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Abstract
In this paper, we are interested in the dilation problem on frame generator dual pairs
for a unitary representation in Hilbert spaces. We show the existence of a Riesz
generator dilation dual pair of a frame generator dual pair in Hilbert spaces. Then we
reveal the uniqueness of such dilations in the sense of similarity and give a
characterization of the dilation of frame generator alternate dual pairs by that of the
canonical dual pair in terms of a special operator. We also exhibit that the
corresponding operator between two dilations of a frame generator dual pair is in a
special structure.
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1 Introduction
In [12], Sun initiated the concept of g-frame as follows. Let J be a finite or countable index
set. Let Ai ∈ B(H , Hi), where Hi is a separable Hilbert space for any i ∈ J. If there exist two
constants a, b such that

a‖f ‖2 ≤
∑

i∈J
‖Aif ‖2 ≤ b‖f ‖2, ∀f ∈ H ,

we call {Ai}i∈J a g-frame for H . {Ai}i∈J is called a tight g-frame for H if a = b. Specially, if
a = b = 1, we say that {Ai}i∈J is a Parseval g-frame for H . If only the right-hand inequality
holds, then {Ai}i∈J is called a g-Bessel sequence for H . If span{A∗

i Hi}i∈J = H , we say that
{Ai}i∈J is g-complete in H . If {Ai}i∈J is g-complete such that

a
∥∥{gi}i∈J

∥∥2 ≤
∥∥∥∥
∑

i∈J
A∗

i gi

∥∥∥∥
2

≤ b
∥∥{gi}i∈J

∥∥2, ∀{gi}i∈J ∈
⊕

i∈J
Hi,

we call {Ai}i∈J a g-Riesz basis for H . As we know, if {Ai}i∈J is a g-frame for H , we define
SAf =

∑
i∈J A∗

i Aif for any f ∈ H , then SA is a well-defined, bounded, positive, invertible
operator by [12]. We call SA a frame operator of {Ai}i∈J. Another basic fact is that {Ãi :
Ãi = AiS–1

A }i∈J is a g-frame for H , we call it a canonical dual g-frame of {Ai}i∈J. Extensively,
by [10], if {Bi}i∈J is a g-frame for H such that f =

∑
i∈J B∗

i Aif for every f ∈ H , we say that
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it is a dual g-frame of {Ai}i∈J. Actually, g-frames and operator valued frames (see [9, 10])
are equivalent. Recently, g-frames or operator valued frames in Hilbert spaces have been
studied intensively; for more details, see [1, 2, 7, 8, 10–12] and the references therein.

In order to understand the structured g-frames more deeply, Guo studied the wander-
ing generators for a unitary system in [6]. In [10] and [9], the authors studied the frame
generators for group representations. In [11] the author studied the frame generator for a
group-like unitary system. These researchers showed that such an abstract way to study
the structured g-frames is very feasible and fruitful. We denote a unitary representation
π for a countable group G by (G,π , H), which is a mapping g �→ π (g) from G into the set
of unitary operators on a Hilbert space H such that π (g)π (h) = π (gh) for any g, h ∈ G . In
this paper, we focus on the dilation problem on frame generator dual pairs for a unitary
representation in Hilbert spaces. Firstly, in order to establish our techniques, we give a
direct proof for the existence of a Riesz generator dilation dual pair of a frame generator
dual pair in Hilbert spaces. As there may be more than one dual frame generator of a given
frame generator in general, there may be different pairs of frame generator dual pairs. Our
main result characterizes the relations between the dilations of all these pairs. We illus-
trate that all the dilations can be mutually transformed by a type of special structured
lower triangular operator matrices.

Throughout this paper, H , H0 denote separable Hilbert spaces. Let B(H , H0) denote all
the bounded linear operators from H to H0 and B(H) := B(H , H). If M, N are closed sub-
spaces of H , H = M � N denotes that M + N = H and M ∩ N = {0}. We use M⊥ to de-
note the orthogonal complement of a closed subspace M contained in H . For an operator
T ∈ B(H , H0), we let ker T denote the null space of T and ran T denote the range space of T .
For a subsetS ⊂ B(H),S ′ denotes the commutant ofS . We denote by Aπ (G) := {Aπ (g)}g∈G
for A ∈ B(H , H0).

Definition 1.1 ([10]) Let (G,π , H) be a unitary representation of the countable group G
on a Hilbert space H . Suppose A ∈ B(H , H0). Then

(1) A is called a Bessel generator of (G,π , H) if Aπ (G) is a g-Bessel sequence for H .
(2) A is called a (resp. Parseval, tight) frame generator of (G,π , H) if Aπ (G) is a (resp.

Parseval, tight) g-frame for H .
(3) A is called a Riesz (resp. orthonormal) generator of (G,π , H) if Aπ (G) is a g-Riesz

(resp. g-orthonormal) basis for H .

Let A ∈ B(H , H0) be a Bessel generator of (G,π , H). For any f ∈ H , the analysis operator
of A is defined as

θA : H → l2(G) ⊗ H0, θAf =
∑

g∈G
χg ⊗ Aπ (g)∗f ,

where {χg}g∈G is the orthonormal basis for l2(G). And the frame operator of A is defined
as

SA : H → H , SAf =
∑

g∈G
π (g)A∗Aπ (g)∗f .
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By [10], for any k ∈ H0, the left regular representation of G on l2(G) ⊗ H0 is defined as

Λ(g)(χe ⊗ k) = (λg ⊗ IH0 )(χe ⊗ k) = χg ⊗ k, ∀g ∈ G, k ∈ H0,

where λ denotes the left regular representation of G on l2(G), IH0 is the identity operator
on H0, e ∈ G is the unit element.

