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1 Introduction
In this paper, we consider the following 2n-order p-Laplacian neutral differential equation
with a singularity:

(
φp

(
x(t) – cx(t – τ )

)(n))(n) + f
(
t, x′(t)

)
+ g

(
t, x

(
t – σ (t)

))
= e(t), (1.1)

where φp : R→ R is given by φp(s) = |s|p–2s, and p > 1 is a constant, c, τ are constants and
|c| �= 1, τ ∈ [0, T), σ ∈ C1(R,R) is a T-periodic function, f : R×R →R is a continuous T-
periodic function about t and f (t, 0) = 0, e ∈ C(R,R) is a T-periodic function, n is a positive
integer, g : R× (0, +∞) →R is a L2-Carathéodory function, and g(t, ·) = g(t + T , ·). It is said
that equation (1.1) is singularity of attractive type (resp. repulsive type) if g(t, x) → +∞
(resp. g(t, x) → –∞) as x → 0+ for t ∈R.

Zhang [21] in 1995 first introduced the property of neutral operator (Ax)(t) := x(t) –
cx(t – τ ) and discussed a kind of neutral differential equation

(
x(t) – cx(t – τ )

)′ = –ax
(
t – r + γ

(
t, x(t + ·))) + e(t). (1.2)

The author has given some properties of the neutral operator A, i.e., if |c| �= 1, then A has
continuous inverse on CT := {x | x ∈ C(R,R), x(t + T) ≡ x(t),∀t ∈R},

(i) ‖A–1x‖ ≤ ‖x‖
|1–|c|| , ∀x ∈ CT , here ‖x‖ := maxx∈R |x(t)|;

(ii)
∫ T

0 |(A–1x)(t)|dt ≤ 1
|1–|c||

∫ T
0 |x(t)|dt, ∀x ∈ CT .

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-019-2210-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-019-2210-8&domain=pdf
http://orcid.org/0000-0003-0301-0549
mailto:shaowenyao_78@126.com


Xin et al. Journal of Inequalities and Applications        (2019) 2019:259 Page 2 of 16

Afterwards, using the above properties of the neutral operator A, a priori estimation and
Leray–Schauder degree theory, Zhang proved that equation (1.2) has at least one periodic
solution. Zhu and Lu [23] in 2007 discussed the existence of periodic solution for the
following p-Laplacian neutral differential equation:

(
φp

(
x(t) – cx(t – τ )

)′)′ + g
(
t, x

(
t – δ(t)

))
= p(t).

Since (φp(x′(t)))′ is a nonlinear term (i.e., quasilinear), coincidence degree theory [5] does
not apply directly. In order to get around this difficulty, Zhu and Lu translated the p-
Laplacian neutral differential equation into a two-dimensional system

⎧
⎨

⎩
(Ax1)′(t) = φq(x2(t)) = |x2(t)|q–2x2(t),

x′
2(t) = –g(t, x1(t – δ(t))) + p(t),

where 1
p + 1

q = 1, for which coincidence degree theory can be applied. Based on the works
of Zhang and Lu, the Krasnoselskii fixed point theorem [1–3, 6], topological degree theory
[4, 14, 15, 20], and the fixed point in a cone [12, 13, 17, 18], fixed point theorem of Leray–
Schauder type [10] have been employed to discuss the existence of a periodic solution of
neutral differential equations.

Nowadays, the existence of periodic solutions for neutral differential equations with sin-
gularity has been researched (see [7–9, 19]). Among these, a good deal of work has been
performed on the existence of a positive periodic solution of fourth-order neutral Liénard
equation with a singularity of repulsive type. Kong and Lu [7] in 2017 studied the following
singular Liénard equation:

(
φp

(
x(t) – cx(t – τ )

)′′)′′ + f
(
x(t)

)
x′(t) + g

(
t, x

(
t – σ (t)

))
= e(t), (1.3)

where c is a constant with |c| < 1, g(t, x(t – δ(t))) = g0(x(t)) + g1(t, x(t – δ(t))), g0 ∈
C((0, +∞),R) has a strong singularity of repulsive type at x = 0, and

∫ T
0 e(t) dt = 0. By ap-

plying coincidence degree theory, they proved that equation (1.3) has at least one positive
T-periodic solution.

Inspired by the above paper [7], in this paper, we further consider the existence of a
positive T-periodic solution for equation (1.1) with strong singularities of attractive and
repulsive type. Applying coincidence degree theory, we obtain the following conclusions.

Theorem 1.1 Assume that the following conditions hold:
(H1) There exists a positive constant N such that

∣
∣f (t, u)

∣
∣ ≤ N , for (t, u) ∈ [0, T] ×R.

(H2) There exist two positive constants D1, D2 with D1 < D2 such that g(t, x) – e(t) < –N
for all (t, x) ∈ [0, T] × (0, D1), and g(t, x) – e(t) > N for all (t, x) ∈ [0, T] × (D2, +∞).

(H3) There exist positive constants a, b, p and 1 ≤ p < +∞ such that

g(t, x) ≤ axp–1 + b, for all (t, x) ∈ [0, T] × (0, +∞).
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(H4) g(t, x) = g0(x) + g1(t, x), where g0 ∈ C((0,∞);R) and g1 : [0, T] × [0,∞) → R is an
L2-Carathéodory function.

