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1 Introduction
Let A = (aij)n×n be a square matrix of order n. α : [0, 1] → R is a bounded varia-
tion function, and

∫ 1
0 u(t) dα(t) = (

∫ 1
0 u1(t) dα(t),

∫ 1
0 u2(t) dα(t), . . . ,

∫ 1
0 un(t) dα(t))T where

∫ 1
0 ui(t) dα(t) denotes the Riemann–Stieltjes integrals of ui with respect to α and uT de-

notes the vector transpose of the row vector u. Take h =
∫ 1

0 t dα(t) and B = hA.
In this paper, we will study the existence of solutions for the following integral boundary

value problem at resonance in R
n:

⎧
⎨

⎩

–u′′(t) = f (t, u(t), u′(t)), t ∈ (0, 1),

u(0) = 0, u(1) = A
∫ 1

0 u(t) dα(t),
(1.1)

under the following assumptions:
(H1) B is a diagonalization matrix, and det(I – B) = 0;
(H2)

∫ 1
0 t(1 – t) dα(t) �= 0;

(H3) f : [0, 1] ×R
2n →R

n satisfies the Carathéodory conditions.
If the condition (H1) is considered, the associated linear problem –u′′(t) = 0, u(0) = 0,
u(1) = A

∫ 1
0 u(t) dα(t) has a nontrivial solution u(t) = ψt with ψ ∈ Ker(I – B). This means

that this problem is a resonant integral boundary value problem (IBVP).
Integral boundary value problems of this form arise in different areas of applied math-

ematics and physics such as heat conduction, thermoelasticity, underground water flow,
and plasma physics. Moreover, integral boundary value problems constitute a very im-
portant class of problems based on the fact that two-point, three-point, multi-point and
nonlocal boundary value problems can be treated as special cases of Riemann–Stieltjes
integral boundary value problems. As a result, the existence of solutions for such prob-
lems has received great attention (see [1, 5–9, 11, 12, 14, 15, 23, 26–28]). It is well known
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that, when n = 1, the existence theory of integral boundary value problems for ordinary
differential equations or fractional differential equations has been well studied; we refer
the reader to [4, 10, 17, 20, 21, 24, 25, 29–35, 37] for some recent results at non-resonance
and to [2, 3, 16, 18, 22, 23, 27, 36] for results at resonance. When n ≥ 2 and A is not a diag-
onal matrix, IBVP (1.1) becomes a system of ordinary differential equations with coupled
boundary conditions. Differential systems with coupled integral boundary conditions can
be applied to reaction–diffusion phenomena, interaction problems and Lotka–Volterra
models. Recently, there have been many papers addressing the existence of solutions for
differential systems of coupled integral boundary value problems; see, for example, [1, 3,
5–7, 9, 11–14].

To the best of our knowledge, the solvability of problem (1.1) at resonance has not been
considered before. The main purpose of this paper is to establish an existence result for
problem (1.1) when n ≥ 2. Our main method is based on the coincidence degree theory
of Mawhin and the theory of matrix diagonalization in linear algebra.

We end this section by recalling some notations and abstract results from coincidence
degree theory.

Let X and Y be two real Banach spaces, L : dom L ⊂ X → Y be a linear Fredholm op-
erator of index zero, and P : X → X and Q : Y → Y be two continuous projectors such
that

Im P = ker L, ker Q = Im L, X = ker L ⊕ ker P, Y = Im L ⊕ Im Q.

It follows from the above equalities that the reduced operator

L|dom L∩Ker P : dom L ∩ ker P → Im L

is invertible. We denote its inverse by KP (the generalized inverse operator of L). If Ω is an
open bounded subset of X such that dom L ∩Ω �= ∅, the mapping N : X → Y will be called
L-compact on Ω if QN(Ω) is bounded and KP(I – Q)N : Ω → X is compact.

We make use of the following result from Mawhin [19].

Theorem 1.1 ([19] (Mawhin continuation theorem)) Let L : dom L ⊂ X → Y be a Fred-
holm operator of index zero and N be L-compact on Ω . The equation Lϕ = Nϕ has at least
one solution in dom L ∩ Ω if the following conditions are satisfied:

(1) Lϕ �= λNϕ for every (ϕ,λ) ∈ [(dom L\ker L) ∩ ∂Ω] × (0, 1);
(2) Nϕ /∈ Im L for every ϕ ∈ ker L ∩ ∂Ω ;
(3) deg(JQN |ker L,Ω ∩ ker L, 0) �= 0, where J : Im Q → Ker L is some isomorphism.

2 Preliminaries
We use the classical spaces X = C1([0, 1],Rn) and Y = L1([0, 1],Rn). For u ∈ X, we use the
norm ‖u‖X = max{‖u‖∞,‖u′‖∞}, where ‖u‖∞ = maxt∈[0,1]{|u1(t)|, |u2(t)|, . . . , |un(t)|}, and
denote the norm in L1([0, 1],Rn) by ‖u‖1 = max1≤i≤n

∫ 1
0 |ui(t)|dt. We also use the Sobolev

space defined by

X0 =
{

u ∈ X : u′ is absolutely continuous on [0, 1] and u′′ ∈ Y
}

.
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We define L to be the linear operator from D(L) ⊂ X to Y with

dom L =
{

u ∈ X0 : u(0) = 0, u(1) = A
∫ 1

0
u(t) dα(t)

}

and for u ∈ D(L), Lu = –u′′. Let N : X → Y be the nonlinear operator defined by

(Nu)(t) = f
(
t, u(t), u′(t)

)
, t ∈ [0, 1].

Thus, problem (1.1) can be written as Lu = Nu.