For every g ∈ G , define Qg : l2(G) ⊗ H0 → H0 as

Qg(χh ⊗ k) = δg,hk, ∀h ∈ G, k ∈ H0,

where δg,h = 1 for h = g and δg,h = 0 for h �= g .

Lemma 1.2 ([11]) Qh is an orthonormal generator of (G,Λ, l2(G) ⊗ H0) for any h ∈ G .

Definition 1.3 Let (G,π , H) be a unitary representation of G on H . If A, B ∈ B(H , H0) such
that Bπ (G) is a (canonical) dual g-frame (resp. g-Riesz basis) of the g-frame (resp. g-Riesz
basis) Aπ (G), we call B a (canonical) dual frame (resp. Riesz) generator of A (with the
same structure). In this case, (A, B) is called a pair of dual frame (resp. Riesz) generators
of (G,π , H) or a frame (resp. Riesz) generator dual pair.

Lemma 1.4 Let (G,π , H) be a unitary representation of G on H , A, B be any Bessel gener-
ators of (G,π , H). Then θAθ∗

B ∈ Λ(G)′.

Proof For any g, h ∈ G , k ∈ H0, we have

θAθ∗
B
(
Λ(g)(χh ⊗ k)

)
= θAπ (gh)B∗k =

∑

g′∈G
χg′ ⊗ Aπ

(
g ′)∗

π (gh)B∗k

=
∑

g′∈G
Λ(g)

(
χg′ ⊗ Aπ

(
g ′)∗

π (h)B∗k
)

= Λ(g)θAθ∗
B(χh ⊗ k). �

Theorem 1.5 Let (G,π , H) be a unitary representation of G on H . Then the following are
equivalent:

(1) (A, B) is a frame generator dual pair of (G,π , H), where A, B ∈ B(H , H0).
(2) There exist a Hilbert space K ⊃ H , a unitary representation (G,σ , K) of G on K , and

a Riesz generator dual pair (C, D) of (G,σ , K) such that CP = A, DP = B, H is
σ -invariant and π = σ |H , where C, D ∈ B(K , H0), P is the orthogonal projection from
K onto H .

Proof Suppose that (A, B) is a frame generator dual pair of (G,π , H). Let M = ran θA, N =
ran θB, PA, PB be the orthogonal projection from l2(G) ⊗ H0 onto M, N respectively. We
can easily get that

PA = θ
AS

– 1
2

A

θ∗
AS

– 1
2

A

= θAS–1
A θ∗

A.
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And then PAθB = θAS–1
A . It follows that PA|N : N → M is invertible. Let Il2 be the identity

operator on l2(G) ⊗ H0. Since

Il2 =

(
PA 0
0 P⊥

A

)
:

(
N

N⊥

)
→

(
M

M⊥

)
,

P⊥
A : N⊥ → M⊥ is invertible. Similarly, P⊥

B : M⊥ → N⊥ is invertible.
Let K = H ⊕ N⊥, σ (g) = π (g) ⊕ Λ(g) for any g ∈ G , C = A ⊕ QeP⊥

B ∈ B(K , H0). Thus
σ (g)C∗ = π (g)A∗ ⊕ Λ(g)P⊥

B Q∗
e for any g ∈ G . Hence, by Lemma 1.4, we have

σ (g)C∗ = π (g)A∗ ⊕ P⊥
B Λ(g)Q∗

e .

Therefore, for every x ∈ H , y ∈ N⊥, we get

θC(x ⊕ y) =
∑

g∈G
χg ⊗ Cσ (g)∗(x ⊕ y)

=
∑

g∈G
χg ⊗ (

Aπ (g)∗x + QeΛ(g)∗P⊥
B y

)

= θAx + P⊥
B y.

Let T = θAθ∗
B . Then T2 = T . We get l2(G) ⊗ H0 = M � N⊥. It follows that θC is invertible.

Hence C is a Riesz generator of (G,σ , K). Obviously, A = CP, where P is the orthogonal
projection from K onto H , and H is σ -invariant.

Since ρ := P⊥
A P⊥

B : N⊥ → M⊥ is invertible, there exists τ ∈ B(M⊥, N⊥) such that τρ = P⊥
B .

Let D = B ⊕ QeP⊥
A τ ∗ ∈ B(K , H0).

Let Λ1(g) = P⊥
A Λ(g)P⊥

A , Λ2(g) = P⊥
B Λ(g)P⊥

B for any g ∈ G . Then, for arbitrary u ∈ N⊥,

ρΛ2(g)u = ρP⊥
B Λ(g)P⊥

B u = P⊥
A P⊥

B P⊥
B Λ(g)P⊥

B u

= Λ(g)P⊥
A P⊥

B u = P⊥
A Λ(g)P⊥

A ρu

= Λ1(g)ρu.