(H5) (Strong singularity of repulsive type)

lim
x→0+

g0(x) = –∞, and lim
x→0+

∫ 1

x
g0(s) ds = +∞.

Then (1.1) has at least one positive T-periodic solution if

0 <
a(1 + |c|)T

(1 – σ ′)|1 – |c||p
(

T
πp

)np–1

< 1,

where πp = 2
∫ (p–1)/p

0
ds

(1– sp
p–1 )1/p = 2π (p–1)1/p

p sin(π/p) , σ ′ := maxt∈[0,T] |σ (t)|.

Remark 1.2 It is worth mentioning that the friction term f (x)x′(t) in equation (1.3) satisfies
∫ T

0 f (x(t))x′(t) dt = 0, which is crucial to estimating a priori bounds of a positive T-periodic
solution for equation (1.3). However, in this paper, the friction term f (t, x′) may not satisfy
∫ T

0 f (t, x′(t)) dt = 0. For example, let

f
(
t, x′) =

(
sin2(2t) + 5

)
cos x′(t).

Obviously,
∫ T

0 (sin2(2t) + 5) cos x′(t) dt �= 0. This implies that our methods to estimate a pri-
ori bounds of a positive T-periodic solution for equation (1.1) are more difficult than equa-
tion (1.3).

Remark 1.3 From [7], the condition composed on e(t) is
∫ T

0 e(t) dt = 0. However, the pa-
per is unnecessary. For example, let e(t) = esin 4π t . Obviously,

∫ T
0

1
4 esin 2π t �= 0. Moreover,

coefficient c of neutral operator A satisfies |c| < 1 in [7]; in this paper, coefficient c satis-
fies |c| < 1 and |c| > 1. At last, the singular term g0 of equation (1.3) has not a deviating
argument (i.e., σ ≡ 0). The singular term g0 of this paper satisfies time-dependent devi-
ating argument (see condition (H4)). It is easy to verify that the work on estimating lower
bounds of a positive periodic solution for equation (1.1) is more complex than equation
(1.3). Therefore, our result can be more general.

Remark 1.4 If equation (1.1) satisfies singularity of attractive type, i.e., limx→0+ g0(x) = +∞
and limx→0+

∫ 1
x g0(s) ds = –∞. Obviously, attractive condition and (H2), (H3), (H5) are con-

tradictions. Therefore, the above method and conditions are no longer applicable to prove
the existence of a positive periodic solution for equation (1.1) with singularity of attractive
type. Next, we have to find another way and conditions to get over these problems.

Theorem 1.5 Assume that conditions (H1) and (H4) hold. Suppose the following conditions
are satisfied:

(H6) There exist two positive constants D3, D4 with D3 < D4 such that g(t, x) – e(t) > N for
all (t, x) ∈ [0, T] × (0, D3), and g(t, x) – e(t) < –N for all (t, x) ∈ [0, T] × (D4, +∞).

(H7) There exist positive constants a′, b′ such that

–g(t, x) ≤ a′xp–1 + b′, for all (t, x) ∈ [0, T] × (0, +∞).
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(H8) (Strong singularity of attractive type)

lim
x→0+

g0(x) = +∞, and lim
x→0+

∫ 1

x
g0(s) ds = –∞.

Then (1.1) has at least one positive T-periodic solution if

0 <
a′(1 + |c|)T

(1 – σ ′)|1 – |c||p
(

T
πp

)np–1

< 1.

2 Preparation
We first recall the coincidence degree theory.

Lemma 2.1 (Gaines and Mawhin [5]) Suppose that X and Y are two Banach spaces, and
L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Let Ω ⊂ X be an open bounded
set and N : Ω → Y be L-compact on Ω . Assume that the following conditions hold:

(1) Lx �= λNx, ∀x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1);
(2) Nx /∈ Im L, ∀x ∈ ∂Ω ∩ Ker L;
(3) deg{JQN ,Ω ∩ Ker L, 0} �= 0, where J : Im Q → Ker L is an isomorphism.

Then the equation Lx = Nx has a solution in Ω ∩ D(L).

Lemma 2.2 (see [11]) If |c| �= 1, then (Ax)(t) := x(t) – cx(t – τ ) has continuous bounded
inverse on CT := {x ∈ C(R,R) | x(t + T) – x(t) ≡ 0} and

∫ T

0

∣
∣(A–1x

)
(t)

∣
∣p dt ≤ 1

|1 – |c||p
∫ T

0

∣
∣x(t)

∣
∣p dt, ∀x ∈ CT .

Lemma 2.3 (see [22]) If ν ∈ C1(R,R) and ν(0) = ν(T) = 0, then

(∫ T

0

∣∣ν(t)
∣∣p dt

) 1
p

≤
(

T
πp

)(∫ T

0

∣∣ν ′(t)
∣∣p dt

) 1
p

.

