi

) 1
n

.

That means

‖u‖Lγ
s

≤ 1
2

(
σ0

∣∣∣∣
n + 1

s
– γ

∣∣∣∣‖u‖
L
γ ∗

0
p0

+ σ0
∥∥(t∂t)u

∥∥
L
γ ∗

0
p0

) 1
n+1 n∏

i=1

σi
1

n+1 ‖∂xi u‖ 1
n+1

L
γ ∗

i
pi

≤ 1
2

[(
σ0

∣∣∣∣
n + 1

s
– γ

∣∣∣∣

) 1
n+1 ‖u‖ 1

n+1

L
γ ∗

0
p0

+ σ
1

n+1
0

∥∥(t∂t)u
∥∥ 1

n+1

L
γ ∗

0
p0

] n∏

i=1

σi
1

n+1 ‖∂xi u‖ 1
n+1

L
γ ∗

i
pi

. (3.6)

Set c01 = 1
2 (σ0| n+1

s – γ |) 1
n+1 = 1

2 [(1 + s(p0–1)
p0

)| n+1
s – γ |] 1

n+1 , c02 = 1
2σ

1
n+1

0 = 1
2 (1 + s(p0–1)

p0
) 1

n+1 ,

and ci = σ
1

n+1
i = (1 + s(pi–1)

pi
) 1

n+1 for1 ≤ i ≤ n. As a consequence,

‖u‖Lγ
s

≤ (
c01‖u‖ 1

n+1

L
γ ∗

0
p0

+ c02
∥∥(t∂t)u

∥∥ 1
n+1

L
γ ∗

0
p0

) n∏

i=1

ci‖∂xi u‖ 1
n+1

L
γ ∗

i
pi

. (3.7)
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Case 2: There exists at least one pi ∈ {p0, p1, . . . , pn} such that pi = 1.
Without loss of generality, set p0, p1, p2, . . . , pi0 = 1 and pi0+1, . . . , pn > 1. We deduce that

σi = 1(0 ≤ i ≤ i0), σi > 1(i0 + 1 ≤ i ≤ n), and 1
s = 1

n+1 (i0 +
∑n

i=i0+1
1
pi

). Thus inequality (3.4)
becomes

2
n+1

n

∫

Rn

∫

R+

(
t

n+1
s –γ

∣∣u(t, x)
∣∣)s dt

t
dx

≤
[∣∣∣∣

n + 1
s

– γ

∣∣∣∣
∫

Rn

∫

R+

t
n+1

s –γ
∣∣u(t, x)

∣∣dt
t

dx +
∫

Rn

∫

R+

(
t

n+1
s –γ

∣∣(t∂t)u(t, x)
∣∣)dt

t
dx

] 1
n

×
( i0∏

i=1

∫

Rn

∫

R+

t
n+1

s –γ
∣∣∂xi u(t, x)

∣∣dt
t

dx

) 1
n

×
( n∏

i=i0+1

∫

Rn

∫

R+

σi
(
t

n+1
s –γ

∣∣u(t, x)
∣∣)σi–1t

n+1
s –γ

∣∣∂xi u(t, x)
∣∣dt

t
dx

) 1
n

=: (Î1 + Î2)
1
n Î3 Î4.

For Î4, setting 1
pi

+ 1
p′

i
= 1 (i0 + 1 ≤ i ≤ n) and using Hölder’s inequality again, we have

Î4 ≤
n∏

i=i0+1

‖u‖
s

np′
i

Lγ
s

n∏

i=i0+1

σi
1
n ‖∂xi u‖ 1

n

L
–( n+1

s –γ – n+1
pi )

pi

.

Further, it follows from
∑n

i=i0+1
s

np′
i

= s
n (n – i0 –

∑n
i=i0+1

1
pi

) = s – n+1
n that

2
n+1

n ‖u‖ n+1
n

Lγ
s

≤
(∣∣∣∣

n + 1
s

– γ

∣∣∣∣‖u‖
L

–( n+1
s –γ –n–1)

1
+

∥∥(t∂t)u
∥∥

L
–( n+1

s –γ –n–1)
1

) 1
n

×
( i0∏

i=1

‖∂xi u‖
L

–( n+1
s –γ –n–1)

1

) 1
n
( n∏

i=i0+1

σi‖∂xi u‖
L

–( n+1
s –γ – n+1

pi )
pi

) 1
n

.