Hence, τΛ1(g)v = Λ2(g)τv for every v ∈ M⊥.
Therefore, for any g ∈ G ,

σ (g)D∗ = π (g)B∗ ⊕ Λ(g)τP⊥
A Q∗

e = π (g)B∗ ⊕ τP⊥
A Λ(g)Q∗

e .

Obviously, QeΛ(G)P⊥
A τ ∗ = {QeΛ(g)P⊥

A τ ∗}g∈G is a g-frame for N⊥. It follows that QeP⊥
A τ ∗ is

a frame generator of (G,Λ, N⊥).
Hence, for arbitrary x ∈ H , y ∈ N⊥, we have

θD(x ⊕ y) =
∑

g∈G
χg ⊗ Dσ (g)∗(x ⊕ y)

=
∑

g∈G
χg ⊗ (

Bπ (g)∗x + QeP⊥
A τ ∗Λ(g)∗y

)

= θBx + P⊥
A τ ∗y.
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Similarly, since l2(G) ⊗ H0 = M⊥ � N , θD is invertible. Then D is a Riesz generator of
(G,σ , K) and B = DP.

For any x, x1 ∈ H , y, y1 ∈ N⊥,

∑

g∈G

〈
σ (g)C∗Dσ (g)∗x ⊕ y, x1 ⊕ y1

〉

=
∑

g∈G

〈(
π (g)A∗ ⊕ P⊥

B Λ(g)Q∗
e
)(

Bπ (g)∗ ⊕ QeΛ(g)∗P⊥
A τ ∗)(x ⊕ y), x1 ⊕ y1

〉

=
∑

g∈G

〈(
Bπ (g)∗ ⊕ QeΛ(g)∗P⊥

A τ ∗)(x ⊕ y),
(
Aπ (g)∗ ⊕ QeΛ(g)∗P⊥

B
)
(x1 ⊕ y1)

〉

=
∑

g∈G

〈
Bπ (g)∗x + QeΛ(g)∗P⊥

A τ ∗y, Aπ (g)∗x1 + QeΛ(g)∗P⊥
B y1

〉

=
∑

g∈G

〈
Bπ (g)∗x, Aπ (g)∗x1

〉
+

∑

g∈G

〈
Bπ (g)∗x, QeΛ(g)∗P⊥

B y1
〉

+
∑

g∈G

〈
QeΛ

∗
g P⊥

A τ ∗y, Aπ (g)∗x1
〉
+

∑

g∈G

〈
QeΛ(g)∗P⊥

A τ ∗y, QeΛ(g)∗P⊥
B y1

〉
.

= 〈θBx, θAx1〉 +
〈
θBx, P⊥

B y1
〉
+

〈
P⊥

A τ ∗y, θAx1
〉
+

〈
P⊥

A τ ∗y, P⊥
B y1

〉

= 〈x, x1〉 + 〈y, y1〉 = 〈x ⊕ y, x1 ⊕ y1〉,

which implies (C, D) is a Riesz generator dual pair of (σ ,G, K).
The converse is obvious. �

Remark 1.6 (1) From the proof above, the isomorphism of N , M is critical. In the following
we provide an easier way of the proof.

In fact, as above, C ∈ B(K , H0) is a Riesz generator of (G,σ , K). So SC ∈ σ (G)′. And then,
CS–1

C ∈ B(K , H0) is a Riesz generator of (G,σ , K) evidently.
Let CS–1

C = D1 ⊕ D2, where D1 ∈ B(H , H0), D2 ∈ B(N⊥, H0). Then D1 = CS–1
C P. We need

to show D1 = B.
Identify H with H ⊕ {0}. For arbitrary x, x1 ∈ H ,

〈x, x1〉 = 〈x ⊕ 0, x1 ⊕ 0〉
=

∑

g∈G

〈
σ (g)C∗CS–1

C σ (g)∗x ⊕ 0, x1 ⊕ 0
〉

=
∑

g∈G

〈(
π (g)A∗ ⊕ P⊥

B Λ(g)Q∗
e
)(

D1π (g)∗ ⊕ D2Λ(g)∗
)
(x ⊕ 0), x1 ⊕ 0

〉

=
∑

g∈G

〈(
D1π (g)∗ ⊕ D2Λ(g)∗

)
(x ⊕ 0),

(
Aπ (g)∗ ⊕ QeΛ(g)∗P⊥

B
)
(x1 ⊕ 0)

〉

=
∑

g∈G

〈
D1π (g)∗x, Aπ (g)∗x1

〉
,

which means D1 ∈ B(H , H0) is a dual frame generator of A.
Moreover, for any x, x1 ∈ H , y1 ∈ N⊥.

〈x, x1〉 = 〈x ⊕ 0, x1 ⊕ y1〉
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=
∑

g∈G

〈
σ (g)C∗CS–1

C σ (g)∗x ⊕ 0, x1 ⊕ y1
〉

=
∑

g∈G

〈
D1π (g)∗x, Aπ (g)∗x1 + QeP⊥

B Λ(g)∗y1
〉

= 〈x, x1〉 +
∑

g∈G

〈
D1π (g)∗x, QeP⊥

B Λ(g)∗y1
〉
.

Then

∑

g∈G

〈
D1π (g)∗x, QeP⊥

B Λ(g)∗y1
〉

= 〈θD1 x, y1〉 = 0.