Similar to Zhu and Lu [23], we rewrite (1.1) in the form:
⎧
⎨

⎩
x(n)

1 (t) = A–1(φq(x2(t)))

x(n)
2 (t) = –f (t, x′

1(t)) – g(t, x1(t – σ (t))) + e(t).
(2.1)

Let

X :=
{

x =
(
x1(t), x2(t)

) ∈ Cn(
R,R2) : x(t + T) – x(t) ≡ 0

}

with the norm ‖x‖ := max{‖x1‖,‖x2‖};

Y :=
{

x =
(
x1(t), x2(t)

) ∈ Cn(
R,R2) : x(t + T) – x(t) ≡ 0

}

with the norm ‖x‖∞ := max{‖x‖,‖x′‖}. Clearly, X and Y are both Banach spaces. Mean-
while, define

L : D(L) ⊂ X → Y , by (Lx)(t) =

(
x(n)

1 (t)
x(n)

2 (t)

)

, (2.2)
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where D(L) = {x = (x1, x2) ∈ Cn(R,R2) : x(t + T) – x(t) ≡ 0, t ∈ R}. Define a nonlinear
operator N : X → Y as follows:

(Nx)(t) =

(
A–1(φq(x2(t)))

–f (t, x′
1(t)) – g(t, x1(t – σ (t))) + e(t)

)

. (2.3)

Then (2.1) can be converted to the abstract equation Lx = Nx.
From the definition of L, one can easily see that

Ker L ∼= R
n, Im L =

{

y ∈ Y :
∫ T

0

(
y1(s)
y2(s)

)

ds =

(
0
0

)}

.

So L is a Fredholm operator with index zero. Let P : X → Ker L and Q : Y → Im Q ⊂R
2 be

defined by

Px :=

(
x1(0)
x2(0)

)

; Qy :=
1
T

∫ T

0

(
y1(s)
y2(s)

)

ds,

then Im P = Ker L, Ker Q = Im L. Let K denote the inverse of L|Ker p∩D(L). It is easy to see
that Ker L = Im Q = R

n and

[Ky](t) = col
(
(Gy1)(t), (Gy2)(t)

)
,

where

[Gyk](t) =
n–1∑

i=1

1
i!

x(i)
k (0)ti +

1
(n – 1)!

∫ t

0
(t – s)n–1yk(s) ds, k = 1, 2. (2.4)

3 Proofs of Theorems 1.1 and 1.5

Proof of Theorem 1.1 Consider the following operator equation:

Lx = λNx, λ ∈ (0, 1),

where L and N are defined by equations (2.2) and (2.3). Set

Ω1 =
{

x : Lx = λNx,λ ∈ (0, 1)
}

.

If x(t) = (x1(t), x2(t)) ∈ Ω1, then

⎧
⎨

⎩
x(n)

1 (t) = λA–1(φq(x2(t)))

x(n)
2 (t) = –λf (t, x′

1(t)) – λg(t, x1(t – σ (t))) + λe(t),
(3.1)

since (Ax(n)
1 )(t) = (Ax1)(n)(t). Substituting x2(t) = 1

λp–1 (φp(Ax1)(n)(t)) into the second equa-
tion of equation (3.1), we get

(
φp(Ax1)(n)(t)

)(n) + λpf
(
t, x′

1(t)
)

+ λpg
(
t, x1

(
t – σ (t)

))
= λpe(t). (3.2)
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Integrating both sides of equation (3.2) over [0, T], we have

∫ T

0

(
f
(
t, x′

1(t)
)

+ g
(
t, x1

(
t – σ (t)

))
– e(t)

)
dt = 0, (3.3)

since
∫ T

0 (φp(Ax1)′′(t))′′ = 0. From equation (3.3) and condition (H1), we deduce

–NT ≤
∫ T

0

(
g
(
t, x1

(
t – σ (t)

))
– e(t)

)
dt ≤ NT .

Then, by condition (H2), we know that there are two points ξ ,η ∈ (0, T) such that

x1
(
ξ – σ (ξ )

) ≥ D1, x1(η) ≤ D2. (3.4)

Then, from (3.4), we have

x1(t) =
1
2
(
x1(t) + x1(t – T)

)

=
1
2

(
x1(η) +

∫ t

η

x′
1(s) ds + x(η) –

∫ η

t–T
x′

1(s) ds
)

≤ D2 +
1
2

∫ T

0

∣∣x′
1(t)

∣∣dt. (3.5)

Multiplying both sides of equation (3.2) by (Ax1)(t) and integrating over the interval
[0, T], we get

∫ T

0
φp

(
(Ax1)(n)(t)

)(n)(Ax1)(t) dt + λp
∫ T

0
f
(
t, x′

1(t)
)
(Ax1)(t) dt

+ λp
∫ T

0
g
(
t, x1

(
t – σ (t)

))
(Ax1)(t) dt

= λp
∫ T

0
e(t)(Ax1)(t) dt. (3.6)

Substituting
∫ T

0 φp((Ax1)(n)(t))(n)(Ax1)(t) dt = (–1)n ∫ T
0 |(Ax1)(n)(t)|p dt into equation (3.6),

we see that

(–1)n
∫ T

0

∣
∣(Ax1)(n)(t)

∣
∣p dt = –λp

∫ T

0
f
(
t, x′

1(t)
)
(Ax1)(t) dt

– λp
∫ T

0
g
(
t, x1

(
t – σ (t)

))
(Ax1)(t) dt

+ λp
∫ T

0
e(t)(Ax1)(t) dt.

Furthermore, we obtain

∣∣
∣∣(–1)n

∫ T

0

∣
∣(Ax1)(n)(t)

∣
∣p dt

∣∣
∣∣ =

∣∣
∣∣–λp

∫ T

0
f
(
t, x′

1(t)
)
(Ax1)(t) dt
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– λp
∫ T

0
g
(
t, x1

(
t – σ (t)

))
(Ax1)(t) dt

+ λp
∫ T

0
e(t)(Ax1)(t) dt

∣∣∣
∣.

