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Abstract
By using the concept of Γ -distance, we prove EVP (Ekeland’s variational principle) on
quasi-F-metric (q-F-m) spaces. We apply EVP to get the existence of the solution to EP
(equilibrium problem) in complete q-F-m spaces with Γ -distances. Also, we
generalize Nadler’s fixed point theorem.
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1 Introduction and preliminaries
Ekeland [1] was first to study EVP. EVP is a theorem that shows that for some optimiza-
tion problems there exist nearly optimal solutions. In this paper, we study the concept of
Γ -distances defined on a q-F-m space which generalizes the notion of w-distance. We
inaugurate EVP in the setting of q-F-m spaces with Γ -distances but without complete-
ness assumption and then in the setting of complete q-F-m spaces with Γ -distances. The
equilibrium version of the EVP in the setting of q-F-m spaces with Γ -distances is also
presented. We prove some equivalences of our variational principles with Caristi–Kirk
type fixed point theorem for multi-valued maps, Takahashi’s minimization theorem, and
some other related results. As applications of our results, we derive existence results for
solutions of equilibrium problems and fixed point theorems for multi-valued maps. We
also extend Nadler’s fixed point theorem for multi-valued maps to q-F-m spaces with Γ -
distances. The results of this paper extend and generalize many results that have appeared
recently in Al-Homidan, Ansari, and Yao [2], Lin, Balaj, and Ye [3], Bianchi, Kassay, and
Pini [4, 5], Ha [6], and Lin and Du [7].

Definition 1.1 ([8]) Assume that T �= ∅. A function F : T3 → [0,∞) is called quasi-F-
metric (q-F-m) if

(i) F(p, q, r) = 0 if and only if p = q = r,
(ii) F(p, p, q) > 0 for all p, q ∈ T , with p �= q,

(iii) F(p, p, r) ≤ F(p, q, r) for all p, q, r ∈ T , with r �= q,
(iv) F(p, q, r) ≤ F(p, s, s) + F(s, q, r) for all p, q, r, s ∈ T .

The pair (T , F) is called q-F-m space.

Let (T , F) be a q-F-m space.
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(1) A sequence {un} in T is an F-Cauchy sequence if, for every ε > 0, there exists a
positive integer n0 such that F(um, un, u�) < ε for all m, n,� ≥ n0.

(2) A sequence {un} in T is F-convergent to a point u ∈ T if, for every ε > 0, there exists
a positive integer n0 such that F(um, un, u) < ε for all m, n ≥ n0.

In this paper, T is assumed to be a q-F-m space.

Definition 1.2 ([9]) A function Γ : T3 → [0,∞) is called a Γ -distance if
(Γ 1) Γ (p, q, r) ≤ Γ (p, s, s) + Γ (s, q, r) for all p, q, r ∈ T ,
(Γ 2) for each p ∈ T , the functions Γ (p, ·, ·) : T → [0,∞) are lower semicontinuous,
(Γ 3) for every ε > 0, there exists δ > 0 such that Γ (p, s, s) ≤ δ and Γ (s, q, r) ≤ δ imply

F(p, q, r) ≤ ε.

It is easy to see that if the functions Γ (p, ·, ·) : T → [0,∞) are lower semicontinuous, then
the functions Γ (p, q, ·),Γ (p, ·, q) : T → [0,∞) are lower semicontinuous, also we conclude
that if q ∈ T and {um} is a sequence in T which converges to a point p ∈ T (with respect
to the quasi-F-metric) and Γ (q, um, um) ≤ K for some K = K(q) > 0, then Γ (q, p, p) ≤ K .

Example 1.3 Let T = R and F : T3 −→ [0,∞). Define

F(p, q, r) =
1
2
(|r – p| + |p – q|).

Then F is a q-F-m.

Example 1.4 The function Γ := F , given in the above example, is a Γ -distance.

Proof The proofs of (Γ 1) and (Γ 2) are obvious. For (Γ 3), let ε > 0, and put δ = ε
2 . If

Γ (p, s, s) =
1
2
(|r – s| + |s – q|) <

ε

2
,

then

F(p, q, r) =
1
2
(|r – p| + |p – q|) ≤ 1

2
(|r – s| + |s – p| + |p – s| + |s – q|) < ε. �

Example 1.5 Let T = R and F : T3 → [0,∞) be a q-F-m defined as

F(p, q, r) =

⎧
⎨

⎩
0, p = q = r,

|r – p|, otherwise.

Then the function Γ : T3 → [0,∞) defined by Γ (p, q, r) = |r – p| for each q, r ∈ T is a
Γ -distance. But it is not a q-F-m on T .