Lemma 2.1 The following results hold:
(1) Ker L = {u ∈ X : u(t) = ψt,ψ ∈ Ker(I – B) ⊂R

n}.
(2) Im L = {v ∈ Y : ϕ(v) ∈ Im(I – B)}, where ϕ : Y →R

n is a linear operator defined by

ϕ(v) = A
∫ 1

0

∫ 1

0
G(t, s)v(s) ds dα(t), (2.1)

where

G(t, s) =

⎧
⎨

⎩

t(1 – s), 0 ≤ t ≤ s ≤ 1,

s(1 – t), 0 ≤ s ≤ t ≤ 1.
(2.2)

Proof (1) For u ∈ Ker L, we obtain –u′′ = 0. Then u(t) = ψt + ψ1 with ψ ,ψ1 ∈ R
n. With

consideration of the boundary conditions u(0) = 0 and u(1) = A
∫ 1

0 u(t) dα(t), we conclude
that ψ1 = 0 and ψ = A

∫ 1
0 ψt dα(t) = A(hψ) = Bψ . Thus, ψ ∈ Ker(I – B). Again, if u(t) = ψt

with ψ ∈ Ker(I – B), then u ∈ Ker L.
(2) For v ∈ Im L, there exists u ∈ dom L such that –u′′(t) = v(t). Thus,

u(t) = u(0)(1 – t) + u(1)t +
∫ 1

0
G(t, s)v(s) ds. (2.3)

Using the boundary conditions u(0) = 0 and u(1) = A
∫ 1

0 u(t) dα(t), it follows from (2.3)
that

u(1) = A
∫ 1

0
u(t) dα(t) = A

∫ 1

0

(

u(1)t +
∫ 1

0
G(t, s)v(s) ds

)

dα(t)

= A
(
hu(1)

)
+ ϕ(v) = Bu(1) + ϕ(v).

This implies that ϕ(v) = (I – B)u(1). Thus, v ∈ {v ∈ Y : ϕ(v) ∈ Im(I – B)}. Conversely, if v ∈ Y
and ϕ(v) ∈ Im(I – B), let

u(t) = ξ t +
∫ 1

0
G(t, s)v(s) ds,

where ξ ∈R
n satisfies

(I – B)ξ = ϕ(v). (2.4)



Song et al. Journal of Inequalities and Applications        (2019) 2019:252 Page 4 of 19

Then –u′′(t) = v(t), u(0) = 0, u(1) = ξ and

A
∫ 1

0
u(t) dα(t) = Aξ

∫ 1

0
t dα(t) + ϕ(v) = Bξ + ϕ(v) = ξ .

Thus, u(1) = A
∫ 1

0 u(t) dα(t) and v ∈ Im L. This completes the proof. �

Recall that a matrix is diagonalizable over the fieldR if and only if its minimal polynomial
is a product of distinct linear factors over R. Thus, it follows from (H1) that the minimal
polynomial of the matrix B can be written as

μB(x) = (1 – x)g(x), (2.5)

where 1 – x and g(x) are two polynomials which are relatively prime. Hence, there exist
two polynomials, a(t) and b(t), such that

(1 – x)a(x) + g(x)b(x) = 1.

From this, we conclude that (I – B)a(B) + g(B)b(B) = I . Thus,

Im(I – B) = Ker g(B),

Ker(I – B) = Im g(B),

R
n = Im(I – B) ⊕ Im g(B).

(2.6)

Moreover, by (2.5), we have (I – B)g(B) = 0, that is,

g(B)B = g(B). (2.7)

Consequently, we deduce that

g(B)g(B) = g(1)g(B), (2.8)

where g(1) �= 0 holds following from the fact that 1 – x and g(x) are two relatively prime
polynomials.

Example 2.1 When Bm = B with 2 ≤ m ≤ n, the minimal polynomial of the matrix, B, is

μB(x) = x – xm = (1 – x)
(
x + x2 + · · · + xm–1) = (1 – x)g(x).

Thus, we have

g(1) = m – 1.

When Bm = I with a 2 ≤ m ≤ n, the minimal polynomial of the matrix, B, can be explicitly
given by

μB(x) = 1 – xm = (1 – x)
(
1 + x + x2 + · · · + xm–1) = (1 – x)g(x).
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Thus, we obtain

g(1) = m.

Lemma 2.2 L is a Fredholm operator of index zero.

Proof We define an operator Q : Y → Y by

(Qv)(t) = kg(B)ϕ(v), v ∈ Y ,

where ϕ is given in (2.1) and k = 2h
g(1)

∫ 1
0 t(1–t) dα(t)

. Note that if w(t) = ψ with ψ ∈R
n, we have

(Qw)(t) = kg(B)Aψ

∫ 1

0

∫ 1

0
G(t, s) ds dα(t)

= kg(B)Aψ

∫ 1

0

t(1 – t)
2

dα(t) =
h

g(1)
g(B)Aψ

=
1

g(1)
g(B)Bψ =

1
g(1)

g(B)ψ .

Hence,

(
Q2v

)
(t) =

1
g(1)

g(B)
(
kg(B)ϕ(v)

)

=
k

g(1)
g(B)g(B)ϕ(v)

= kg(B)ϕ(v) = (Qv)(t).

Therefore, the map Q is a continuous linear projector. Moreover, by (2.6) and Lemma 2.1,
we have

v ∈ Ker Q ⇔ ϕ(v) ∈ Ker g(B) ⇔ ϕ(v) ∈ Im(I – B) ⇔ v ∈ Im L.

This means that Ker Q = Im L. For v ∈ Y , v–Qv ∈ Ker Q = Im L. Therefore, Y = Im L+ Im Q,
and, again, Im L∩ Im Q = {0}. Hence, Y = Im L⊕ Im Q. Combining the previous results with
the additional information that Im L is closed, we conclude that L is a Fredholm operator
of index zero. �

In what follows, we make the following assumption on the matrix B:
(H4) There exists l ∈R such that l(I – B)(I – B) = (I – B).

Example 2.2 When B2 = B, we can take l = 1 such that

(I – B)(I – B) = I – 2B + B2 = I – B.