Hence we can acquire that

‖u‖Lγ
s

≤ 1
2

(∣∣∣∣
n + 1

s
– γ

∣∣∣∣

1
n+1 ‖u‖ 1

n+1

L
–( n+1

s –γ –n–1)
1

+
∥∥(t∂t)u

∥∥ 1
n+1

L
–( n+1

s –γ –n–1)
1

)

×
( i0∏

i=1

‖∂xi u‖
L

–( n+1
s –γ –n–1)

1

) 1
n+1 n∏

i=i0+1

σi
1

n+1 ‖∂xi u‖ 1
n+1

L
–( n+1

s –γ – n+1
pi )

pi

=
(
c01‖u‖ 1

n+1

L
γ ∗

0
p0

+ c02
∥∥(t∂t)u

∥∥ 1
n+1

L
γ ∗

0
p0

) n∏

i=1

ci‖∂xi u‖ 1
n+1

L
γ ∗

i
pi

,

where c01, c02, ci(1 ≤ i ≤ n) and γ ∗
i (0 ≤ i ≤ n) are the same as those in (3.7). Theorem 1.1

is proved. �
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4 Proofs of Theorem 1.3 and Theorem 1.5
4.1 Proof of Theorem 1.3

Proof Let σi = 1 + s(1 – 1
pi

) ≥ 1 and vi(t, x) = (t
n+q+1

s –γ |u(t, x)|)σi for 0 ≤ i ≤ n + q. Since
1
s = 1

n+q+1 (
∑n+q

i=0
1
pi

– 1), then we have
∑n+q

i=0 σi = (n + q)s.
For u(t, x, y) ∈ C∞

0 (Rn+q+1
+ ), it holds that

2v0(t, x, y) =
∫ t

0
τ

∂v0(τ , x, y)
∂τ

dτ

τ
–

∫ +∞

t
τ

∂v0(τ , x, y)
∂τ

dτ

τ
.

Thus

∣∣2v0(t, x, y)
∣∣ ≤

∫ t

0

∣∣∣∣τ
∂v0(τ , x, y)

∂τ

∣∣∣∣
dτ

τ
+

∫ +∞

t

∣∣∣∣τ
∂v0(τ , x, y)

∂τ

∣∣∣∣
dτ

τ

≤
∫ +∞

0

∣∣(t∂t)v0(t, x, y)
∣∣dt

t
.

Also, for 1 ≤ i ≤ n, one has

∣∣2vi(t, x, y)
∣∣ ≤

∫ xi

–∞

∣∣∣∣
∂vi(t, x1, x2, . . . , xi–1, x̂i, xi+1, . . . , xn, y)

∂ x̂i

∣∣∣∣dx̂i

+
∫ +∞

xi

∣∣∣∣
∂vi(t, x1, x2, . . . , xi–1, x̂i, xi+1, . . . , xn, y)

∂ x̂i

∣∣∣∣dx̂i

≤
∫ +∞

–∞

∣∣∂xi vi(t, x, y)
∣∣dxi,

where y = (yn+1, yn+2, . . . , yn+q). Similarly, for n + 1 ≤ i ≤ n + q, we derive

∣∣2vi(t, x, y)
∣∣ ≤

∫ yi

–∞

∣∣∣∣
∂vi(t, x, yn+1, . . . , yi–1, ŷi, yi+1, . . . , yn+q)

∂ ŷi

∣∣∣∣dŷi

+
∫ +∞

yi

∣∣∣∣
∂vi(t, x, yn+1, . . . , yi–1, ŷi, yi+1, . . . , yn+q)

∂ ŷi

∣∣∣∣dŷi

=
∫ +∞

–∞

∣∣(t∂ŷi )vi(t, x, yn+1, . . . , yi–1, ŷi, yi+1, . . . , yn+q)
∣∣dŷi

t

=:
∫ +∞

–∞

∣∣(t∂yi )vi(t, x, y)
∣∣dyi

t
,

where x = (x1, x2, . . . , xn) ∈R
n. By multiplying the n + q + 1 inequalities above, we have

n+q∏

i=0

∣∣2vi(t, x)
∣∣ = 2n+q+1(t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)

∑n+q
i=0 σi

= 2n+q+1(t
n+q+1

s –γ
∣∣u(t, x, y)

∣∣)s(n+q)

≤
∫ +∞

0

∣∣(t∂t)v0(t, x, y)
∣∣dt

t

n∏

i=1

∫ +∞

–∞

∣∣∂xi vi(t, x, y)
∣∣dxi

×
n+q∏

i=n+1

∫ +∞

–∞

∣∣(t∂yi )vi(t, x, y)
∣∣dyi

t
.