Therefore, from condition (H1), it is clear that

∫ T

0

∣
∣(Ax1)(n)(t)

∣
∣p dt

≤
∫ T

0

∣
∣f

(
t, x′

1(t)
)∣∣

∣
∣(Ax1)(t)

∣
∣dt +

∫ T

0

∣
∣g

(
t, x1

(
t – σ (t)

))∣∣
∣
∣(Ax1)(t)

∣
∣dt

+
∫ T

0

∣∣e(t)
∣∣∣∣(Ax1)(t)

∣∣dt

≤ (
1 + |c|)‖x1‖NT +

(
1 + |c|)‖x1‖

∫ T

0

∣
∣g(t, x1

(
t – σ (t)

)∣∣dt

+
(
1 + |c|)‖x1‖‖e‖T , (3.7)

where ‖e‖ := maxt∈[0,T] |e(t)|. From conditions (H1), (H2) and equation (3.3), we obtain

∫ T

0

∣
∣g

(
t, x1

(
t – σ (t)

))∣∣dt

=
∫

g(t,x1)≥0
g
(
t, x1

(
t – σ (t)

))
dt –

∫

g(t,x1)≤0
g
(
t, x1

(
t – σ (t)

))
dt

= 2
∫

g(t,x1)≥0
g
(
t, x1

(
t – σ (t)

))
dt +

∫ T

0
f
(
t, x′

1(t)
)

dt –
∫ T

0
e(t) dt

≤ 2a
∫ T

0

∣∣x1
(
t – σ (t)

)∣∣p–1 dt + 2bT +
∫ T

0

∣∣f
(
t, x′

1(t)
)∣∣dt +

∫ T

0

∣∣e(t)
∣∣dt

=
2a

1 – σ ′

∫ T

0

∣
∣x1(t)

∣
∣p–1 dt + 2bT + NT + ‖e‖T , (3.8)

from a(1+|c|)T
(1–σ ′)|1–|c||p ( T

πp
)2p–1 > 0, we obtain σ ′ < 1. Substituting equations (3.5) and (3.8) into

(3.7), and we have

∫ T

0

∣∣(Ax1)(n)(t)
∣∣p dt

≤ (
1 + |c|)NT‖x1‖ +

(
1 + |c|)‖x1‖

(
2a

1 – σ ′

∫ T

0

∣
∣x1(t)

∣
∣p–1 dt + 2bT + NT + ‖e‖T

)

+
(
1 + |c|)‖e‖T‖x1‖

≤ 2
(
1 + |c|)NT

(
D2 +

1
2

∫ T

0

∣
∣x′

1(t)
∣
∣dt

)

+
2a(1 + |c|)

1 – σ ′

(
D2 +

1
2

∫ T

0

∣∣x′
1(t)

∣∣dt
)∫ T

0

∣∣x1(t)
∣∣p–1 dt

+ 2b
(
1 + |c|)T

(
D2 +

1
2

∫ T

0

∣
∣x′

1(t)
∣
∣dt

)
+ 2

(
1 + |c|)‖e‖T

(
D2 +

1
2

∫ T

0

∣
∣x′

1(t)
∣
∣dt

)
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=
a(1 + |c|)

1 – σ ′

∫ T

0

∣∣x′
1(t)

∣∣dt
∫ T

0

∣∣x1(t)
∣∣p–1 dt +

2a(1 + |c|)D2

1 – σ ′

∫ T

0

∣∣x1(t)
∣∣p–1 dt

+
(
1 + |c|)(N + b + ‖e‖)T

∫ T

0

∣∣x′
1(t)

∣∣dt + 2
(
1 + |c|)(N + b + ‖e‖)TD2.

Using the Hölder inequality, we deduce

∫ T

0

∣
∣(Ax1)(n)(t)

∣
∣p dt ≤ a(1 + |c|)T

1 – σ ′

(∫ T

0

∣
∣x′

1(t)
∣
∣p dt

) 1
p
(∫ T

0

∣
∣x1(t)

∣
∣p dt

) p–1
p

+
2a(1 + |c|)D2T

1
p

1 – σ ′

(∫ T

0

∣∣x1(t)
∣∣p dt

) p–1
p

+ P1T
1
q

(∫ T

0

∣
∣x′

1(t)
∣
∣p dt

) 1
p

+ 2P1D2, (3.9)

where P1 := (1 + |c|)(N + b + ‖e‖)T . Let ν(t) = x1(t + η) – x1(η), here x1(η) ≤ D2 is as in
equation (3.4), and then ν(0) = ν(T) = 0. By Lemma 2.3 and Minkowski’s inequality [16],
we have

(∫ T

0

∣∣x1(t)
∣∣p dt

) 1
p

=
(∫ T

0

∣∣ν(t) + x1(η)
∣∣p dt

) 1
p

≤
(∫ T

0

∣∣ν(t)
∣∣p dt

) 1
p

+
(∫ T

0

∣∣x1(η)
∣∣p dt

) 1
p

≤
(

T
πp

)(∫ T

0

∣∣x′
1(t)