If B2 = I , we can take l = 1
2 such that

l(I – B)(I – B) =
1
2
(
I – 2B + B2) =

1
2

(2I – 2B) = I – B.
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Lemma 2.3 Assuming that (H4) holds,

l(I – B)ψ = ψ , ∀ψ ∈ Im(I – B).

Proof Let ψ ∈ Im(I – B) so that ψ = (I – B)ψ1 for ψ1 ∈ R
n. Using the condition (H4), we

have

l(I – B)ψ = l(I – B)(I – B)ψ1 = (I – B)ψ1 = ψ . �

Lemma 2.4 If Ω is an open bounded subset such that dom L ∩Ω �= ∅, then N is L-compact
on Ω .

Proof Define the linear operator P : X → X by

(Pu)(t) =
1

g(1)
g(B)u(1)t.

Then we have

(
P2u

)
(t) =

1
g(1)

g(B)
(

1
g(1)

g(B)u(1)
)

t

=
1

g2(1)
g(B)g(B)u(1)t =

1
g(1)

g(B)u(1)t = (Pu)(t).

This shows that P is a continuous projection operator. In the following, we will assert that
Im P = Ker L. In fact, if v ∈ Im P, there is u ∈ X, such that

v(t) = Pu(t) =
1

g(1)
g(B)u(1)t.

Thus, it follows from (2.6) that v ∈ Ker L. Conversely, if v ∈ Ker L, we have

v(t) = ψt, ψ ∈ Ker(I – B).

On account of the second identity in (2.6), there exists ψ1 ∈ R
n, such that ψ = g(B)ψ1.

Taking u(t) = g(1)ψ1, we then have

Pu(t) =
1

g(1)
g(B)u(1)t = g(B)ψ1t = ψt,

which implies that v ∈ Im P. Thus, we conclude that Im P = Ker L, and consequently,

X = Ker L ⊕ Ker P.

Therefore, the generalized inverse KP : Im L → dom L ∩ Ker P can be given by

(KPv)(t) =
∫ 1

0
G(t, s)v(s) ds + l

(

I –
1

g(1)
g(B)

)

ϕ(v)t, (2.9)
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where the constant l is given in (H4). Note that, since G(1, s) = 0 for all s ∈ [0, 1] and from
(2.9), we have

P(KPv)(t) =
l

g(1)
g(B)

(

I –
1

g(1)
g(B)

)

ϕ(v)t = 0.

Hence, KPv ∈ Ker P. For v ∈ Im L, we know that

(KPv)(1) = l
(

I –
1

g(1)
g(B)

)

ϕ(v)

and

A
∫ 1

0
(KPv)(t) dα(t)

= A
∫ 1

0

(∫ 1

0
G(t, s)v(s) ds + l

(

I –
1

g(1)
g(B)

)

ϕ(v)t
)

dα(t)

= ϕ(v) + lA
(

I –
1

g(1)
g(B)

)

ϕ(v)
∫ 1

0
t dα(t)

= ϕ(v) + lA
(

I –
1

g(1)
g(B)

)

ϕ(v)h = ϕ(v) + lB
(

I –
1

g(1)
g(B)

)

ϕ(v)

= ϕ(v) + l(B – I + I)
(

I –
1

g(1)
g(B)

)

ϕ(v)

= ϕ(v) – l(I – B)
(

I –
1

g(1)
g(B)

)

ϕ(v) + l
(

I –
1

g(1)
g(B)

)

ϕ(v)

= ϕ(v) – l(I – B)ϕ(v) + l
(

I –
1

g(1)
g(B)

)

ϕ(v) = l
(

I –
1

g(1)
g(B)

)

ϕ(v).

Therefore, (KPv)(1) = A
∫ 1

0 (KPv)(t) dα(t), and consequently, KP is well defined. Further-
more, if u ∈ dom L ∩ Ker P, then, using (2.7) and Lemma 2.3, we have

(KPLu)(t)

= –
∫ 1

0
G(t, s)u′′(s) ds + l

(

I –
1

g(1)
g(B)

)

ϕ(Lu)t

= u(t) – u(1)t + l
(

I –
1

g(1)
g(B)

)

A
(∫ 1

0

(
u(t) – u(1)t

)
dα(t)

)

t

= u(t) – u(1)t + l
(

I –
1

g(1)
g(B)

)(

A
∫ 1

0
u(t) dα(t) – Ahu(1)

)

t

= u(t) – u(1)t + l
(

I –
1

g(1)
g(B)

)

(I – B)u(1)t

= u(t) – u(1)t + l(I – B)u(1)t

= u(t).
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This shows that KP = (L|dom L∩Ker P)–1 and that LKPv(t) = v(t), v ∈ Im L. For v ∈ dom L, by
(2.8) we obtain

(KPv)′(t) =
∫ 1

t
(1 – s)v(s) ds –

∫ t

0
sv(s) ds + l

(

I –
1

g(1)
g(B)

)

A
∫ 1

0

∫ 1

0
G(t, s)v(s) ds dα(t).

Notice that

max
t∈[0,1]

∣
∣
∣
∣

∫ 1

0
G(t, s)v(s) ds

∣
∣
∣
∣ ≤ max

t∈[0,1]

∫ 1

0
t(1 – t)

∣
∣v(s)

∣
∣ds ≤ ‖v‖1

4
,

max
t∈[0,1]

∣
∣
∣
∣

∫ 1

0
G′

t(t, s)v(s) ds
∣
∣
∣
∣ = max

t∈[0,1]

∣
∣
∣
∣–

∫ t

0
sv(s) ds +

∫ 1

t
(1 – s)v(s) ds

∣
∣
∣
∣

≤ max
t∈[0,1]

(

t
∫ t

0

∣
∣v(s)

∣
∣ds + (1 – t)

∫ 1

t

∣
∣v(s)

∣
∣ds

)

≤ max
t∈[0,1]

(

t
∫ 1

0

∣
∣v(s)

∣
∣ds + (1 – t)

∫ 1

0

∣
∣v(s)

∣
∣ds

)

= ‖v‖1,

and

∣
∣
∣
∣

∫ 1

0

∫ 1

0
G(t, s)v(s) ds dα(t)

∣
∣
∣
∣ ≤

∫ 1

0

∫ 1

0
t(1 – t)

∣
∣v(s)

∣
∣ds d

( t∨

0

(α)

)

=
∫ 1

0
t(1 – t) d

( t∨

0

(α)

)

· ‖v‖1,

where
∨t

0(α) denotes the total variation of α on [0, t] defined by

t∨

0

(α) = sup
P

n∑

i=1

∣
∣α(ti) – α(ti–1)

∣
∣,

where the supremum runs over the set of all partitions

P =
{

P = {t0, . . . , tn}|P is a partition of [0, t]
}

.