Proof The proofs of (Γ 1) and (Γ 2) are obvious. For (Γ 3), let ε > 0, and put δ = ε
2 . If

Γ (p, s, s) = |s – p| <
ε

2

and

Γ (s, q, r) = |r – s| <
ε

2
,
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then

F(p, q, r) = |r – p| ≤ |r – s| + |s – p| < ε. �

Example 1.6 Let T = R and F : T3 −→ [0,∞) be a q-F-m defined as in Example 1.3. Then
the function Γ : T3 → [0,∞) defined by Γ (p, q, r) = a for each p, q, r ∈ T , in which a > 0,
is a Γ -distance.

Proof The proofs of (Γ 1) and (Γ 2) are obvious. For (Γ 3), let ε > 0, and put δ = a
2 . Then

we have that

Γ (p, s, s) <
a
2

and

Γ (s, q, r) <
a
2

,

which imply that

F(p, q, r) ≤ ε. �

Remark 1.7 ([10]) Let Γ be a Γ -distance. If ξ from R+ to R+ is a decreasing and sub-
additive function with ξ (0) = 0, then ξ ◦ Γ is a Γ -distance.

Now, we present some properties of Γ -distance.

Lemma 1.8 ([9]) Let {un}, {vn} be two sequences in T and {ρn}, {ϕn} be nonnegative se-
quences converging to 0, and let p, q, r, s ∈ T . Then we have

(1) Γ (q, un, un) ≤ ρn and Γ (un, q, r) ≤ ϕn for all n ∈N imply that F(q, q, r) < ε and q = r;
(2) Γ (vn, un, un) ≤ ρn and Γ (un, vm, r) ≤ ρn for any m > n ∈N imply that

F(vn, vm, r) → 0 and hence vn → r;
(3) if Γ (un, um, u�) ≤ ρn for all m, n,� ∈N with � ≤ n ≤ m, then {un} is an F-Cauchy

sequence;
(4) if Γ (un, s, s) ≤ ρn for all n ∈N, then the sequence {un} is an F-Cauchy sequence.

Definition 1.9 ([2]) Let T have a binary relation �.
(i) If the relation � on T has transitivity and reflexive properties, then it is quasi-order.

(ii) A sequence {un} in T is said to be decreasing when un+1 � un for all n ∈ N.
(iii) The relation � is called lower closed when, for each p in T , Q(p) = {q ∈ T : q � p} is

lower closed; in other words, if {un} ⊂ Q(p) is decreasing and converges to p̃ ∈ T ,
then p̃ ∈ Q(p).

Definition 1.10 Suppose that (T , F) is a q-F-m space quasi-ordered by �. Define

Q(p) := {q ∈ T : q � p}.

We say that Q(p) is �-complete when every decreasing (with respect to �) F-Cauchy se-
quence of elements from Q(p) converges in Q(p).
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Definition 1.11 A function g : T → R ∪ {+∞} is lower semicontinuous from above (in
short, lsca) if, for every sequence {un}n∈N ⊂ T converging to p ∈ T and satisfying g(un+1) ≤
g(un) for all n ∈N, we have g(p) ≤ limn→∞ g(un).

2 Ekeland’s variational principle (EVP)
Here, we give two generalizations of EVP by using the concept of Γ -distance, both in the
incomplete and the complete q-F-m spaces.

Theorem 2.1 Assume that Γ : T × T × T −→R+ is a Γ -distance on a q-F-m space (T , F)
(not necessarily complete). Let ω : (–∞,∞] → (0,∞) be an increasing function and g : T →
R∪ {∞} be lsca, bounded from below and proper. The relation � defined by

q � p if and only if p = q or Γ (p, q, q) ≤ ω
(
g(p)

)(
g(p) – g(q)

)
(2.1)

is quasi-order. Further, assume that there exists p̂ ∈ T such that infp∈T g(p) < g(p̂) and
Q(p̂) = {q ∈ T : q � p̂} are �-complete. Then we can find p̄ ∈ T such that

(a) Γ (p̂, p̄, p̄) ≤ ω(g(p̂)(g(p̂) – g(p̄)),
(b) Γ (p̄, p, p) > ω(g(p̄))(g(p̄) – g(p)), p ∈ T , p �= p̄.