Chen et al. Journal of Inequalities and Applications        (2019) 2019:260 Page 12 of 16

That implies

2
n+q+1

n+q
(
t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)s ≤

(∫ +∞

0

∣∣(t∂t)v0(t, x, y)
∣∣dt

t

) 1
n+q

×
n∏

i=1

(∫ +∞

–∞

∣∣∂xi vi(t, x, y)
∣∣dxi

) 1
n+q

×
n+q∏

i=n+1

(∫ +∞

–∞

∣∣(t∂yi )vi(t, x, y)
∣∣dyi

t

) 1
n+q

.

Now integrating these inequalities over the interval (0, +∞) with respect to dt
t and using

Hölder inequality will lead to

2
n+q+1

n+q

∫ +∞

0

(
t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)s dt

t

≤
(∫ +∞

0

∣∣(t∂t)v0(t, x, y)
∣∣dt

t

) 1
n+q n∏

i=1

(∫ +∞

0

∫ +∞

–∞

∣∣∂xi vi(t, x, y)
∣∣dxi

dt
t

) 1
n+q

×
n+q∏

i=n+1

(∫ +∞

0

∫ +∞

–∞

∣∣(t∂yi )vi(t, x, y)
∣∣dyi

t
dt
t

) 1
n+q

.

Then integrating over the interval (–∞, +∞) with respect to x1, x2, . . . , xn and dyn+1
t , . . . ,

dyn+q
t respectively and using Hölder’s inequality again, we obtain by setting dη := dt

t dx dy
t

and N = n + q + 1 that

2
n+q+1

n+1

∫

R
N
+

(
t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)s dη

≤
(∫

R
N
+

∣∣(t∂t)v0(t, x, y)
∣∣dη

) 1
n+q n∏

i=1

(∫

R
N
+

∣∣∂xi vi(t, x, y)
∣∣dη

) 1
n+q

×
n+q∏

i=n+1

(∫

R
N
+

∣∣(t∂yi )vi(t, x, y)
∣∣dη

) 1
n+q

. (4.1)

For 1 ≤ i ≤ n, we acquire |∂xi |u(t, x, y)|| = |∂xi (uū) 1
2 | ≤ 1

2 |u|–1(|ū∂xi u| + |u∂xi ū|) ≤
|∂xi u(t, x, y)|. Similar to this deduction, it holds that |(t∂t)|u(t, x, y)|| ≤ |(t∂t)u(t, x, y)| and
|(t∂yi )|u(t, x, y)|| ≤ |(t∂yi )u(t, x, y)| for n + 1 ≤ i ≤ n + q.

Consequently, for 1 ≤ i ≤ n, we have

∣∣∂xi vi(t, x, y)
∣∣ =

∣∣∂xi

(
t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)σi

∣∣

≤ σi
(
t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)σi–1t

n+q+1
s –γ

∣∣∂xi u(t, x, y)
∣∣, (4.2)

∣∣(t∂t)v0(t, x, y)
∣∣ ≤ σ0

(
t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)σ0–1

[∣∣∣∣
n + q + 1

s
– γ

∣∣∣∣t
n+q+1

s –γ
∣∣u(t, x, y)

∣∣

+ t
n+q+1

s –γ
∣∣(t∂t)u(t, x, y)

∣∣
]

. (4.3)
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Also, for n + 1 ≤ i ≤ n + q, we have

∣∣(t∂yi )vi(t, x, y)
∣∣ ≤ σi

(
t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)σi–1t

n+q+1
s –γ

∣∣(t∂yi )u(t, x, y)
∣∣. (4.4)

After rewriting the corresponding parts of (4.1) by (4.2), (4.3), and (4.4), we get

2
n+q+1

n+q

∫

R
N
+

(
t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)s dη

≤
[
σ0

∣∣∣∣
n + q + 1

s
– γ

∣∣∣∣
∫

R
N
+

(
t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)σ0–1(t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)dη

+ σ0

∫

R
N
+

(
t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)σ0–1(t

n+q+1
s –γ

∣∣(t∂t)u(t, x, y)
∣∣)dη

] 1
n+q

×
n∏

i=1

[∫

R
N
+

σi
(
t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)σi–1(t

n+q+1
s –γ

∣∣∂xi u(t, x, y)
∣∣)dη

] 1
n+q

×
n+q∏

i=n+1

[∫

R
N
+

σi
(
t

n+q+1
s –γ

∣∣u(t, x, y)
∣∣)σi–1(t

n+q+1
s –γ

∣∣(t∂yi )u(t, x, y)
∣∣)dη

] 1
n+q

=: (I1 + I2)
1
n · I3 · I4.