Let ‖ · ‖∗ be the max-norm of matrices defined by

‖A‖∗ = max
1≤i≤n,1≤j≤m

|aij|, for A = (aij)n×m,

and ‖ · ‖Rn be the maximum norm in R
n. Then we have

‖Av‖Rn ≤ m‖A‖∗‖v‖Rm , for A = (aij)n×m and v ∈R
m.

Thus,

‖KPv‖∞ ≤
(

1
4

+ n|l| ·
∥
∥
∥
∥

(

I –
1

g(1)
g(B)

)

A
∥
∥
∥
∥∗

∫ 1

0
t(1 – t) d

( t∨

0

(α)

))

‖v‖1
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and

∥
∥K ′

Pv
∥
∥∞ ≤

(

1 + n|l| ·
∥
∥
∥
∥

(

I –
1

g(1)
g(B)

)

A
∥
∥
∥
∥∗

∫ 1

0
t(1 – t) d

( t∨

0

(α)

))

‖v‖1.

Consequently, we conclude that

‖KPv‖X ≤ M‖v‖1,

where M = 1 + n|l|‖(I – 1
g(1) g(B))A‖∗

∫ 1
0 t(1 – t) d(

∨t
0(α)). It is easy to see that

(QNu)(t) = kg(B)A
∫ 1

0

∫ 1

0
G(t, s)f

(
s, u(s), u′(s)

)
ds dα(t) ∈ R

n

and

KP(I – Q)Nu(t)

= KPNu(t) – KPQNu(t)

=
∫ 1

0
G(t, s)Nu(s) ds + l

(

I –
1

g(1)
g(B)

)

ϕ(Nu)t

+
∫ 1

0
G(t, s) ds · QNu(t) + l

(

I –
1

g(1)
g(B)

)

ϕ(QNu)t

=
∫ 1

0
G(t, s)Nu(s) ds +

t(1 – t)
2

QNu(t)

+ l
(

I –
1

g(1)
g(B)

)
(
ϕ(Nu) + ϕ(QNu)

)
t.

By using the standard argument, we can show that QN((Ω)) is bounded and KP(I –
Q)N(Ω) is compact. Thus, N is L-compact on Ω . �

The above results (Lemmas 2.1, 2.2, and 2.4) may be concrete for a specific matrix. In the
following, we suppose that a diagonalizable matrix B satisfy B2 = I and dim Ker(I – B) = k.
So, there exist a set of linearly independent vectors {η1,η2, . . . ,ηn} such that

BC = C

(
Ik 0
0 –In–k

)

, C = (η1,η2, . . . ,ηn),ηi =

⎛

⎜
⎜
⎜
⎜
⎝

η1i

η2i
...

ηni

⎞

⎟
⎟
⎟
⎟
⎠

,

where ηi (i = 1, 2, . . . , k) is an eigenvector of B with eigenvalue 1 and ηi (i = k + 1, k + 2, . . . , n)
is an eigenvector of B with eigenvalue –1. Moreover, we shall suppose that

⎛

⎜
⎜
⎜
⎜
⎝

η11 η12 · · · η1k

η21 η22 · · · η2k
...

... · · · ...
ηk1 ηk2 · · · ηkk

⎞

⎟
⎟
⎟
⎟
⎠

= Ik ,

⎛

⎜
⎜
⎜
⎜
⎝

ηk+1,k+1 ηk+1,k+2 · · · ηk+1,n

ηk+2,k+1 ηk+2,k+2 · · · ηk+2,n
...

... · · · ...
ηn,k+1 ηn,k+2 · · · ηn,n

⎞

⎟
⎟
⎟
⎟
⎠

= In–k . (2.10)
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Take C–1 = (cij)n×n,

D1 =

⎛

⎜
⎜
⎜
⎜
⎝

ck+1,1 ck+1,2 · · · ck+1,k

ck+2,1 ck+2,2 · · · ck+2,k
...

... · · · ...
cn,1 cn,2 · · · cn,k

⎞

⎟
⎟
⎟
⎟
⎠

, D2 =

⎛

⎜
⎜
⎜
⎜
⎝

ck+1,k+1 ck+1,k+2 · · · ck+1,n

ck+2,k+1 ck+2,k+2 · · · ck+2,n
...

... · · · ...
cn,k+1 cn,k+2 · · · cn,n

⎞

⎟
⎟
⎟
⎟
⎠

.

It follows from C–1C = I and (2.10) that, for l, m ∈ {1, 2, . . . , k},

n∑

i=1

cliηim = δlm =

⎧
⎨

⎩

1 if l = m,

0 if l �= m.
(2.11)

Based on the notation above, (2.4) can be rewritten as

C

(
0 0
0 2In–k

)

C–1ξ =
1
h

C

(
Ik 0
0 –In–k

)

C–1
∫ 1

0

∫ 1

0
G(t, s)v(s) ds dα(t).

Thus,
(

0 0
0 2In–k

)

C–1ξ =
1
h

(
Ik 0
0 –In–k

)

C–1
∫ 1

0

∫ 1

0
G(t, s)v(s) ds dα(t).

Then the above matrix equation reduces to
⎧
⎨

⎩

∫ 1
0
∫ 1

0 G(t, s)
∑n

j=1 cijvj(s) ds dα(t) = 0, i = 1, 2, . . . , k,

–
∫ 1

0
∫ 1

0 G(t, s)
∑n

j=1 cijvj(s) ds dα(t) = 2h
∑n

j=1 cijξj, i = k + 1, k + 2, . . . , n,

or
⎧
⎨

⎩

∫ 1
0
∫ 1

0 G(t, s)
∑n

j=1 cijvj(s) ds dα(t) = 0, i = 1, 2, . . . , k,

–
∫ 1

0
∫ 1

0 G(t, s)(D1, D2)v(s) ds dα(t) = 2h(D1, D2)ξ .
(2.12)

Consequently,

Im L =

{

v ∈ Y :
∫ 1

0

∫ 1

0
G(t, s)

n∑

j=1

cijvj(s) ds dα(t) = 0, i = 1, 2, . . . , k

}

.