We get ran θD1 ⊆ N = ran θB. Hence, for every x ∈ H , there exists x1 ∈ H such that θD1 x =
θBx1. Then

x = θ∗
AθD1 x = θ∗

AθBx1 = x1.

Therefore, for any x ∈ H , we obtain θD1 x = θBx, which implies B = D1.
(2) We can also have another way to prove B = D1 as follows.
For any x, x1 ∈ H , y1 ∈ N⊥, on the one hand,

〈x, x1〉 = 〈x ⊕ 0, x1 ⊕ y1〉
=

∑

g∈G

〈
σ (g)C∗CS–1

C σ (g)∗x ⊕ 0, x1 ⊕ y1
〉

=
∑

g∈G

〈
D1π (g)∗x, Cσ (g)∗(x1 ⊕ y1)

〉
.

On the other hand,

∑

g∈G

〈
Bπ (g)∗x, Cσ (g)∗(x1 ⊕ y1)

〉

=
∑

g∈G

〈
Bπ (g)∗x, Aπ (g)∗x1 + Q1P⊥

B Λ(g)∗y1
〉

= 〈x, x1〉.

Hence, θ∗
CθBx = θ∗

CθD1 x. Since θC is invertible, it follows that θBx = θD1 x, which means B =
D1.

Definition 1.7 Let (G,π , H), (G,π1, N1) be unitary representations of G on H , N1 respec-
tively, (A, B) be a pair of dual frame generators of (G,π , H), where A, B ∈ B(H , H0). If there
exist C1, D1 ∈ B(N1, H0) such that (E, Ẽ) is a Riesz generator dual pair of (G,σ1, H ⊕ N1),
where σ1 = π ⊕ π1, E = A ⊕ C1, Ẽ = B ⊕ D1. We call (E, Ẽ) a dilation of (A, B). (C1, D1) is
called a complementary generator pair of (A, B). Particularly, C1 is called a complementary
generator of A.

Theorem 1.5 illustrates that there exists a dilation for any pair of dual frame generators.
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In the next we show that the dilation of a dual frame generator pair is unique in the sense
of “similarity”.

Theorem 1.8 Let (G,π , H), (G,π1, N1), (G,π2, N2) be unitary representations ofG on H , N1,
N2 respectively, (A, B) be a pair of dual frame generators of (G,π , H), where A, B ∈ B(H , H0).
Suppose that (E, Ẽ) is a Riesz generator dual pair of (G,σ1, H ⊕ N1) which is also a dilation
of (A, B), where σ1 = π ⊕ π1, E = A ⊕ C1, C1 ∈ B(N1, H0), Ẽ is the canonical dual Riesz
generator of E. If there exist C2 ∈ B(N2, H0) and an invertible operator T ∈ B(N1, N2) such
that C1π1(g) = C2π2(g)T for every g ∈ G , then F is a Riesz generator of (G,σ2, H ⊕ N2),
where σ2 = π ⊕ π2, F = A ⊕ C2 ∈ B(H ⊕ N2, H0). Moreover, (F , F̃) is a Riesz generator dual
pair of (G,σ2, H ⊕ N2) which is also a dilation of (A, B), where F̃ is the canonical dual Riesz
generator of F .

Proof Since C1π1(g) = C2π2(g)T for any g ∈ G , we have

Fσ2(g) = Aπ (g) ⊕ C2π2(g) = Aπ (g) ⊕ C1π1(g)T–1 = Eσ1(g)
(
I ⊕ T–1),

which implies F is a Riesz generator of (G,σ2, H ⊕ N2) and A = FP2, where P2 is the or-
thogonal projection from H ⊕ N2 onto H .

Denote T̂ = I ⊕ T . As F̃ = FS–1
F , it follows that, for every g ∈ G ,

F̃σ2(g) = Fσ2(g)S–1
F = Eσ1(g)T̂–1S–1

F = Ẽσ1(g)SET̂–1S–1
F .

Besides, we can get SF = θ∗
F θF = (T̂∗)–1SET̂–1. Then

F̃σ2(g) = Ẽσ1(g)T̂∗ = Ẽσ1(g)
(
I ⊕ T∗).

Evidently, F̃σ2(g)P2 = Bπ (g). Specially, we have F̃P2 = B. �

In the following we exhibit that two different complementary generators of a given frame
generator are “similar”.

Theorem 1.9 Let (G,π , H), (G,π1, N1), (G,π2, N2) be unitary representations ofG on H , N1,
N2 respectively, (A, B) be a pair of dual frame generators of (G,π , H), where A, B ∈ B(H , H0).
Suppose that (E, Ẽ) is a Riesz generator dual pair of (G,σ1, H ⊕ N1) which is also a dilation
of (A, B), where σ1 = π ⊕π1, E = A⊕C1, C1 ∈ B(N1, H0), Ẽ is the canonical dual Riesz gener-
ator of E. If (F , F̃) is a Riesz generator dual pair of (G,σ2, H ⊕ N2) which is also a dilation of
(A, B), where σ2 = π ⊕π2, F = A ⊕ C2, C2 ∈ B(N2, H0), F̃ is the canonical dual Riesz genera-
tor of F , then there exists an invertible operator T ∈ B(N1, N2) such that C1π1(g) = C2π2(g)T
for every g ∈ G . In particular, Tπ1(g) = π2(g)T .