∣∣p dt
) 1

p
+ D2T

1
p , (3.10)

since
∫ T

0 |ν ′(t)|p dt =
∫ T

0 |x′
1(t)|p dt. On the other hand, in view of x1(0) = x1(T), there exists

a point t1 ∈ (0, T) such that x′
1(t1) = 0. Let ν1(t) = x′

1(t + t1), it is easy to see that ν1(0) =
ν1(T) = 0. Applying inductive method, from x(n–2)

1 (0) = x(n–2)(T), there exists a point tn–1 ∈
(0, T) such that x(n–1)

1 (tn–1) = 0. Let νn–1(t) = x(n–1)
1 (t + tn–1), then we get νn–1(0) = νn–1(T) =

0. By Lemma 2.3,

(∫ T

0

∣
∣x′

1(t)
∣
∣p dt

) 1
p

=
(∫ T

0

∣
∣ν1(t)

∣
∣p dt

) 1
p

≤
(

T
πp

)(∫ T

0

∣∣x′′
1(t)

∣∣p dt
) 1

p

≤ · · ·

≤
(

T
πp

)n–1(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) 1

p
. (3.11)

Substituting equations (3.11) into (3.10), we arrive at

(∫ T

0

∣∣x1(t)
∣∣p dt

) 1
p

≤
(

T
πp

)n(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) 1

p
+ D2T

1
p . (3.12)
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Furthermore, substituting equations (3.11) and (3.12) into (3.9), it is easy to verify that

∫ T

0

∣
∣(Ax1)(n)(t)

∣
∣p dt

≤ a(1 + |c|)T
1 – σ ′

(
T
πp

)n–1(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) 1

p

×
((

T
πp

)n(∫ T

0

∣
∣x(n)

1 (t)
∣
∣p dt

) 1
p

+ D2T
1
p

)p–1

+
2a(1 + |c|)D2T

1
p

1 – σ ′

((
T
πp

)n(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) 1

p
+ D2T

1
p

)p–1

+ P1T
1
q

(
T
πp

)n–1(∫ T

0

∣
∣x(n)

1 (t)
∣
∣p dt

) 1
p

+ 2P1D2

=
a(1 + |c|)T

1 – σ ′

(
T
πp

)np–1(
1 +

D2T
1
p

( T
πp

)n(
∫ T

0 |x(n)
1 (t)|p dt)

1
p

)p–1 ∫ T

0

∣∣x(n)
1 (t)

∣∣p dt

+
2a(1 + |c|)D2T

1
p

1 – σ ′

(
T
πp

)np–2(
1 +

D2T
1
p

( T
πp

)n(
∫ T

0 |x(n)
1 (t)|p dt)

1
p

)p–1

×
(∫ T

0

∣
∣x(n)

1 (t)
∣
∣p dt

) p–1
p

+ P1T
1
q

(
T
πp

)n–1(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) 1

p
+ 2P1D2. (3.13)

Next, we introduce a classical inequality, there exists a positive constant k(p) > 0 (de-
pendent on p),

(1 + x)p ≤ 1 + (1 + p)x for x ∈ [
0, k(p)

]
. (3.14)

Then, we consider the following two cases.

Case 1. If D2T
1
p

( T
πp )n(

∫ T
0 |x(n)

1 (t)|p dt)
1
p

> k(p), then it is obvious that

(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) 1

p
<

D2T
1
p

k(p)

(
T
πp

)–n

.

From equations (3.5) and (3.11), by using the Hölder inequality, we deduce

x(t) ≤ D2 +
1
2

T
1
q

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) 1
p

≤ D2 +
1
2

T
1
q

(
T
πp

)n–1(∫ T

0

∣∣x(n)(t)
∣∣p dt

) 1
p

≤ D2 +
TD2

2k(p)

(
T
πp

)–1

:= M1. (3.15)
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Case 2. If D2T
1
p

( T
πp )n(

∫ T
0 |x(n)

1 (t)|p dt)
1
p

< k(p), from equations (3.13) and (3.14), we obtain

∫ T

0

∣
∣(Ax1)(n)(t)

∣
∣p dt

≤ a(1 + |c|)T
1 – σ ′

(
T
πp

)np–1(
1 +

D2T
1
p p

( T
πp

)n(
∫ T

0 |x(n)
1 (t)|p dt)

1
p

)∫ T

0

∣
∣x(n)

1 (t)
∣
∣p dt

+
2a(1 + |c|)D2T

1
p

1 – σ ′

(
T
πp

)np–2(
1 +

D2T
1
p p

( T
πp

)n(
∫ T

0 |x(n)
1 (t)|p dt)

1
p

)

·
(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) p–1

p

+ P1T
1
q

(
T
πp

)n–1(∫ T

0

∣
∣x(n)

1 (t)
∣
∣p dt

) 1
p

+ 2P1D2

=
a(1 + |c|)T

1 – σ ′

(
T
πp

)np–1 ∫ T

0

∣∣x(n)
1 (t)

∣∣p dt +
a(1 + |c|)T 1

p D2

1 – σ ′

(
T
πp

)np–3(
Tp + 2

(
T
πp

))

·
(∫ T

0

∣
∣x(n)

1 (t)
∣
∣p dt

) p–1
p

+
2a(1 + |c|)T 2

p D2
2p

1 – σ ′

(
T
πp

)np–4

·
(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) p–2

p
+ P1T

1
q

(
T
πp

)n–1(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) 1

p
+ 2P1D2. (3.16)