Proof Reflexivity is obvious. We prove that � is transitive. Let r � q and q � p. Then we
have

r = q or Γ (q, r, r) ≤ ω
(
g(q)

)(
g(p) – g(r)

)
, (2.2)

q = p or Γ (p, q, q) ≤ ω
(
g(p)

)(
g(p) – g(q)

)
. (2.3)

If r = q or p = q, then transitivity is confirmed. Let p �= q �= r. Since Γ (p, q, r) ≥ 0 and ω(p) >
0, from (2.2) and (2.3), we get g(q) ≥ g(r) and g(p) ≥ g(q), i.e., g(r) ≤ g(q) ≤ g(p). Since ω is
increasing, we get ω(g(q)) ≤ ω(g(p)). By using (Γ 1), (2.2), and (2.3), we obtain

Γ (p, r, r) ≤ Γ (p, q, q) + Γ (q, r, r)

≤ ω
(
g(p)

)(
g(p) – g(q)

)
+ ω

(
g(q)

)(
g(q) – g(r)

)

≤ ω
(
g(p)

)(
g(p) – g(q)

)
+ ω

(
g(p)

)(
g(q) – g(r)

)

= ω
(
g(p)

)(
g(p)

)
– g(r)).

Thus r � p, that is, � is quasi-order on T .
Now, a sequence {un} in Q(p̂) is constructed as follows. Let

Q(un) =
{

q ∈ Q(p̂) : q = un or Γ (un, q, q) ≤ ω
(
g(un)

)(
g(un) – g(q)

)}

=
{

q ∈ Q(p̂) : q � un
}

.

Put p̂ = u0 and choose u2 ∈ Q(u1) so that g(u2) ≤ infp∈Q(u1) g(p) + 1
2 . Suppose that un–1 ∈ T

is defined and choose un ∈ Q(un–1) so that

g(un) ≤ inf
p∈Q(un–1)

g(p) +
1
n

. (2.4)
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Since un ∈ Q(un–1), we have un � un–1, and {un} is decreasing. Also

Γ (un–1, un, un) ≤ ω(g(un–1)
(
g(un–1) – g(un)

)
.

Hence g(un) ≤ g(un–1) for all n ∈ N, that is, {g(un)} is decreasing. Also, g is bounded from
below, so {g(un)} is convergent. Let limn→∞ g(un) = w. Also, we prove that the sequence
{un} is F-Cauchy in Q(p̂). Assume that n < m. Then we have

Γ (un, um, um) ≤ Γ (un, un+1, un+1) + Γ (un+1, um, um)

≤ Γ (un, un+1, un+1) + Γ (un, un+2, un+2) + · · · + Γ (un+1, um, um)

≤ ω
(
g(un)

)(
g(un) – g(un+1)

)
+ ω

(
g(un+1)

)(
g(un+1) – g(un+2)

)

+ · · · + ω
(
g(um–1)

)(
g(um–1) – g(um)

)

≤ ω
(
g(un)

)(
g(un) – g(un+1)

)
+ ω

(
g(un)

)(
g(un+1) – g(un+2)

)

+ · · · + ω
(
g(un)

)(
g(um–1) – g(um)

)

≤ ω
(
g(un)

)(
g(un) – g(um)

) ≤ ω
(
g(un)

)(
g(un) – w

)
.

Put ρn = ω(g(un))(g(un) – w). Then limn→∞ ρn = 0, and according to Lemma 1.8(3), the
sequence {un} is nonincreasing and F-Cauchy in Q(p̂). �-completeness Q(p̂) implies that
{un} converges to a point p̄ ∈ P(p̂). From transitivity of �, we conclude Q(un) ⊂ Q(un–1)
for all n ∈N.

Now we are ready to show that {p̄} = Q(p̄). Assume that p ∈ Q(p̄), and p �= p̄. Then
Γ (p̄, p, p) ≤ ω(g(p̄))(g(p̄) – g(p)). Since Γ is nonnegative and ω ≥ 0, we conclude that
g(p) ≤ g(p̄).

Since p̄ ∈ Q(p̂) = Q(u0), we have p̄ ∈ Q(un–1) for all n ∈ N. Thus p � p̄ and p̄ � un–1,
and so p � un–1 (transitivity of �) for n ∈ N. Also, we have g(p̄) ≤ g(un) ≤ g(p) + 1

n and
limn→∞ g(un) = w. Hence g(p̄) ≤ w ≤ g(p) ≤ g(p̄) and so g(p̄) = w = g(p). Since p � un for
all n ∈N, we get

Γ (un, p, p) ≤ ω
(
g(un)

)(
g(un) – g(p)

)
= ω(g(un)

(
g(un) – w

)
= ρn. (2.5)

Also, p̄ � un for all n ∈N. Thus we have

Γ (un, p̄, p̄) ≤ ω(g(un)
(
g(un) – g(p̄)

)
= ω(g(un)

(
g(un) – w

)
= ρn (2.6)

and limn→∞ ρn = 0. By using (2.5), (2.6), and Lemma 1.8(1), we conclude that p = p̄, {p̄} =
Q(p̄), and so we have Γ (p̄, p, p) > ω(g(p̄))(g(p̄) – g(p)) for all p ∈ T and p �= p̄. �

Theorem 2.2 Assume that (T , F) is a complete q-F-m space and that Γ : T ×T ×T −→R+

is a Γ -distance on Z. Let ω : (–∞,∞] → (0,∞) be an increasing function, and g : T →
R ∪ {∞} be lsca, bounded from below, and proper. Let p̂ ∈ T in which infp∈T g(p) < g(p̂).
Then we can find p̄ ∈ T such that

(a) Γ (p̂, p̄, p̄) ≤ ω(g(p̂)(g(p̂) – g(p̄)),
(b) Γ (p̄, p, p) > ω(g(p̄))(g(p̄) – g(p)), p ∈ T , p �= p̄.
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Proof Define a relation � by

q � p if and only if p = q or Γ (p, q, q) ≤ ω
(
g(p)

)(
g(p) – g(q)

)
. (2.7)

In the proof of the previous theorem, we proved that � is quasi-order. Now we are ready
to show that � is lower closed. According to Definition 1.9, assume that the sequence
{un}n∈N is decreasing in T , which converges to p, and un+1 � un. We have

Γ (un, un+1, un+1) ≤ ω
(
g(un)

)(
g(un) – g(un+1)

)
. (2.8)

Since Γ ≥ 0 and ω ≥ 0, we have g(un+1) ≤ g(un), and so {g(un)} is a decreasing sequence.
Since g is bounded from below, we have that limn→∞ g(un) is finite. Let limn→∞ g(un) = w.
Then w ≤ g(un) for all n ∈N. Since g is lsca, we conclude that g(p) ≤ limn→∞ g(un), and so
we get g(p) ≤ w ≤ g(un).

Assume that n ∈ N is fixed. For all m ∈ N, where m > n, similar to the proof of Theo-
rem 2.1, we get

Γ (un, um, um) ≤ ω
(
g(un)

)(
g(un) – g(um)

) ≤ ω
(
g(un)

)(
g(un) – g(u)

)
.

Therefore, we conclude that g(p) ≤ g(un) for all n ∈ N. Let K = ω(g(un))(g(un) – g(u)). Ac-
cording to (Γ 2), we have Γ (un, um, um) ≤ K and then Γ (un, p, p) ≤ K for n ∈ N. Then, for
all n ∈ N, we get Γ (un, p, p) ≤ K = ω(g(un))(g(un) – g(u)). So p � un and we conclude that
� is lower closed for all r ∈ T . Also Q(r) = {q ∈ T : q � r} is lower closed. The sequence
{un} is constructed as follows:

Q(un) =
{

q ∈ T : q = un or Γ (un, q, q) ≤ ω
(
g(un)

)(
g(un) – g(q)

)}

= {q ∈ T : q � un}.

Then, for all n ∈N, Q(un) is a lower closed subset of a complete q-F-m space and therefore
�-complete. The assertion concludes from Theorem 2.1. �

Corollary 2.3 Assume that g , Γ , T , and ω are the same as in Theorem 2.2. Let ξ : R+ −→
R+ be increasing and sub-additive with ξ (0) = 0. If there is p̂ ∈ T , such that infp∈Z g(p) <
g(p̂), then there is p̄ ∈ T such that

(a) ξ (Γ (p̂, p̄, p̄)) ≤ ω(g(p̂)(g(p̂) – g(p̄)),
(b) ξ (Γ (p̄, p, p)) > ω(g(p̄)(g(p̄) – g(p)) for all p ∈ T , p �= p̄.

Proof From Remark 1.7, ξ ◦ Γ is a Γ -distance on T . So, by Theorem 2.2, we obtain the
conclusion. �

3 Equivalences
Theorem 3.1 Assume that (T , F) is a complete q-F-m space. Let Γ : T × T × T → R+ be
a Γ -distance on T , ω : (–∞,∞] → (0,∞) be an increasing function and g be lsca, proper,
and bounded from below. Then the following statements are equivalent to Theorem 2.2:
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(i) (Caristi–Kirk fixed point theorem). Let P : T → 2T be a multi-valued mapping with
nonempty values. If the following condition

for each q ∈ P(p), Γ (p, q, q) ≤ ω
(
g(p)

)(
g(p) – g(p)

)
(3.1)

is satisfied, then we can find p̄ ∈ T such that {p̄} = P(p̄). If the following condition

there is q ∈ P(p) such that Γ (p, q, q) ≤ ω
(
g(p)

)(
g(p) – g(q)