Proof Let Ẽ = B ⊕ D1, F̃ = B ⊕ D2, where D1 ∈ B(N1, H0), D2 ∈ B(N2, H0). Then, for every
x, y ∈ H , x1 ∈ N1, we get

〈x, y〉 = 〈x ⊕ 0, y ⊕ x1〉 =
〈
θ∗

EθẼ(x ⊕ 0), y ⊕ x1
〉

=
∑

g∈G

〈
Bπ (g)∗x, Aπ (g)∗y + C1π1(g)∗x1

〉

= 〈x, y〉 +
〈
x, θ∗

BθC1 x1
〉
.
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Thus θ∗
BθC1 = 0, which implies ran θC1 ⊆ (ran θB)⊥. Since E is a Riesz generator of (G,σ1, H ⊕

N1), by [2, Proposition 2.3] we have

l2(G) ⊗ H0 = ran θA � ran θC1 .

Hence, for any u ∈ (ran θB)⊥, there exist x ∈ H , x1 ∈ N1 such that u = θAx + θC1 x1. Then,
0 = θ∗

Bu = θ∗
BθAx + θ∗

BθC1 x1 = x, therefore, u = θC1 x1 ∈ ran θC1 , equivalently, (ran θB)⊥ ⊆
ran θC1 . Therefore, we obtain ran θC1 = (ran θB)⊥.

Similarly, we obtain ran θC2 = (ran θB)⊥. Then ran θC1 = ran θC2 . Hence, by [10, Proposi-
tion 4.3], there is an invertible operator T ∈ B(N1, N2) such that C1π1(g) = C2π2(g)T for
arbitrary g ∈ G .

Specially, for every x1 ∈ N1, we have x =
∑

g∈G π1(g)C∗
1 C̃1π1(g)∗x, where C̃1 ∈ B(N1, H0)

is the canonical dual frame generator of C1. Besides, for any h ∈ G ,

π2(h)
(
T∗)–1x =

∑

g∈G
π2(h)

(
T∗)–1

π1(g)C∗
1 C̃1π1(g)∗x

=
∑

g∈G
π2(hg)C∗

2 C̃1π1(hg)∗π1(h)x

=
∑

g∈G

(
T∗)–1

π1(hg)C∗
1 C̃1π1(hg)∗π1(h)x

=
(
T∗)–1

π1(h)x,

which implies Tπ1(g) = π2(g)T for every g ∈ G . �

By the proof of Theorem 1.8 and Theorem 1.9, two complementary generator pairs of
a frame generator dual pair are “similar” by the operator pair (T , T∗), which implies that
complementary generator pairs are unique in the sense of “similarity”.

2 Characterization of all the dilations of a frame generator dual pair
The following is a result which describes the dilation of the frame generator canonical dual
pair.

Theorem 2.1 Let (G,π , H) be a unitary representation of G on H , (A, Ã) be a pair of dual
frame generators of (G,π , H), where A ∈ B(H , H0), Ã is the canonical dual frame generator
of A. Denote E = A ⊕ QeP⊥

A , Ẽ = Ã ⊕ QeP⊥
A ∈ B(H ⊕ M⊥, H0), where M = ran θA, PA is the

orthogonal projection from l2(G)⊗H0 onto M. Then (E, Ẽ) is a pair of dual Riesz generators
of (G,σ , H ⊕ M⊥) which is a dilation of (A, Ã), where σ := π ⊕ Λ, (G,Λ, l2(G) ⊗ H0) is the
left regular representation of G .

Proof Let C = QeP⊥
A ∈ B(M⊥, H0). By Lemma 1.4, CΛ(G) is a Parseval g-frame for M⊥ and

ran θA = ran θÃ = M, ran θC = M⊥.

Since θE(x⊕y) = θAx+θCy for any x ∈ H , y ∈ M⊥, we have θE is invertible, which means E is
a Riesz generator of (G,σ , H ⊕M⊥). Similarly, Ẽ is also a Riesz generator of (G,σ , H ⊕M⊥).
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For arbitrary x, y ∈ H , x1, y1 ∈ M⊥,

〈∑

g∈G
σ (g)E∗Ẽσ (g)∗(x ⊕ x1), y ⊕ y1

〉

=
〈∑

g∈G

(
π (g)A∗ ⊕ Λ(g)P⊥

A Q∗
e
)(

Ãπ (g)∗ ⊕ QeP⊥
A Λ(g)∗

)
(x ⊕ x1), y ⊕ y1

〉

=
∑

g∈G

〈
Ãπ (g)∗x + QeP⊥

A Λ(g)∗x1, Aπ (g)∗y + QeP⊥
A Λ(g)∗y1

〉

=
∑

g∈G

〈
Ãπ (g)∗x, Aπ (g)∗y

〉
+

∑

g∈G

〈
Ãπ (g)∗x, QeP⊥

A Λ(g)∗y1
〉

+
∑

g∈G

〈
QeP⊥

A Λ(g)∗x1, Aπ (g)∗y
〉
+

∑

g∈G

〈
QeP⊥

A Λ(g)∗x1, QeP⊥
A Λ(g)∗y1

〉

=
∑

g∈G

〈
Ãπ (g)∗x, Aπ (g)∗y

〉
+

∑

g∈G

〈
QeP⊥

A Λ(g)∗x1, QeP⊥
A Λ(g)∗y1

〉

= 〈x, y〉 + 〈x1, y1〉 = 〈x ⊕ x1, y ⊕ y1〉,

which means (E, Ẽ) is a pair of dual Riesz generators of (G,σ , H ⊕ M⊥). �

We call the dilation (E, Ẽ) in Theorem 2.1 the natural dilation of (A, Ã). If A ∈ B(H , H0) is
a frame generator of (G,π , H), let M = ran θA, σ = π ⊕ Λ, PA be the orthogonal projection
from l2(G)⊗H0 onto M. We can characterize all the dilations of frame generator dual pairs
in terms of the natural dilation by a type of special lower triangular operator matrices.