By (2.10), we know det(D2) �= 0. From the second part of (2.12), we infer that

⎛

⎜
⎜
⎜
⎜
⎝

ξk+1

ξk+2
...
ξn

⎞

⎟
⎟
⎟
⎟
⎠

= –
D–1

2 D1

2h

⎛

⎜
⎜
⎜
⎜
⎝

ξ1

ξ2
...
ξk

⎞

⎟
⎟
⎟
⎟
⎠

–
1

2h

∫ 1

0

∫ 1

0
G(t, s)

(
D–1

2 D1, In–k
)
v(s) ds dα(t). (2.13)

Define the linear operator P : X → X by

(Pu)(t) = u1(1)η1t + u2(1)η2t + · · · + uk(1)ηkt, u ∈ X,
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It follows from the left formula in (2.10) that P is a continuous projection operator with
Im P = Ker L.

Based on the assumption (H2), we define linear operators Q : Y → Y by

Qv =
k∑

i=1

γ

∫ 1

0

∫ 1

0
G(t, s)

n∑

j=1

cijvj(s) ds dα(t) · ηi, v ∈ Y , (2.14)

where γ = 2∫ 1
0 t(1–t) dα(t)

. For given v ∈ Y , we take

αi =
∫ 1

0

∫ 1

0
G(t, s)

n∑

j=1

cijvj(s) ds dα(t), i = 1, 2, . . . , k.

Then (2.13) reduces to

(Qv)(t) = γ

(

α1,α2, . . . ,αk ,
k∑

m=1

αmηk+1,m,
k∑

m=1

αmηk+2,m, . . . ,
k∑

m=1

αmηn,m

)

.

With the help of (2.11), we have

1
γ

n∑

j=1

cij(Qv)j(s)

= ci1α1 + ci2α2 + · · · + cikαk + cik+1

k∑

m=1

αmηk+1,m

+ cik+2

k∑

m=1

αmηk+2,m + · · · + cin

k∑

m=1

αmηn,m

= α1(ci1 + cik+1ηk+1,1 + cik+2ηk+2,1 + · · · + cinηn,1)

+ α2(ci2 + cik+1ηk+1,2 + cik+2ηk+2,2 + · · · + cinηn,2)

+ · · · + αk(cik + cik+1ηk+1,k + cik+2ηk+2,k + · · · + cinηn,k)

= α1δi1 + α2δi2 + · · · + αkδik , i =, 1, 2, . . . , k.

Consequently,

(
Q2v

)
(t) =

k∑

i=1

γ

∫ 1

0

∫ 1

0
G(t, s)

n∑

j=1

cij(Qv)j(s) ds dα(t) · ηi

= γ

∫ 1

0

∫ 1

0
G(t, s) ds dα(t)

( k∑

i=1

γ

∫ 1

0

∫ 1

0
G(t, s)

n∑

j=1

cijvj(s) ds dα(t) · ηi

)

= γ

∫ 1

0

t(1 – t)
2

dα(t)

( k∑

i=1

γ

∫ 1

0

∫ 1

0
G(t, s)

n∑

j=1

cijvj(s) ds dα(t) · ηi

)

= (Qv)(t).
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This implies that Q is a continuous projection operator. Obviously, Ker Q = Im L holds
from the linear independence of the vectors {η1,η2, . . . ,ηk}.

From (2.12), it follows that the generalized inverse KP : Im L → dom L ∩ Ker P can be
defined by

(KPv)(t) =
∫ 1

0
G(t, s)v(s) ds + δ · t,

where δ ∈R
n is given by

δ =
(

0, . . . , 0︸ ︷︷ ︸
k

,
1

2h

∫ 1

0

∫ 1

0
G(t, s)

(
D–1

2 D1, In–k
)
v(s) ds dα(t)

)T

.

Similar to the proof of Lemma 2.4, we obtain

‖KPv‖X ≤
(

1 +
n

2h
∥
∥
(
D–1

2 D1, In–k
)∥
∥∗

∫ 1

0
t(1 – t) d

( t∨

0

(α)

))

‖v‖1. (2.15)

3 Main result
In this section, we use Theorem 1.1 to prove the existence of solutions to (1.1). For this
purpose, we use the following assumptions:

(H5) There exist nonnegative functions a, b, c ∈ L1[0, 1] such that, for all u, v ∈R
n and

t ∈ [0, 1],

∣
∣f (t, u, v)

∣
∣ ≤ a(t)‖u‖Rn + b(t)‖v‖Rn + c(t).

(H6) There exists a constant Λ > 0 such that, for each u ∈ dom L, if ‖u′(t)‖Rn > Λ for all
t ∈ [0, 1], then

g(B)A
∫ 1

0

∫ 1

0
G(t, s)f

(
s, u(s), u′(s)

)
ds dα(t) �= 0.

(H7) There exists a constant Λ1 > 0 such that either for any ψ ∈ R
n with ψ = Bψ and

‖ψ‖Rn > Λ1,

(ψ , QNu) ≤ 0, (3.1)

or for any ψ ∈R
n with ψ = Bψ and ‖ψ‖Rn > Λ1,

(ψ , QNu) ≥ 0, (3.2)

where u(t) = ψt, and (·, ·) denotes the scalar product in R
n.