Since (Ax1)(n)(t) = (Ax(n)
1 )(t), from Lemma 2.2 and (3.16), we see that

∫ T

0

∣
∣x(n)

1 (t)
∣
∣p dt

=
∫ T

0

∣∣(A–1Ax(n)
1

)
(t)

∣∣p dt

≤ 1
|1 – |c||p

∫ T

0

∣
∣(Ax1)(n)(t)

∣
∣p dt

≤ a(1 + |c|)T
(1 – σ ′)|1 – |c||p

(
T
πp

)np–1 ∫ T

0

∣
∣x(n)

1 (t)
∣
∣p dt +

a(1 + |c|)T 1
p D2( T

πp
)np–3(Tp + 2( T

πp
))

(1 – σ ′)|1 – |c||p

·
(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) p–1

p
+

2a(1 + |c|)T 2
p D2

2p( T
πp

)np–4

(1 – σ ′)|1 – |c||p
(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) p–2

p

+
P1T

1
q

|1 – |c||p
(

T
πp

)n–1(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) 1

p
+

2P1D2

|1 – |c||p .

Since

a(1 + |c|)T
(1 – σ ′)|1 – |c||p

(
T
πp

)np–1

< 1,
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obviously, there exists a positive constant M′
1 such that

∫ T

0

∣
∣x(n)

1 (t)
∣
∣p dt ≤ M′

1. (3.17)

From equations (3.5), (3.11), and (3.17), applying the Hölder inequality, we deduce

x1(t) ≤ D2 +
1
2

∫ T

0

∣
∣x′

1(t)
∣
∣dt

≤ D2 +
1
2

T
1
q

(
T
πp

)n–1(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) 1

p

≤ D2 +
1
2

T
1
q

(
T
πp

)n–1(
M′

1
) 1

p := M1. (3.18)

From equations (3.5), (3.11), and (3.17), we get

∥∥x′
1
∥∥ ≤ x′

1(t1) +
1
2

∫ T

0

∣∣x′′
1(t)

∣∣dt

≤ 1
2

T
1
q

(∫ T

0

∣
∣x′′

1(t)
∣
∣p dt

) 1
p

≤ 1
2

T
1
q

(
T
πp

)n–2(∫ T

0

∣∣x(n)
1 (t)

∣∣p dt
) 1

p

≤ 1
2

T
1
q

(
T
πp

)n–2

M
′ 1

p
1 := M2 (3.19)

since x′
1(t1) = 0. From x(n–2)

2 (0) = x(n–2)
2 (T), there exists a point t∗

2 ∈ (0, T) such that
x(n–1)

2 (t∗
2 ) = 0. From the second equation of (3.1), equations (3.8), (3.18), (3.19), and condi-

tion (H1), we obtain

∥
∥x(n–1)

2
∥
∥ ≤ 1

2

∫ T

0

∣
∣x(n)

2 (t)
∣
∣dt

≤ λ

2

(∫ T

0

∣
∣f

(
t, x′

1(t)
)∣∣dt +

∫ T

0

∣
∣g

(
t, x1(t – σ )

)∣∣dt +
∫ T

0

∣
∣e(t)

∣
∣dt

)

≤ λ
(
NT + aTMp–1

1 + bT + T‖e‖) := λM3. (3.20)

Integrating the first equation of (3.1) over [0, T], we have
∫ T

0 x2(t) dt =
∫ T

0 φp((Ax1)′′(t)) dt =
0, which implies there is a point t∗

3 ∈ (0, T) such that x2(t∗
3 ) = 0. So, from equations (3.5)

and (3.20), applying the Hölder inequality and equation (3.11), it is easy to see that

‖x2‖ ≤ 1
2

∫ T

0

∣∣x′
2(t)

∣∣dt

≤ 1
2

T
1
q

(∫ T

0

∣
∣x′

2(t)
∣
∣p dt

) 1
p

≤ 1
2

T
1
q

(
T
πp

)n–2(∫ T

0

∣∣x(n–1)
2 (t)

∣∣p dt
) 1

p



Xin et al. Journal of Inequalities and Applications        (2019) 2019:259 Page 12 of 16

≤ 1
2

T
(

T
πp

)n–2∥∥x(n–1)
2

∥∥

≤ λ

2
T

(
T
πp

)n–2

M3 := λM4. (3.21)

On the other hand, from equation (3.2) and condition (H4), we see that

(
φp

(
(Ax1)(n)(t)

))(n) + λpf
(
t, x′

1(t)
)

+ λp(g0
(
x1

(
t – σ (t)

))
+ g1

(
t, x1

(
t – σ (t)

))

= λpe(t). (3.22)

Let ξ ∈ [0, T] be as in equation (3.4) for any t ∈ [ξ , T]. Multiplying both sides of equation
(3.22) by x′

1(t – σ (t))(1 – σ ′(t)) and integrating over [ξ , t], we get

λp
∫ x1(t–σ (t))

x1(ξ–σ (ξ ))
g0(u) du = λp

∫ t

ξ

g0
(
x1

(
s – σ (s)

))
x′

1
(
s – σ (s)

)(
1 – σ ′(s)

)
ds

= –
∫ t

ξ

(
φp

(
(Ax1)(n)(s)