Theorem 2.2 Let (G,π , H) be a unitary representation of G on H , (A, B) be a frame gener-
ator alternate dual pair of (G,π , H), where A, B ∈ B(H , H0). Then there exists a pair of dual
g-Riesz bases (E′, Ẽ′) which is a dilation of the g-frame dual pair (Aπ (G), Bπ (G)) such that
E′ := {E′

g = Eσ (g)T∗}g∈G , where Ẽ′ := {̃E′
g}g∈G is the canonical dual g-frame of E′,

T =

(
IH 0
T ′ IM⊥

)
∈ B

(
H ⊕ M⊥)

,

T ′ ∈ B(H , M⊥). (Note that (E, Ẽ) is the natural dilation of (A, Ã) in Theorem 2.1.)

Proof Let Γ = Ã – B ∈ B(H , H0). Obviously, Γ is a Bessel generator of (G,π , H). Then

θ∗
Γ θA = –θ∗

BθA + θ ∗̃
AθA = 0,

which implies ran θΓ ⊥ ran θA. So T ′ := θΓ ∈ B(H , M⊥). Besides, T =
( IH 0

T ′ IM⊥
) ∈ B(H ⊕ M⊥)

is invertible. Hence, for any g ∈ G ,

Eσ (g)T∗ =
(
Aπ (g) ⊕ QeΛ(g)P⊥

A
)
(

IH (T ′)∗

0 IM⊥

)

= Aπ (g) ⊕ (
Aπ (g)

(
T ′)∗ + QeΛ(g)P⊥

A
)
.
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Evidently, E′ := {E′
g = Eσ (g)T∗}g∈G is a g-Riesz basis for H ⊕M⊥ and Aπ (g) = Eσ (g)T∗P for

every g ∈ G , where P is the orthogonal projection from H ⊕ M⊥ onto H . We can directly
get Ẽ′ = {̃E′

g := Ẽσ (g)T–1}g∈G is the canonical dual g-Riesz basis of E′. Moreover, for any
g ∈ G ,

Ẽσ (g)T–1 =
(
Ãπ (g) ⊕ QeΛ(g)P⊥

A
)
(

IH 0
–T ′ IM⊥

)

=
(
Ãπ (g) – QeΛ(g)P⊥

A T ′) ⊕ QeΛ(g)P⊥
A .

Obviously, (T ′)∗P⊥
A = (T ′)∗, where PA is the orthogonal projection from l2(G)⊗H0 onto M.

And then, for every g ∈ G , k ∈ H0, we obtain

(
T ′)∗P⊥

A Λ(g)Q∗
e k = –π (g)B∗k + π (g)Ã∗k.

Hence, Bπ (g) = Ãπ (g) – QeΛ(g)P⊥
A T ′ which means Ẽ′

g = Bπ (g) ⊕ QeΛ(g)P⊥
A and Bπ (g) =

Ẽ′
gP. �

The next conclusion is more general than Theorem 2.2.

Theorem 2.3 Let (G,π , H), (G,π2, N) be unitary representations of G on H , N respectively,
(A, B) be a frame generator alternate dual pair of (G,π , H), where A, B ∈ B(H , H0). If there
is an invertible operator T̃ ∈ B(M⊥, N) such that T̃Λ(g) = π2(g)T̃ for every g ∈ G , then
there exists a pair of dual Riesz generators (E′, Ẽ′) of (G,σ2, H ⊕ N) which is also a dilation
of (A, B) such that E′σ2(g) = Eσ (g)T∗ for any g ∈ G , where σ2 = π ⊕ π2, Ẽ′ is the canonical
dual frame generator of E′, T =

( IH 0
T ′ T̃

) ∈ B(H ⊕M⊥, H ⊕N), T ′ ∈ B(H , N). (Note that (E, Ẽ)
is the natural dilation of (A, Ã) in Theorem 2.1.)

Proof Let Γ = –B+Ã ∈ B(H , H0). It is easy to verify that Γ is a Bessel generator of (G,π , H).
Denote T ′ := T̃θΓ ∈ B(H , N). Then T is invertible and T–1 =

( IH 0
–T̃–1T ′ T̃–1

)
.

Let E′
g = Eσ (g)T∗ for every g ∈ G , thus

E′
g = Eσ (g)T∗ =

(
Aπ (g) ⊕ QeΛ(g)P⊥

A
)
(

IH (T ′)∗

0 T̃∗

)

= Aπ (g) ⊕ (
Aπ (g)

(
T ′)∗ + QeΛ(g)P⊥

A T̃∗)

= Aπ (g) ⊕ (
Aπ (g)θ∗

Γ T̃∗ + QeT̃∗π2(g)
)

= Aπ (g) ⊕ ((
Aθ∗

Γ T̃∗ + QeT̃∗)π2(g)
)

=
(
A ⊕ (

Aθ∗
Γ T̃∗ + QeT̃∗))(π (g) ⊕ π2(g)

)
.