There are still two cases similar to the proof of Theorem 1.1, i.e., the case of pi > 1 for
0 ≤ i ≤ n+q and the case that there exists at least one pi ∈ {p0, p1, . . . , pn+q} such that pi = 1.
Since the proof process here is also analogous to the corresponding part in the proof of
Theorem 1.1, then we omit it here, Theorem 1.3 is proved. �

4.2 Proof of Theorem 1.5

Proof Let σi = 1 + s(1 – 1
pi

) ≥ 1 and vi(r, x, t) = (r n+2
s –γ̄ t n+2

s –γ |u(r, x, t)|)σi for 0 ≤ i ≤ n + 1.
Due to 1

s = 1
n+2 (

∑n+1
i=0

1
pi

– 1), we have
∑n+1

i=0 σi = (n + 1)s.
Since u(r, x, t) ∈ C∞

0 (R+ ×R
n ×R+), then we obtain, for i = 0 and r > 0,

2v0(r, x, t) =
∫ r

0
(τ∂τ )v0(τ , x, t)

dτ

τ
–

∫ +∞

r
(τ∂τ )v0(τ , x, t)

dτ

τ
.

Thus

∣∣2v0(r, x, t)
∣∣ ≤

∫ r

0

∣∣(τ∂τ )v0(τ , x, y)
∣∣dτ

τ
+

∫ +∞

r

∣∣(τ∂τ )v0(τ , x, t)
∣∣dτ

τ

=
∫ +∞

0

∣∣(r∂r)v0(r, x, t)
∣∣dr

r
.

For 1 ≤ i ≤ n, we obtain, for r, t ∈R+,

∣∣2vi(r, x, t)
∣∣ ≤

∫ xi

–∞

∣∣∂x̂i vi(r, x1, x2, . . . , xi–1, x̂i, xi+1, . . . , xn, t)
∣∣dx̂i

+
∫ +∞

xi

∣∣∂x̂i vi(r, x1, x2, . . . , xi–1, x̂i, xi+1, . . . , xn, t)
∣∣dx̂i

=
∫ +∞

–∞

∣∣∂xi vi(r, x, t)
∣∣dxi.
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Similarly, for r, t > 0,

∣∣2vn+1(r, x, t)
∣∣ ≤

∫ t

0

∣∣(rμ∂μ)vn+1(r, x,μ)
∣∣dμ

rμ
+

∫ +∞

t

∣∣(rμ∂μ)vn+1(r, x,μ)
∣∣dμ

rμ

=
∫ +∞

0

∣∣(rμ∂μ)vn+1(r, x,μ)
∣∣dμ

rμ

=:
∫ +∞

0

∣∣(rt∂t)vn+1(r, x, t)
∣∣dt

rt
,

where x = (x1, x2, . . . , xn) ∈R
n. By multiplying the n + 2 inequalities above, we have

n+1∏

i=0

∣∣2vi(r, x, t)
∣∣ = 2n+2(r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)s(n+1)

≤
∫ +∞

0

∣∣(r∂r)v0(r, x, t)
∣∣dr

r

n∏

i=1

∫ +∞

–∞

∣∣∂xi vi(r, x, t)
∣∣dxi

×
∫ +∞

0

∣∣(rt∂t)vn+1(r, x, t)
∣∣dt

rt
.

That means

2
n+2
n+1

(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)s

≤
(∫ +∞

0

∣∣(r∂r)v0(r, x, t)
∣∣dr

r

) 1
n+1 n∏

i=1

(∫ +∞

–∞

∣∣∂xi vi(r, x, t)
∣∣dxi

) 1
n+1

×
(∫ +∞

0

∣∣(rt∂t)vn+1(r, x, t)
∣∣dt

rt

) 1
n+1

.