)
(3.2)

is satisfied, then we can find p̄ ∈ T such that p̄ ∈ P(p̄).
(ii) (Takahashi’s minimization theorem). Assume that, for all p̂ ∈ T with

infr∈T g(r) < g(p̂), there is p ∈ T such that

p �= p̂ and Γ (p̂, p, p) ≤ ω
(
g(p̂)

)(
g(p̂) – g(p)

)
. (3.3)

Then we can find p̄ ∈ T such that g(p̄) = infq∈T g(q).
(iii) (Equilibrium version of EVP). Let G : T × T →R∪ {∞} be a function satisfying:

(E1) for every p, q, r ∈ T , G(p, r) ≤ G(p, q) + G(q, r);
(E2) for all fixed p ∈ T , the function G(p, ·) : T → R∪ {∞} is proper and lsca;
(E3) there is p ∈ T such that infp∈T G(p̂, p) > –∞.

Then we can find p̄ ∈ T such that
(A) ω(g(p̂)G(p̂, p̄) + Γ (p̂, p̄, p̄) ≤ 0,
(B) ω(g(p̄)G(p̄, p) + Γ (p̄, p, p) > 0 for all p ∈ T , p �= p̄.

Proof Assertion (i) follows from Theorem 2.2. By Theorem 2.2(b), there exists p̄ ∈ T such
that

Γ (p̄, p, p) > ω
(
g(p̄)

)(
g(p̄) – g(p)

)
for all p ∈ T , p �= p̄. (3.4)

We prove that {p̄} = T(p̄) (respectively, p̄ ∈ T(p̄)). On the contrary, assume that q ∈
P(p̄) and q �= q̄. Then, by (3.1), Γ (p̄, q, q) ≤ ω(g(p̄))(g(p̄) – g(q)), and by (3.4), Γ (p̄, q, q) >
ω(g(p̄))(g(p̄) – g(q)). Therefore {p̄} = P(p̄) (respectively, p̄ ∈ P(p̄)).

(i) ⇒ (ii): Let P : T → 2T . Then we define P(p) = {q ∈ T : Γ (p, q, q) ≤ ω(g(p))(g(p)–g(q))}
for every p ∈ T . Then P has property (3.1). By (i), there exists p̄ ∈ T such that {p̄} = P(p̄).
Moreover, by assumption, there exists p ∈ T such that p �= p̂ and Γ (p̂, p, p) ≤ ω(g(p̂))(g(p̂) –
g(p)) for all p̂ ∈ T when infr∈T g(r) < g(p̂). Therefore, p ∈ T(p̂) and P(p̂) \ {p̂} �= ∅. Hence
g(p̄) = infp∈T g(p).

(ii) ⇒ (iii): Let g : T → R ∪ {∞}. Then we define g(p) = G(p̂, p), where p̂ is the same as
in (E3). Then from (E3) we get infp∈T g(p) > –∞, and so g is bounded from below. Assume
that (A) is false. So, for all p ∈ T , we can find q ∈ T such that

q �= p and ω
(
g(p)

)
G(x, y) + Γ (p, q, q) ≤ 0. (3.5)

By (E1), we get G(p̂, q) ≤ G(p̂, p) + G(p, q), i.e., G(p̂, q) – G(p̂, p) ≤ G(p, q).
Then by (3.5) we get

ω
(
g(p)

)(
G(p̂, q) – G(p̂, p)

)
+ Γ (p, q, q) ≤ ω

(
g(p)

)
G(p, q) + Γ (p, q, q) ≤ 0. (3.6)
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So, for every p ∈ T , we can find q ∈ T such that q �= p and ω(g(p))(g(q) – g(p)) +
Γ (p, q, q) ≤ 0. Also, Γ (p, q, q) ≤ ω(g(p))(g(q) – g(p)).

Now, by (ii), g(p̄) = infq∈T g(q) ≤ g(r). Replace p by p̄ in the last relation. Then there exists
q ∈ T such that q �= p and ω(g(p̄))(G(p̂, q) – G(p̂, p̄)) + Γ (p̄, q, q) ≤ 0, that is,

ω
(
g(p̄)

)(
g(q) – g(p̄)

)
+ Γ (p̄, q, q) ≤ 0 or Γ (p̄, q, q) ≤ ω

(
g(p̄)

)(
g(p̄) – g(q)

)
. (3.7)

Since q �= p, by using Lemma 1.8(1), Γ (p̄, p̄, p̄) �= 0, and Γ (p̄, q, q) �= 0, we get Γ (p̄, q, q) > 0,
and by (3.7), we obtain 0 < ω(g(p̄))(g(p̄) – g(q)) ⇒ g(q) < g(p̄). That is a contradiction.