Denote E′ := A ⊕ (Aθ∗
Γ T̃∗ + QeT̃∗) ∈ B(H ⊕ N , H0), σ2 = π ⊕ π2. Therefore, E′ is a Riesz

generator of (G,σ2, H ⊕ N) and A = E′P, where P is the orthogonal projection from H ⊕ N
onto H . Denote Ẽ′

g := Ẽσ (g)T–1 for any g ∈ G . It is easy to examine {̃E′
g}g∈G is the canonical

dual g-frame of {E′
g}g∈G . Then it is also a g-Riesz basis for H ⊕ N . Moreover, for any g ∈ G ,

Ẽσ (g)T–1 =
(
Ãπ (g) ⊕ QeΛ(g)P⊥

A
)
T–1
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=
(
Ãπ (g) ⊕ QeΛ(g)P⊥

A
)
(

IH 0
–T̃–1T ′ T̃–1

)

=
(
Ãπ (g) – QeΛ(g)P⊥

A T̃–1T ′) ⊕ QeΛ(g)P⊥
A T̃–1

=
(
Ãπ (g) – QeΛ(g)P⊥

A θΓ

) ⊕ QeΛ(g)P⊥
A T̃–1

=
(
Ãπ (g) –

(
Ãπ (g) – Bπ (g)

)) ⊕ QeΛ(g)P⊥
A T̃–1

= Bπ (g) ⊕ QeΛ(g)T̃–1

= Bπ (g) ⊕ QeT̃–1π2(g).

Denote Ẽ′ = B ⊕ QeT̃–1. Hence, Ẽ′ is a Riesz generator of (G,σ2, H ⊕ N) which is a dual
frame generator of E′ and such that B = Ẽ′P. �

The following result illustrates that if a dilation g-Riesz basis pair of a frame generator al-
ternate dual pair and that of the frame generator canonical dual pair are “similar” by a pair
of operators, then one of the corresponding operators is in the form of T in Theorem 2.3.

Theorem 2.4 Let (G,π , H) be a unitary representation of G on H , (A, B) be a frame gener-
ator alternate dual pair of (G,π , H), where A, B ∈ B(H , H0). If there exists a pair of dual g-
Riesz basis (E′, Ẽ′) for H ⊕N which is also a dilation of the dual g-frame pair (Aπ (G), Bπ (G))
such that E′ := {E′

g = Eσ (g)T∗}g∈G for any g ∈ G , where N is a Hilbert space, Ẽ′ is the canon-
ical dual g-Riesz basis of E′, T ∈ B(H ⊕ M⊥, H ⊕ N) is invertible. Then T has the following
form:

T =

(
IH 0
T ′ T̃

)
,

where T ′ ∈ B(H , N), T̃ ∈ B(M⊥, N). (Note that (E, Ẽ) is the natural dilation of (A, Ã) in
Theorem 2.1.)

Proof As in the proofs of Theorem 2.2 and Theorem 2.3, let Γ = –B + Ã ∈ B(H , H0).
Then Γ is a Bessel generator of (G,π , H). Let T0 =

( IH 0
θΓ IM⊥

) ∈ B(H ⊕ M⊥). Denote F :=
{Fg = Eσ (g)T∗

0 }g∈G . By Theorem 2.2, (F , F̃) is a dual g-Riesz basis pair for H ⊕ M⊥, which
is a dilation of (Aπ (G), Bπ (G)), where F̃ = {̃Fg := Ẽσ (g)T–1

0 }g∈G is the canonical dual g-
Riesz basis of F . Since (E′, Ẽ′) is a g-Riesz basis dual pair for H ⊕ N , which is a dilation
of (Aπ (G), Bπ (G)), for arbitrary g ∈ G , denote E′

g = Aπ (g) ⊕ Cg , Fg = Aπ (g) ⊕ C′
g , where

Cg ∈ B(N , H0), C′
g ∈ B(M⊥, H0). By the proof of Theorem 1.9, there is an invertible opera-

tor T̃ ∈ B(M⊥, N) such that Cg = C′
g T̃∗. Therefore,

Fg

(
IH 0
0 T̃∗

)
=

(
Aπ (g) ⊕ C′

g
)
(

IH 0
0 T̃∗

)
= E′

g = Eσ (g)T∗.

And then,

Fg

(
IH 0
0 T̃∗

)
= Eσ (g)

(
IH θ∗

Γ

0 IM⊥

)(
IH 0
0 T̃∗

)
= Eσ (g)T∗.
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Since Eσ (G) is a g-Riesz basis for H ⊕ M⊥, it is g-complete. Then

(
IH θ∗

Γ

0 IM⊥

)(
IH 0
0 T̃∗

)
=

(
IH θ∗

Γ T̃∗

0 T̃∗

)
= T∗.

Hence,

T =

(
IH 0

T̃θΓ T̃

)
,

where T ′ = T̃θΓ ∈ B(H , N). �

The following is our main result which shows that if the dilation Riesz generator dual
pair of a frame generator alternate dual pair has a relationship with that of another frame
generator alternate dual pair by a pair of operators, then one of the corresponding opera-
tors is in the form of a lower triangular matrix.