))(n)x′
1
(
s – σ (s)

)(
1 – σ ′(s)

)
ds

– λp
∫ t

ξ

f
(
s, x′

1(s)
)
x′

1
(
s – σ (s)

)(
1 – σ ′(s)

)
ds

– λp
∫ t

ξ

g1
(
s, x1

(
s – σ (s)

))
x′

1
(
s – σ (s)

)(
1 – σ ′(s)

)
ds

+ λp
∫ t

ξ

e(s)x′
1
(
s – σ (s)

)(
1 – σ ′(s)

)
ds. (3.23)

Furthermore, by equations (3.16), (3.18), (3.19), and (3.20), we have

λp
∣∣∣
∣

∫ x1(t–σ (t))

x1(ξ–σ (ξ ))
g0(u) du

∣∣∣
∣

=
∣∣
∣∣–

∫ t

ξ

(
φp

(
(Ax1)(n)(s)

))(n)x′
1
(
s – σ (s)

)(
1 – σ ′(s)

)
ds

– λp
∫ t

ξ

f
(
s, x′

1(s)
)
x′

1
(
s – σ (s)

)(
1 – σ ′(s)

)
ds

– λp
∫ t

ξ

g1
(
s, x1

(
s – σ (s)

))
x′

1
(
s – σ (s)

)(
1 – σ ′(s)

)
ds

+ λp
∫ t

ξ

e(s)x′
1
(
s – σ (s)

)(
1 – σ ′(s)

)
ds

∣
∣∣∣

≤ (
1 + σ ′)∥∥x′

1
∥∥

∫ T

0

∣∣φp
(
(Ax1)(n)(s)

)
)(n)∣∣ds + λp(1 + σ ′)∥∥x′

1
∥∥

∫ T

0

∣∣f
(
s, x′

1(s)
)∣∣ds

+ λp(1 + σ ′)∥∥x′
1
∥∥

∫ T

0

∣∣g1
(
s, x1

(
s – σ (s)

))∣∣ds + λp(1 + σ ′)∥∥x′
1
∥∥

∫ T

0

∣∣e(s)
∣∣ds

≤ λp(1 + σ ′)M2

(∫ T

0

∣
∣f

(
s, x′(s)

))∣
∣ds +

∫ T

0

∣
∣g

(
s, x1(s)

)∣∣ds +
∫ T

0

∣
∣e(s)

∣
∣ds)

+ λp(1 + σ ′)(M2NT + M2‖gM1‖T + M2‖e‖T
)

≤ λp(1 + σ ′)M2
(
M3 + NT + ‖gM1‖T + ‖e‖T

)
,
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where gM1 = max0≤x≤M1 |g1(t, x)| ∈ L2(0, T) is as in condition (H4). According to singular
condition (H5), we know that there exists a positive constant M5 such that

x1(t) ≥ M5, ∀t ∈ [ξ , T]. (3.24)

The case t ∈ [0, ξ ] can be treated similarly.
From equations (3.16), (3.18), (3.19), (3.20), and (3.24), we let

Ω =
{

x = (x1, x2) : E1 ≤ x1(t) ≤ E2,
∥∥x′

1
∥∥ ≤ E3,‖x2‖ ≤ E4, and

∥∥x′
2
∥∥ ≤ E5,∀t ∈ [0, T]

}
,

where 0 < E1 < min(M5, D1), E2 > max(M1, D2), E3 > M2, E4 > M4, and E5 > M3. Ω2 = {x :
x ∈ ∂Ω ∩ Ker L}, then ∀x ∈ ∂Ω ∩ Ker L

QNx =
1
T

∫ T

0

(
A–1(φq(x2(t))

–f (t, x′
1(t)) – g(t, x1(t – σ (t))) + e(t)

)

dt.

If QNx = 0, then x2(t) = 0, x1 = E2 or E1. But if x1(t) = E2, we know

0 =
∫ T

0

{
g(t, E2) – e(t)

}
dt.

From condition (H2), we have x1(t) ≤ D2 ≤ E2, which yields a contradiction. Similarly, if
x1 = E1, we also have QNx �= 0, i.e., ∀x ∈ ∂Ω ∩ Ker L, x /∈ Im L, so assumptions (1) and (2)
of Lemma 2.1 are both satisfied. Define the isomorphism J : Im Q → Ker L as follows:

J(x1, x2) = (x2, –x1).

Let H(μ, x) = –μx + (1 – μ)JQNx, (μ, x) ∈ [0, 1] × Ω , then ∀(μ, x) ∈ (0, 1) × (∂Ω ∩ Ker L),

H(μ, x) =

(
–μx1 – 1–μ

T
∫ T

0 (g(t, x1) – e(t)) dt
–μx2 – (1 – μ)A–1(φq(x2))

)

.

From condition (H2), we get xH(μ, x) �= 0, ∀(μ, x) ∈ (0, 1) × (∂Ω ∩ Ker L). Hence

deg{JQN ,Ω ∩ Ker L, 0} = deg
{

H(0, x),Ω ∩ Ker L, 0
}

= deg
{

H(1, x),Ω ∩ Ker L, 0
}

= deg{I,Ω ∩ Ker L, 0} �= 0.