Theorem 3.1 Let the assumptions (H1)–(H7) hold. Then (1.1) has at least one solution in
X provided that (n‖g(B)‖∗ + M|g(1)|)(‖a‖1 + ‖b‖1) < |g(1)|.

Proof Set

Ω1 =
{

u ∈ dom L\Ker L : Lu = λNu for some λ ∈ [0, 1]
}

.
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Suppose that u ∈ Ω1, and Lu = λNu. Then λ �= 0 and Nu ∈ Im L = Ker Q so that

g(B)A
∫ 1

0

∫ 1

0
G(t, s)f

(
s, u(t), u′(t)

)
= 0, for all t ∈ [0, 1].

Thus, from (H6), there is t0 ∈ [0, 1] such that ‖u′(t0)‖Rn ≤ Λ. By the absolute continuity of
u, for t ∈ [0, 1], we have

∣
∣u(t)

∣
∣ =

∣
∣
∣
∣u(0) –

∫ t

0
u′(s) ds

∣
∣
∣
∣ ≤ ∥

∥u′∥∥∞

and

∣
∣u′(t)

∣
∣ =

∣
∣
∣
∣u

′(t0) –
∫ t

t0

u′′(s) ds
∣
∣
∣
∣ ≤ Λ +

∥
∥u′′∥∥

1. (3.3)

This yields

‖Pu‖X = max
{‖Pu‖∞,

∥
∥(Pu)′

∥
∥∞

} ≤ n‖g(B)‖∗
|g(1)|

∥
∥u(1)

∥
∥
Rn ≤ n‖g(B)‖∗

|g(1)|
∥
∥u′∥∥∞. (3.4)

Again, if u ∈ dom L, then (I – P)u ∈ dom L ∩ Ker P and LPu = 0. Then, by (2.7) and
Lemma 2.3,

∥
∥(I – P)u

∥
∥

X =
∥
∥KPL(I – P)u

∥
∥

X ≤ M
∥
∥L(I – P)u

∥
∥

1

= M‖Lu‖1 = M
∥
∥u′′∥∥

1 ≤ M‖Nu‖1. (3.5)

Using (3.3), (3.4) and (3.5), we conclude that

‖u‖X =
∥
∥Pu + (I – P)u

∥
∥

X ≤ ‖Pu‖X +
∥
∥(I – P)u

∥
∥

X

≤ n‖g(B)‖∗
|g(1)|

(
Λ +

∥
∥u′′∥∥

1

)
+ M

∥
∥u′′∥∥

1

=
n‖g(B)‖∗

|g(1)| Λ +
(

n‖g(B)‖∗
|g(1)| + M

)
∥
∥u′′∥∥

1

≤ n‖g(B)‖∗
|g(1)| Λ +

(
n‖g(B)‖∗

|g(1)| + M
)∫ 1

0

∣
∣f
(
s, u(s), u′(s)

)∣
∣ds

≤ n‖g(B)‖∗
|g(1)| Λ +

(
n‖g(B)‖∗

|g(1)| + M
)
(‖a‖1‖u‖∞ + ‖b‖1

∥
∥u′∥∥∞ + ‖c‖1

)

≤ n‖g(B)‖∗
|g(1)| Λ +

(
n‖g(B)‖∗

|g(1)| + M
)

‖c‖1 +
(

n‖g(B)‖∗
|g(1)| + M

)
(‖a‖1 + ‖b‖1

)‖u‖X .

The last inequality allows us to deduce that

‖u‖X ≤ n‖g(B)‖∗Λ + (n‖g(B)‖∗ + M|g(1)|)‖c‖1

|g(1)| – (n‖g(B)‖∗ + M|g(1)|)(‖a‖1 + ‖b‖1)
.

Thus, Ω1 is bounded. Let

Ω2 = {u ∈ Ker L : Nu ∈ Im L}.
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For u ∈ Ω2 and from the definition of Im L, u(t) = ψt, where ψ ∈ R
n. Since QNu = 0, we

have

g(B)A
∫ 1

0

∫ 1

0
G(t, s)f

(
s, u(s), u′(s)

)
ds dα(t) = 0.

Hence, from (H6), we can show that

‖u‖X = ‖u‖∞ = ‖ψ‖Rn ≤ Λ.

Therefore, Ω2 is a bounded set in X.
Let J(ψ) = ψt be the isomorphism. Then we want to show that the set of u in Ker L such

that

–λu + (1 – λ)JQNu = 0

with λ ∈ [0, 1] is bounded if (3.1) holds. This means that (with ψ = Bψ and u = ψt)

–λψt + (1 – λ)QN(ψt)t = 0,

or

–λψ + (1 – λ)QN(ψt) = 0.

If λ = 0, we have QN(ψt) = 0, that is,

g(B)A
∫ 1

0

∫ 1

0
G(t, s)f (s,ψs,ψ) ds dα(t) = 0.

Thus, we deduce that ‖ψ‖Rn ≤ Λ follows from (H5). Otherwise, if ‖ψ‖Rn > Λ1, in view of
(H7), we have

0 < λ‖ψ‖2
Rn = (1 – λ)

(
ψ , QN(ψt)

) ≤ 0.