(iii) ⇒ Theorem 2.2: Let G : T × T →R∪ {∞} be a function defined by G(p, q) = g(q) –
h(p) for all p, q ∈ T . According to Theorem 2.2, G satisfies all the conditions of (iii). By (A),
we get

ω
(
g(p̂)

)
G(p̂, p̄) + Γ (p̂, p̄, p̄) ≤ 0 ⇒ ω

(
g(p̂)

)(
g(p̄) – g(p̂)

)
+ Γ (p̂, p̄, p̄) ≤ 0.

Then

Γ (p̂, p̄, p̄) ≤ ω
(
g(p̂)

)(
g(p̂) – g(p̄)

)
.

Also, by (B), we get ω(g(p̄))G(p̄, p) + Γ (p̄, p, p) > 0 for all p ∈ T , p �= p̄. Then

ω
(
g(p̄)

)(
g(p) – g(p̄)

)
+ Γ (p̄, p, p) > 0 ⇒ Γ (p̄, p, p) > ω

(
g(p̄)

)(
g(p̄) – g(p)

)

for all p ∈ T , p �= p̄. �

Corollary 3.2 Let g , Γ , T , ω be the same as in Theorem 3.1 and suppose that ξ : R+ →R+

is a subadditive and increasing function such that ξ (0) = 0. Assume that P : T → 2T is a
multi-valued mapping with nonempty values. If, for all p ∈ T , there is q ∈ P(p) such that

ξ
(
Γ (p, q, q)

) ≤ ω
(
g(p)

)(
g(p) – g(q)

)
,

then P has a fixed point in T .

Proof Note that ξ ◦Γ is a Γ -distance on T by Remark 1.7. Then, by Theorem 3.1(i), P has
a fixed point in T . �

Corollary 3.3 Suppose that (T , F) is a complete q-F-m space. Let Γ : T × T × T →R+ be
a Γ -distance on T and G : T × T →R be a function satisfying the conditions:

(F1) G(p, r) ≤ G(p, q) + G(q, r) for all p, q, r ∈ T ;
(F2) for every constant p ∈ T , the function G(p, ·) : T → R is lsca and bounded from below.

Then, for each ε > 0 and every p̂ ∈ T , there exists p̄ ∈ T such that
(C) G(p̂, p̄) + εΓ (p̂, p̄, p̄) ≤ 0;
(D) G(p̄, p) + εΓ (p̄, p, p) > 0 for all p ∈ T , p �= p̄.

Proof Let g : T → R ∪ {∞}. Then we define g(p̂) = G(p, p̂) for all p̂ ∈ T and fixed p ∈ T .
Then, by Theorem 3.1(iii), (C) and (D) are established. �
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Corollary 3.4 Let G : T × T → (–∞,∞) be proper, lsca, and bounded from below in the
first argument and ω : (–∞,∞) → (0,∞) be nondecreasing. Assume that, for every p ∈ T
with {x ∈ T : G(p, x) < 0} �= ∅, there exists q = q(p) ∈ T with q �= p such that

Γ (p, q, q)) ≤ ω
(
G(p, t)

)(
G(p, t) – G(q, t)

)

for all t ∈ {p ∈ T : G(x, p) > infa∈T G(a, p)}. Then there exists y ∈ T such that G(y, p) ≥ 0 for
all q ∈ T .

Proof By Theorem 2.2(b), for all r ∈ T , there exists y(r) ∈ T such that

Γ
(
y(r), q, q

)
) > ω

(
G

(
y(r), r

))(
G

(
y(r), r

)
– G(q, r)

)

for all q ∈ T and p �= y(r). We show that there exists y ∈ T such that G(y, q) ≥ 0 for all
q ∈ T . Suppose it is false. Then, for all p ∈ T , there exists q ∈ T such that G(p, q) < 0, and
thus {x ∈ T : G(p, x) < 0} �= ∅. Then, according to the assumption, there exists q = q(y(r)),
q �= y(r) such that

Γ
(
y(r), q, q

)
) ≤ ω

(
G

(
y(r), r

))(
G

(
y(r), r

)
– G(q, r)

)
,

which is a contradiction. �

Example 3.5 Let T = [0, 1] and F(p, q, r) = 1
2 max{|p – q|, |p – r|, |q – r|}. So (T , F) is a com-

plete q-F-m. Assume that G : T ×T →R is defined by G(p, q) = 3p–2q. Then the function
x → G(p, q) is proper, lsca, and bounded from below. Also, for every q ∈ T , G(1, q) ≥ 0 and
for all p ∈ [ 2

3 , 1], G(p, q) ≥ 0 for all q ∈ T . On the other hand, when p ∈ [0, 2
3 ] and q ∈ [ 3

2 p, 1],
we have G(p, q) = 3p – 2q < 0. Then {x ∈ T , G(p, x) < 0} �= ∅. Let p, q ∈ T and p ≥ q. Then
we have p – q = 1

3 {(3p – 2x) – (3q – 2x)} for all x ∈ T . Suppose that ω : [0,∞) → [0,∞) with
ω(t) = 1

3 . Then

F(p, q, q)) ≤ ω
(
G(p, x)

)(
G(p, x) – G(q, x)

)

for all p ≥ q. By Corollary 3.4, there exists y ∈ T such that G(y, p) ≥ 0 for all p ∈ T .