Proposition 2.5 Let (G,π , H), (G,π1, N1), (π2,G, N2) be unitary representations of G on
H , N1, N2 respectively, (A, B), (A, B′) be frame generator alternate dual pairs of (G,π , H),
where A, B, B′ ∈ B(H , H0). Suppose that there exist pairs of dual Riesz generators (E′, Ẽ′),
(F , F̃) of (G,σ1, H ⊕N1), (G,σ2, H ⊕N2) which are also dilations of (A, B), (A, B′) respectively,
where σ1 = π ⊕ π1, σ2 = π ⊕ π2, E′, Ẽ′ ∈ B(H ⊕ N1, H0), F , F̃ ∈ B(H ⊕ N2, H0). If there is an
invertible operator T ∈ B(H ⊕N1, H ⊕N2) such that Fσ2(g) = E′σ1(g)T∗ for any g ∈ G . Then
T is in the form of the following:

T =

(
IH 0
T ′ T̃

)
,

where T ′ ∈ B(H , N2), T̃ ∈ B(N1, N2).

Proof Let Γ = Ã – B ∈ B(H , H0), Γ ′ = Ã – B′ ∈ B(H , H0). We can easily examine Γ , Γ ′ are
Bessel generators of (G,π , H) and ran θΓ , ran θΓ ′ ⊂ (ran θA)⊥.

Similar to the proof of Theorem 2.3, we can construct

T1 =

(
IH 0
0 T̃1

)(
IH 0
θΓ IM⊥

)
=

(
IH 0

T̃1θΓ T̃1

)
∈ B

(
H ⊕ M⊥, H ⊕ N1

)

and

T2 =

(
IH 0
0 T̃2

)(
IH 0
θΓ ′ IM⊥

)
=

(
IH 0

T̃2θΓ ′ T̃2

)
∈ B

(
H ⊕ M⊥, H ⊕ N2

)
,

where T̃1 ∈ B(M⊥, N1), T̃2 ∈ B(M⊥, N2) are invertible. (In fact, we can let E′ = A ⊕ C1,
F = A ⊕ C2, where C1 ∈ B(N1, H0), C2 ∈ B(N2, H0). By Theorem 1.9, there are invertible
operators T̃1 ∈ B(M⊥, N1), T̃2 ∈ B(M⊥, N2) such that C1

g T̃∗
1 = C1π1(g) and C2

g T̃∗
2 = C2π2(g),

where E1
g = Eσ (g)(T1

0 )∗, E2
g = Eσ (g)(T2

0 )∗ for every g ∈ G , T1
0 =

( IH 0
θΓ IM⊥

)
, T2

0 =
( IH 0

θ ′
Γ IM⊥

) ∈
B(H ⊕ M⊥).)
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Evidently, T1, T2 are invertible, Eσ (g)T∗
1 = E′σ1(g), Eσ (g)T∗

2 = Fσ2(g) for any g ∈ G .
Denote T ′

1 = T̃1θΓ ∈ B(H , N1), T ′
2 = T̃2θΓ ′ ∈ B(H , N2).

Then Fσ2(g) = Eσ (g)T∗
2 = E′σ1(g)(T∗

1 )–1T∗
2 for any g ∈ G . Because T2(T1)–1 ∈ B(H ⊕

N1, H ⊕ N2) and

T2(T1)–1 =

(
IH 0
T ′

2 T̃2

)(
IH 0

–T̃–1
1 T ′

1 T̃–1
1

)
=

(
IH 0

T̃2(θΓ ′ – θΓ ) T̃2T̃–1
1

)
.

Denote T ′ := T̃2(θΓ ′ – θΓ ) ∈ B(H , N2), T̃ = T̃2T̃–1
1 ∈ B(N1, N2).

Since Fσ2(g) = E′σ1(g)T∗ for any g ∈ G and E′σ1(G) is g-complete, it follows that T =
T2(T1)–1. �

From the above result, we have another illustration that there is an operator which is
in the form of a lower triangular matrix to construct a relationship between the dilation
Riesz generator pair of a frame generator alternate dual pair and that of another frame
generator alternate dual pair.

Corollary 2.6 Let (G,π , H), (G,π1, N1), (π2,G, N2) be unitary representations of G on H ,
N1, N2 respectively, (A, B), (A, B′) be frame generator alternate dual pairs of (G,π , H), where
A, B, B′ ∈ B(H , H0). Suppose that there exist pairs of dual Riesz generators (E′, Ẽ′), (F , F̃) of
(G,σ1, H ⊕ N1), (G,σ2, H ⊕ N2) which are also dilations of (A, B), (A, B′) respectively, where
σ1 = π ⊕ π1, σ2 = π ⊕ π2, E′, Ẽ′ ∈ B(H ⊕ N1, H0), F , F̃ ∈ B(H ⊕ N2, H0). Then there is an
invertible operator T ∈ B(H ⊕ N1, H ⊕ N2) such that Fσ2(g) = E′σ1(g)T∗ for any g ∈ G ,
where

T =

(
IH 0
T ′ T̃

)
,

T ′ ∈ B(H , N2), T̃ ∈ B(N1, N2).

Proof It is direct by the proof of Theorem 2.5. �
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