Thus, ‖u‖X = ‖ψ‖Rn ≤ Λ1. Using the same argument as above, we can conclude that the
set of u in Ker L such that

λu + (1 – λ)JQNu = 0

with λ ∈ [0, 1] is bounded if (3.2) holds. Therefore, the set

Ω3 =
{

u ∈ Ker L : μλu + (1 – λ)JQNu = 0,λ ∈ [0, 1]
}

is bounded if conditions (H6) and (H7) are satisfied, where

μ =

⎧
⎨

⎩

–1 if (3.1) holds;

1 if (3.2) holds.
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Finally, the proof of this theorem is now an easy consequence of Lemmas 2.1, 2.2, and
2.3 and Theorem 1.1. Let Ω be a bounded and open subset of X

⋃3
i=1 Ωi ⊂ Ω . Then, by

the above argument, we have
(i) Lx �= λNx, for every (x,λ) ∈ [(dom L\Ker L) ∩ ∂Ω] × (0, 1),

(ii) Nx /∈ Im L for x ∈ Ker L ∩ ∂Ω ,
(iii) H(x,λ) = μλx + (1 – λ)JQNx. By the homotopy property of degree,

deg(JQN |Ker L, Ker L ∩ Ω , 0) = deg(μI, Ker L ∩ Ω , 0) �= 0.

Then, by Theorem 1.1, Lu = Nu has at least one solution in dom L ∩ Ω so that the IBVP
(1.1) has at least one solution. �

For the special case that a diagonalizable matrix B satisfy B2 = I and dim Ker(I – B) = k,
we make the following assumptions:

(H8) There exists a constant Λ > 0 such that, for each u ∈ dom L, if |u′
1(t)| > Λ for all

t ∈ [0, 1] or |u′
2(t)| > Λ for all t ∈ [0, 1], or . . . , or |u′

k(t)| > Λ for all t ∈ [0, 1], then

(QNu)(t) =
k∑

i=1

γ

∫ 1

0

∫ 1

0
G(t, s)

n∑

j=1

cijfj
(
s, u(s), u′(s)

)
ds dα(t) · ηi �= 0.

Theorem 3.2 Let the assumptions (H2), (H3), (H5), (H7), and (H8) hold. Then (1.1) has
at least one solution in X provided that (‖∑k

i=1 ηi‖Rn + M1)(‖a‖1 + ‖b‖1) < 1, where M1 =
(1 + n

2h‖(D–1
2 D1, In–k)‖∗

∫ 1
0 t(1 – t) d(

∨t
0(α))).

Proof For u ∈ Ω1, QNu = 0. Then, from (H8), there is ti ∈ [0, 1] (i = 1, 2, . . . , k) such that
|u′

i(ti)| ≤ Λ. By the absolute continuity of ui, for t ∈ [0, 1], we have

∣
∣ui(t)

∣
∣ =

∣
∣
∣
∣ui(0) –

∫ t

0
u′

i(s) ds
∣
∣
∣
∣ ≤ ∥

∥u′∥∥∞, i = 1, 2, . . . , k,

and

∣
∣u′

i(t)
∣
∣ =

∣
∣
∣
∣u

′
i(ti) –

∫ t

ti

u′′
i (s) ds

∣
∣
∣
∣ ≤ Λ +

∥
∥u′′∥∥

1, i = 1, 2, . . . , k.

This yields

‖Pu‖X = max
{‖Pu‖∞,

∥
∥(Pu)′

∥
∥∞

}
= ‖Pu‖∞

≤ max
1≤i≤k

{∣∣ui(1)
∣
∣} ·

∥
∥
∥
∥
∥

k∑

i=1

ηi

∥
∥
∥
∥
∥
Rn

≤
∥
∥
∥
∥
∥

k∑

i=1

ηi

∥
∥
∥
∥
∥
Rn

· ∥∥u′∥∥∞.

Again, if u ∈ dom L, then (I – P)u ∈ dom L ∩ Ker P and LPu = 0. Then, by (2.15),

∥
∥(I – P)u

∥
∥

X =
∥
∥KPL(I – P)u

∥
∥

X ≤ M1
∥
∥L(I – P)u

∥
∥

1

= M1‖Lu‖1 = M1
∥
∥u′′∥∥

1 ≤ M1‖Nu‖1.
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Using the above three inequalities, we conclude that

‖u‖X =
∥
∥Pu + (I – P)u

∥
∥

X ≤ ‖Pu‖X +
∥
∥(I – P)u

∥
∥

X

≤
∥
∥
∥
∥
∥

k∑

i=1

ηi

∥
∥
∥
∥
∥
Rn

(
Λ +

∥
∥u′′∥∥

1

)
+ M1

∥
∥u′′∥∥

1 =

∥
∥
∥
∥
∥

k∑

i=1

ηi

∥
∥
∥
∥
∥
Rn

Λ

+

(∥
∥
∥
∥
∥

k∑

i=1

ηi

∥
∥
∥
∥
∥
Rn

+ M1

)
∥
∥u′′∥∥

1

≤
∥
∥
∥
∥
∥

k∑

i=1

ηi

∥
∥
∥
∥
∥
Rn

Λ +

(∥
∥
∥
∥
∥

k∑

i=1

ηi

∥
∥
∥
∥
∥
Rn

+ M1

)∫ 1

0

∣
∣f
(
s, u(s), u′(s)

)∣∣ds

≤
∥
∥
∥
∥
∥

k∑

i=1

ηi

∥
∥
∥
∥
∥
Rn

Λ +

(∥
∥
∥
∥
∥

k∑

i=1

ηi

∥
∥
∥
∥
∥
Rn

+ M1

)

‖c‖1

+

(∥
∥
∥
∥
∥

k∑

i=1

ηi

∥
∥
∥
∥
∥
Rn

+ M1

)
(‖a‖1 + ‖b‖1

)‖u‖X .

The last inequality allows us to deduce that

‖u‖X ≤ ‖∑k
i=1 ηi‖RnΛ + (‖∑k

i=1 ηi‖Rn + M1)‖c‖1

1 – (‖∑k
i=1 ηi‖Rn + M1)(‖a‖1 + ‖b‖1)

.

Thus, Ω1 is bounded. The rest of the proof repeats that of Theorem 3.1. �

Example 3.1 Consider the differential system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–x′′
1(t) = sin x2(t)x′

2(t) + 1
5 arctan x2(t) + 1

5 x′
1(t) + t,

–x′′
2(t) = sin x1(t)x3(t) – cos x′

3(t) + 1
20 x′

2(t) – 1
20 x2(t) + et ,

–x′′
3(t) = arctan x2

3(t) + cos x1(t) + cos x2(t) + 1
20 x2(t) + 1

10 x′
2(t),

x1(0) = x2(0) = x3(0) = 0, x1(1) = 2
∫ 1

0 x1(t) dt,

x2(1) = 2
∫ 1

0 x3(t) dt, x3(1) = 2
∫ 1

0 x2(t) dt.