4 Equilibrium problem
The EP (equilibrium problem) is a new research subject in nonlinear science and engi-
neering [11].

Definition 4.1 Suppose that S is a nonempty subset of a metric space T , G : S × S →R is
a function on R, and Γ is a Γ -distance on T . Let δ > 0. If there is p̄ ∈ T such that

G(p̄, q) + δΓ (p̄, q, q) ≥ 0 for all q ∈ S, (4.1)

then p̄ is a δ-solution to EP. Moreover, if (4.1) is satisfied as strict, then p̄ is called a δ-
solution to strict EP.

Theorem 4.2 Suppose that S �= ∅ is a compact subset of a complete metric space T and that
Γ is a Γ -distance. If a real-valued function G : S×S →R satisfies the following conditions:
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(E1) G(p, r) ≤ G(p, q) + G(q, r) for all p, q, r ∈ S;
(E2) the function G(p, ·) : S → R is lsca and bounded from below for each fixed p ∈ T ;
(E3) the function G(·, q) : S → R is upper semicontinuous for each fixed q ∈ S, then we can

find a solution p̄ ∈ S to EP.

Proof By Corollary 3.3, there is un ∈ S such that

G(un, q) +
1
n

Γ (un, q, q) ≥ 0 for each q ∈ S.

In other words, for ε = 1
n , un ∈ S is a δ-solution to EP. Since S is compact, there is a subse-

quence {unk } of {un} such that unk → p̄. Since G(·, q) is upper semicontinuous, we have

G(p̄, q) ≥ lim sup
S→∞

(
G(unk , q) +

1
nk

Γ (unk , q, q)
)

≥ 0 for all q ∈ S.

Hence p̄ is a solution to EP. �

Definition 4.3 Assume that (T , F) is a complete q-F-m space and that Γ is a Γ -distance
on T . An element u0 ∈ T satisfies the condition (Ξ ) if every sequence {un}⊂ T , satisfying
G(u0, un) ≤ 1

n for all n ∈N and G(un, p) + 1
nΓ (un, p, p) ≥ 0 for every p ∈ T and n ∈N, has a

convergent subsequence.

Theorem 4.4 Suppose that (T , F) is a complete q-F-m space and that Γ is a Γ -distance
on T . Let G : T × T −→R satisfy conditions (F1) and (F2) of Corollary 3.3 and G be upper
semicontinuous in the first variable. If u0 ∈ T satisfies the condition (Ξ ), then we can find
a solution p̄ ∈ T to EP.

Proof If in Corollary 3.3 we put ε = 1
n , then for every n ∈ N and for each u0 ∈ T , there is

un ∈ T satisfying the following conditions:

G(u0, un) +
1
n

Γ (u0, un, un) ≤ 0 (4.2)

and

G(un, p) +
1
n

Γ (un, p, p) > 0 for all p ∈ T . (4.3)

Since Γ (u0, un, un) ≥ 0, by (4.2), we conclude that G(u0, un) ≤ 0 for all n ∈ N. From (Ξ ),
there is a subsequence {un} converging to p̄ ∈ T . Since G(·, p) is upper semicontinuous and
by (4.3), we get that p̄ is a solution to EP. �

5 A generalization of Nadler’s fixed point theorem
In this section, we are ready to prove Nadler’s fixed point theorem in q-F-m spaces with
Γ -distance.

Definition 5.1 Suppose that (T , F) is a q-F-m space. A mapping P : T −→ 2T is called
Γ -contractive if there are a Γ -distance Γ on T and w in [0, 1] such that, for all p, q ∈ T
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and x ∈ P(p), there is y ∈ P(q) satisfying

Γ (x, y, y) ≤ wΓ (x, q, q).

Then w ∈ R is called a Γ -contractive constant. In particular, g : T → T is said to be Γ -
contractive if there are a Γ -distance on T and w ∈ [0, 1] such that

Γ
(
g(p), g(q), g(q)

) ≤ wΓ (p, q, q) for all p, q ∈ T .