Now integrating over the interval (0, +∞) with respect to dr
r and dt

rt and using Hölder’s
inequality respectively, we obtain

2
n+2
n+1

∫ +∞

0

∫ +∞

0

(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)s dr

r
dt
rt

≤
(∫ +∞

0

∫ +∞

0

∣∣(r∂r)v0(r, x, t)
∣∣dr

r
dt
rt

) 1
n+1

(∫ +∞

0

∫ +∞

0

∣∣(rt∂t)vn+1(r, x, t)
∣∣dt

rt
dr
r

) 1
n+1

×
n∏

i=1

(∫ +∞

0

∫ +∞

0

∫ +∞

–∞

∣∣∂xi vi(r, x, t)
∣∣dxi

dr
r

dt
rt

) 1
n+1

.

Then from integrating over the interval (–∞, +∞) with x1, x2, . . . , xn respectively and
using Hölder’s inequality again, we derive that

2
n+2
n+1

∫

R+

∫

Rn

∫

R+

(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)s dr

r
dx

dt
rt

≤
(∫

R+

∫

Rn

∫

R+

∣∣(r∂r)v0(r, x, t)
∣∣dr

r
dx

dt
rt

) 1
n+1
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×
(∫

R+

∫

Rn

∫

R+

∣∣(rt∂t)vn+1(r, x, t)
∣∣dr

r
dx

dt
rt

) 1
n+1

×
n∏

i=1

(∫

R+

∫

Rn

∫

R+

∣∣∂xi vi(r, x, t)
∣∣dr

r
dx

dt
rt

) 1
n+1

. (4.5)

Set dη := dr
r dx dt

rt , and N = n + 2. Similar to the estimation in Theorem 1.3, we ac-
quire that |∂xi |u(r, x, t)|| ≤ |∂xi u(r, x, t)| for 1 ≤ i ≤ n, |(r∂r)|u(r, x, t)|| ≤ |(r∂r)u(r, x, t)| and
|(rt∂t)|u(r, x, t)|| ≤ |(rt∂t)u(r, x, t)|. As a result,

∣∣∂xi vi(r, x, t)
∣∣ =

∣∣∂xi

(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)σi

∣∣

≤ σi
(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)σi–1r

n+2
s –γ̄ t

n+2
s –γ

∣∣∂xi u(r, x, t)
∣∣ (4.6)

for 1 ≤ i ≤ n,

∣∣(r∂r)v0(r, x, t)
∣∣

≤ σ0
(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)σ0–1

[∣∣∣∣
n + 2

s
– γ̄

∣∣∣∣r
n+2

s –γ̄ t
n+2

s –γ
∣∣u(r, x, t)

∣∣

+ r
n+2

s –γ̄ t
n+2

s –γ
∣∣(r∂r)u(r, x, t)

∣∣
]

(4.7)

and

∣∣(rt∂t)vn+1(r, x, t)
∣∣

≤ σn+1
(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)σn+1–1

[∣∣∣∣
n + 2

s
– γ

∣∣∣∣r
n+2

s –γ̄ +1t
n+2

s –γ

× ∣∣u(r, x, t)
∣∣ + r

n+2
s –γ̄ t

n+2
s –γ

∣∣(rt∂t)u(r, x, t)
∣∣
]

. (4.8)

Substituting (4.6), (4.7), and (4.8) into (4.5), it is easy to see

2
n+2
n+1

∫

R
N
+

(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)s dη

≤
[
σ0

∣∣∣∣
n + 2

s
– γ̄

∣∣∣∣
∫

R
N
+

(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)σ0–1(r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)dη

+ σ0

∫

R
N
+

(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)σ0–1(r

n+2
s –γ̄ t

n+2
s –γ

∣∣(r∂r)u(r, x, t)
∣∣)dη

] 1
n+1

×
n∏

i=1

(∫

R
N
+

σi
(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)σi–1(r

n+2
s –γ̄ t

n+2
s –γ

∣∣∂xi u(r, x, t)
∣∣)dη

) 1
n+1

×
[
σn+1

∣∣∣∣
n + 2

s
– γ

∣∣∣∣
∫

R
N
+

(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)σn+1–1

× (
r

n+2
s –γ̄ +1t

n+2
s –γ

∣∣u(r, x, t)
∣∣)dη + σn+1

∫

R
N
+

(
r

n+2
s –γ̄ t

n+2
s –γ

∣∣u(r, x, t)
∣∣)σn+1–1
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× (
r

n+2
s –γ̄ t

n+2
s –γ

∣∣(rt∂t)u(r, x, t)
∣∣)dη

] 1
n+1

=: (I1 + I2)
1

n+1 · I3(I4 + I5)
1

n+1 .

Considering that the remaining proofs will be the same as those in both Theorem 1.1
and Theorem 1.3, then Theorem 1.5 is proved. �
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