(3.6)

Here fi : [0, 1] ×R
6 →R, i = 1, 2, 3 are defined, respectively, by

f1(t, x, y) = sin x2y2 +
1
5

arctan x2 +
1
5

y1 + t,

f2(t, x, y) = sin x1x3 – cos y3 –
1

20
y2 –

1
20

x2 + et ,

f3(t, x, y) = arctan x2
3 + cos x1 + cos x2 +

1
20

x2 +
1

10
y2,

(3.7)

where x = (x1, x2, x3)T , y = (y1, y2, y3)T ∈R
3.

Take α(t) = t,

A =

⎛

⎜
⎝

2 0 0
0 0 2
0 2 0

⎞

⎟
⎠
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and

f (t, x, y) =

⎛

⎜
⎝

f1(t, x, y)
f2(t, x, y)
f3(t, x, y)

⎞

⎟
⎠ .

Then h =
∫ 1

0 t dα(t) = 1
2 , B = Ah = 1

2 A, B2 = I ,

C =

⎛

⎜
⎝

1 0 0
0 1 –1
0 1 1

⎞

⎟
⎠ = (η1,η2,η3), C–1 =

⎛

⎜
⎝

1 0 0
0 1

2
1
2

0 – 1
2

1
2

⎞

⎟
⎠ = (cij)3×3,

D2 =
1
2

, D1 =
(

0, –
1
2

)

, n = 3, k = 2,

(Qv)(t) = 12
∫ 1

0

∫ 1

0
G(t, s)v1(s) ds dα(t) · η1

+ 6
∫ 1

0

∫ 1

0
G(t, s)

(
v2(s) + v3(s)

)
ds dα(t) · η2

=

⎛

⎜
⎝

12
∫ 1

0
∫ 1

0 G(t, s)v1(s) ds dα(t)
6
∫ 1

0
∫ 1

0 G(t, s)(v2(s) + v3(s)) ds dα(t)
6
∫ 1

0
∫ 1

0 G(t, s)(v2(s) + v3(s)) ds dα(t)

⎞

⎟
⎠ .

It follows from (3.7) that

∣
∣f (t, x, y)

∣
∣ ≤ 1

20
|x| +

1
5
|y| + 4.

Note that M1 = (1 + n
2h‖(D–1

2 D1, In–k)‖∗
∫ 1

0 t(1 – t) d(
∨t

0(α))), we have M1 = 3
2 . Then we

obtain (‖∑2
i=1 ηi‖R3 + M1)(‖a‖1 + ‖b‖1) = 5

8 < 1. Therefore, condition (H5) is satisfied.
Take Λ = 200. Then, for |y1(t)| ≥ Λ for all t ∈ [0, 1], we have

∣
∣f1(t, x, y)

∣
∣

=
∣
∣
∣
∣sin x2y2 +

1
5

arctan x2 +
1
5

y1 + t
∣
∣
∣
∣ ≥ 1

5
|y1| – 4 ≥ 36

and for |y2(t)| ≥ Λ for all t ∈ [0, 1], we have

∣
∣(f2 + f3)(t, x, y)

∣
∣

=
∣
∣
∣
∣sin x1x3 – cos y3 + et + arctan x2

3 + cos x1 + cos x2 +
1

10
y2

∣
∣
∣
∣ ≥ 1

20
|y2| – 6 ≥ 4.

Thus, for each u ∈ X, if |v1(t)| ≥ Λ for all t ∈ [0, 1] or |v2(t)| ≥ Λ for all t ∈ [0, 1], we con-
clude that

(QNv)(t) =

⎛

⎜
⎝

12
∫ 1

0
∫ 1

0 G(t, s)v1(s) ds dα(t)
6
∫ 1

0
∫ 1

0 G(t, s)(v2(s) + v3(s)) ds dα(t)
6
∫ 1

0
∫ 1

0 G(t, s)(v2(s) + v3(s)) ds dα(t)

⎞

⎟
⎠ �= 0.

Hence, (H8) holds.
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Let ψ = (c1, c2, c2)T ∈ Ker(I – B) = {c1(1, 0, 0) + c2(0, 1, 1) : c1, c2 ∈ R}. Then we have

f1(t,ψt,ψ) = sin c2
2t +

1
5

arctan c2t +
1
5

c1 + t,

f2(t,ψt,ψ) = sin c1c2t2 – cos c2 –
1

20
c2 –

t
20

c2 + et ,

f3(t,ψt,ψ) = arctan c2
2t2 + cos c1t + cos c2t +

t
20

c2 +
1

10
c2,

and

c1f1(t,ψt,ψ) + c2
(
f2(t,ψt,ψ) + f3(t,ψt,ψ)

)

= c1

(

sin c2
2t +

1
5

arctan c2t +
1
5

c1 + t
)

+ c2

(
1

10
c2 + sin c1c2t2 – cos c2 + et + arctan c2

2t2 + cos c1t + cos c2t
)

≥ 1
5

c2
1 – 3|c1| +

1
10

c2
2 – 10|c2| ≥ 1

10
max

{
c2

1, c2
2
}

– 13 max
{|c1|, |c2|

}
.

Note that ‖ψ‖R3 = max{|c1|, |c2|} and

(
ψ , QN(ψt)

)
= 12

∫ 1

0

∫ 1

0
G(t, s)

[
c1f1 + c2(f2 + f3)

]
ds dt ≥ 156, if ‖ψ‖R3 ≥ 131,

we see that condition (H7) is satisfied. It follows from Theorem 3.2 that the problem (3.7)
has at least one solution.
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