Theorem 5.2 Suppose that (T , F) is a complete q-F-m space, P : T → 2T is a Γ -contractive
multi-valued mapping, and Γ is a Γ -distance such that, for each p in T , P(p) is a nonempty
closed subset. Then there is p̄ ∈ T such that p̄ ∈ P(p̄) and Γ (p̄, p̄, p̄) = 0.

Proof Suppose that Γ is a Γ -distance on T and w ∈ [0, 1) is a Γ -contractive constant.
Assume that u0 ∈ T and u1 ∈ P(u0) is fixed. Then, by the definition of Γ -contractivity,
there exists u2 ∈ P(u1) such that

Γ (u1, u2, u2) ≤ wΓ (u0, u1, u1).

In the same way, we make the sequence {un} such that un+1 ∈ P(un) and

Γ (un, un+1, un+1) ≤ wΓ (un–1, un, un) for all n ∈N.

We have

Γ (un, un+1, un+1) ≤ wΓ (un–1, un, un)

≤ w2Γ (un–2, un–1, un–1)
...

≤ wnΓ (u0, u1, u1).

Then, for all m, n ∈N with m > n, we have

Γ (un, um, um) ≤ Γ (un, un+1, un+1) + Γ (un+1, um, um)

≤ Γ (un, un+1, un+1) + Γ (un+1, un+2, un+2)

+ · · · + Γ (um–1, um, um)

≤ wnΓ (u0, u1, u1) + wn+1Γ (u0, u1, u1)

+ · · · + wm–1Γ (um–1, um, um)

= wn(1 + w + w2 + · · · + wm–n–1)Γ (u0, u1, u1)

≤ wn

1 – w
Γ (u0, u1, u1).

Then the sequence {ρn} = { wn

1–w } is a nonnegative sequence on R tending to 0 as n → ∞.
By Lemma 1.8(3), {un} is an F-Cauchy sequence in T . The sequence {un} is convergent to
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a p̄ ∈ T since T is complete. Let n ∈N. Then we have

Γ (un, um, um) ≤ wn

1 – w
Γ (u0, u1, u1) (5.1)

for all m > n.
Let S = wn

1–wΓ (u0, u1, u1). Then S ≥ 0. Now, by (Γ 2) and Γ (un, um, um) ≤ S, we have
Γ (un, p̄, p̄) ≤ S for all n ∈N. Since n is an arbitrary constant, we have

Γ (un, p̄, p̄) ≤ wn

1 – w
Γ (u0, u1, u1) for all n ∈N. (5.2)

By the assumption, there is wn ∈ P(p̄) such that

Γ (un, wn, wn) ≤ wΓ (un–1, p̄, p̄)

≤ wn

1 – w
Γ (u0, u1, u1). (5.3)

By (5.2), (5.3), and Lemma 1.8(2), we have that the sequence {wn} converges to p̄. Since
P(p̄) is closed, we have ū ∈ P(ū).

Now, we prove that Γ (ū, ū, ū) = 0. Since P is Γ -contractive, there is v1 ∈ P(p̄) such that

Γ (p̄, v1, v1) ≤ wΓ (p̄, p̄, p̄).

Now, we construct a sequence {vn} as follows: vn+1 ∈ P(vn) and

Γ (p̄, vn+1, vn+1) ≤ wΓ (p̄, vn, vn) for all n ∈ N .

Therefore, for all n ∈ N, we get

Γ (p̄, vn, vn) ≤ Γ (p̄, vn–1, vn–1) ≤ · · · ≤ wnΓ (p̄, p̄, p̄). (5.4)

Since Γ (p̄, p̄, p̄) ≥ 0 and wn ≥ 0 for all n ∈ N and wn → 0 as n → ∞, {vn} is an F-Cauchy
sequence in T according to Lemma 1.8(4).

On the other hand, since T is complete, {vn} converges to q̄ ∈ T . Let S = supn∈N wnΓ (p̄,
p̄, p̄). Then, from (5.4) and (Γ2), we have

Γ (p̄, vn, vn) ≤ S 
⇒ Γ (p̄, q̄, q̄) ≤ S = sup
n∈N

wnΓ (p̄, p̄, p̄).

So Γ (p̄, q̄, q̄) ≤ 0 and Γ (p̄, q̄, q̄) = 0. Moreover, we have

Γ (un, q̄, q̄) ≤ Γ (un, p̄, p̄) + Γ (p̄, q̄, q̄)

≤ wn

1 – w
Γ (u0, u1, u1) (5.5)

for all n ∈ N. By (5.2), (5.5), and by Lemma 1.8(1), we obtain p̄ = q̄ and so Γ (p̄, p̄,
p̄) = 0. �

As a new approach, one can generalize the results presented in [12–21] in q-F-m spaces
with Γ -distance.
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