So assumption (3) of Lemma 2.1 is satisfied. By applying Lemma 2.1, we conclude that
equation Lx = Nx has a solution x = (x1, x2) on Ω̄ ∩ D(L), i.e., (2.1) has a T-periodic
solution x1(t). �

Next, we study the existence of a positive T-periodic solution for equation (1.1) with
singularity of attractive type.

Proof of Theorem 1.5 We follow the same strategy and notation as in the proof of Theo-
rem 1.1. From equation (3.3) and condition (H6), we know that there are points μ,ν ∈ (0, T)
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such that

x1
(
μ – σ (μ)

) ≥ D3, x1(ν) ≤ D4. (3.25)

Next, we consider
∫ T

0 |g(t, x1(t – σ (t)))|dt. From equation (3.8) and conditions (H1), (H7),
we obtain

∫ T

0

∣∣g
(
x1

(
t – σ (t)

))∣∣dt

=
∫

g(t,x1)≥0
g
(
t, x1

(
t – σ (t)

))
dt –

∫

g(t,x1)≤0
g
(
t, x1

(
t – σ (t)

))
dt

= –2
∫

g(t,x1)≤0
g
(
t, x1

(
t – σ (t)

))
dt –

∫ T

0
f
(
t, x′

1(t)
)

dt +
∫ T

0
e(t) dt

≤ 2a′
∫ T

0

∣
∣x1

(
t – σ (t)

)∣∣p–1 dt + 2b′T +
∫ T

0

∣
∣f

(
t, x′

1(t)
)∣∣dt +

∫ T

0

∣
∣e(t)

∣
∣dt

≤ 2a′

1 – σ ′

∫ T

0

∣∣x1(t)
∣∣p–1 dt + 2b′T + NT + ‖e‖T . (3.26)

The proof left is the same as that of Theorem 1.1. �

Finally, we present an example to illustrate our result.

Example 3.1 Consider the fourth-order neutral Rayleigh equation with singularity of re-
pulsive type:

(
φp

(
x(t) –

1
2

x(t – τ )
)′′)′′

+
(
sin2(2t) + 5

)
cos x′(t) +

1
4π

(sin 4t + 3)x3
(

t –
1
8

sin 4t
)

–
1

xκ (t – 1
8 sin 4t)

= esin 4t , (3.27)

where κ ≥ 1 and p = 4, τ is a constant and 0 ≤ τ < T .
It is clear that T = π

2 , σ (t) = 1
8 sin 4t, σ ′ = 1

2 < 1, f (t, u) = (sin2(2t) + 5) cos u, g(t, x) =
1

4π
(cos 4t + 3)x3 – 1

xκ , a = 1
5π

, π4 = 2π (p–1)
1
p

p sin(π/p) = 2π (4–1)
1
4

4·
√

2
2

= π × ( 3
4 ) 1

4 . Take N = 6, a = 1
π

, b = 1.

It is obvious that conditions (H1)–(H5) hold. Now we consider

a(1 + |c|)T
(1 – σ ′)|1 – |c||p

(
T
πp

)2p–1

=
1
π

× 3
2 × π

2

( 1
2 )5

( π
2

π × ( 3
4 ) 1

4

)7

≈ 0.3104 < 1.

Therefore, applying Theorem 1.1, we know that equation (3.27) has at least one positive
π
2 -periodic solution.
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Example 3.2 Consider the following fourth-order neutral Rayleigh equation with singu-
larity of attractive type:

(
x(t) – 101x(t – τ )

)(4) –
(
cos2 t + 100

)
sin x′(t) –

1
π

(sin 2t + 5)x
(

t –
1
4

cos 2t
)

+
5

xκ ′ (t – 1
4 cos 2t)

= ecos 2t , (3.28)

where κ ′ ≥ 1 and p = 2, τ is a constant and 0 ≤ τ < T .
It is clear that T = π , σ (t) = 1

4 cos 2t, σ ′ = 1
2 < 1, f (t, u) = –(cos2 t + 100) sin u, g(t, x) =

– 1
π

(sin 2t + 5)x + 5
xκ′ , a = 1

5π
, π2 = 2π (p–1)

1
p

p sin(π/p) = 2π (2–1)
1
2

4× 1
2

= π . Take N = 6, a = 6
π

, b = 1. It is
easy to verify that conditions (H1), (H4), (H6)–(H8) hold. Now we consider

a(1 + |c|)T
(1 – σ ′)|1 – |c||p

(
T
πp

)2p–1

=
6
π

× 102 × π

1
2 × 1002

(
π

π

)3

=
153

1250
< 1.

Therefore, applying Theorem 1.5, we know that equation (3.28) has at least one positive
π-periodic solution.

4 Conclusions
In this article, we introduce the following existence of a positive T-periodic solution for
2n-order p-Laplacian neutral differential equation with singularities of attractive and re-
pulsive type. Due to the friction term, f (t, x′) may not satisfy

∫ T
0 f (t, x′(t)) dt = 0. This im-

plies that the work on estimating a priori bounds of periodic solutions for equation (1.1) is
more difficult than the corresponding work on equation (1.3) in [7]. In this paper, by using
coincidence degree theory and conditions (H1)–(H5), we prove the existence of a positive
T-periodic solution for equation (1.1) with singularity of repulsive type; applying condi-
tions (H1), (H4), (H6)–(H8), we obtain that equation (1.1) with singularity of attractive type
has at least one positive T-periodic solution.
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