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Abstract
We study an approximate coincidence point and a common fixed point problem for a
hybrid pair of mappings with constraints in Menger PM-spaces, and obtain some new
results. We derive interesting consequences of the main results by using the
properties of a Menger–Hausdorff metric, and analogous results based on graphs
instead of partial orders can be similarly formulated. Moreover, we construct two
examples to reveal that the main results are valid, and show that the main results can
be used to explore the existence of solutions to a system of nonlinear integral
equations.
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1 Introduction
A statistical metric was defined by Menger and later revisited by other authors, which
led further to the emergence of the definition of a probabilistic metric space [1]. Many
efforts have been devoted to the study of fixed point and optimization problems in PM-
spaces since the formulation of PM-space theory [2–8]. Fixed point and related problems
in the framework of different types of spaces equipped with a partial order have also been
explored [9–17].

Let (X, d,�1,�2) be a partially ordered metric space, where �1 and �2 are two partial
orders, and S, O, P, Q, R : X → X be self-mappings. In [18], the authors raised the problem
of seeking x ∈ X satisfying

⎧
⎪⎪⎨

⎪⎪⎩

x = Sx,

Ox �1 Px,

Qx �2 Rx.

(1.1)

In [18], the authors gave sufficient conditions for the existence of solutions to problem
(1.1), in which the continuity of O, P, Q, and R is required. This requirement is weakened to
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the continuity of O and P (or Q and R) in [19], and the result in [18] is also extended under
general contractive conditions by making use of a general class of functions. Recently, the
main results of [18] and [19] were generalized to the framework of a Menger PM-space
[20].

Let (X, d,�1,�2) be a partially ordered metric space, where �1 and �2 are two partial
orders, S : X → N (X) be a set-valued mapping, where N (X) denotes the collection of
all nonempty subsets of X, and O, P, Q, R : X → X be self-mappings. The authors in [21]
investigated the following approximate fixed point problem for a set-valued mapping with
constraints: seeking x ∈ X satisfying

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ Sx,

Ox �1 Px,

Qx �2 Rx.

(1.2)

The authors in [21] studied problem (1.2) and obtained an interesting result.
Let (X,F,�,�1,�2) be a partially ordered Menger PM space, where �1 and �2 are partial

orders, S : X →N (X) be a set-valued mapping, and f , O, P, Q, R : X → X be self-mappings.
Now, consider the following two problems. The first one is to seek x ∈ X satisfying

⎧
⎪⎪⎨

⎪⎪⎩

fx ∈ Sx,

Ofx �1 Pfx,

Qfx �2 Rfx.

(1.3)

The second one is to seek x ∈ X satisfying

⎧
⎪⎪⎨

⎪⎪⎩

x = fx ∈ Sx,

Ox �1 Px,

Qx �2 Rx.

(1.4)

In this paper, we investigate the above-mentioned two problems, which are in fact an
approximate coincidence point problem and a common fixed point problem for a hybrid
pair of mappings (i.e., a single-valued one and a set-valued one) with constraints in the
framework of a partially ordered Menger PM-space, respectively. The rest of the paper
is arranged as follows. In Sect. 2, we give some preliminaries. In Sect. 3, we provide an
approximate coincidence point theorem and a common fixed point theorem for a hybrid
pair of mappings in partially ordered Menger PM-spaces and give two examples. In Sect. 4,
we derive some consequent results of the theorems proved in Sect. 3. An application of
the main results in discussing the solutions to a system of Volterra integral equations is
presented in Sect. 5. Finally, we summarize the paper with some concluding remarks.

2 Preliminaries
A distribution function is a mapping F : R → R

+ satisfying nondecreasingness, left-
continuity, supu∈R F(u) = 1, and infu∈R F(u) = 0. We denote by D the collection of all dis-
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tribution functions and by γ the following special distribution function:

γ (u) =

⎧
⎨

⎩

0, u ≤ 0,

1, u > 0.

Definition 2.1 ([3]) A triangular norm (a t-norm) is a mapping � : [0, 1] × [0, 1] → [0, 1]
satisfying �(x, 1) = x, �(x, y) = �(y, x), �(x1, x2) ≥ �(y2, y2) for x1 ≥ y1, x2 ≥ y2 and
�(x,�(y, z)) = �(�(x, y), z).

Definition 2.2 ([3]) A Menger probabilistic metric space (a Menger PM-space) is a triplet
(X,F,�), where X is a nonempty set, � is a t-norm, and F : X × X → D is a mapping
satisfying (we rewrite F(a, b) as Fa,b)

(MPM-1) Fa,b(w) = γ (w) for all w ∈R if and only if a = b;
(MPM-2) Fa,b(w) = Fb,a(w) for all w ∈R;
(MPM-3) Fa,b(w + v) ≥ �(Fa,c(w), Fc,b(v)) for all a, b, c ∈ X and w, v ≥ 0.

Note that if sup0<u<1 �(u, u) = 1, then (X,F,�) is a Hausdorff topological space in the
(ε,λ)-topology τ , i.e., the family of sets {Ua(ε,λ) : ε > 0,λ ∈ (0, 1]} (a ∈ X) is a basis of
neighborhoods of a point a in X for τ , where Ua(ε,λ) = {b ∈ X : Fa,b(ε) > 1 – λ}. The
concepts of τ -convergence of a sequence, τ -Cauchy sequence in (X,F,�), and the τ -
completeness of (X,F,�) can thus be introduced with respect to this topology. For more
details, please refer to [3].

Let (X, d) be a metric space, CL(X) be the collection of all nonempty closed subsets of
X, and H be the Hausdorff metric which is defined by

H(Θ ,Ξ ) = max
{

sup
a∈Θ

d(a,Ξ ), sup
b∈Ξ

d(b,Θ)
}

,

for any Θ ,Ξ ∈ CL(X), where d(a,Θ) = infb∈Θ d(a, b).
Let (X,F,�) be a Menger PM-space,N (X) be the collection of all nonempty subsets of X,

and CL(X) be the collection of all nonempty τ -closed subsets of X. For any Θ ,Ξ ∈N (X),
define

F̃(Θ ,Ξ )(u) = F̃Θ ,Ξ (u) = sup
v<u

�
(

inf
a∈Θ

sup
b∈Ξ

Fa,b(v), inf
b∈Ξ

sup
a∈Θ

Fa,b(v)
)

, v, u ∈R,

F(a,Θ)(u) = Fa,Θ (u) = sup
v<u

sup
b∈Θ

Fa,b(v), v, u ∈ R,

where F̃ is called the Menger–Hausdorff metric.

Remark 2.1 ([3])
(1) Let (X, d) be a metric space. Define

F(a, b)(u) = Fa,b(u) = γ
(
u – d(a, b)

)
for all a, b ∈ X and u ∈ R. (2.1)

Then (X,F,�min) is a Menger PM-space, where �min is the t-norm defined by
�min(x, y) = min{x, y} for all x, y ∈ [0, 1]. Furthermore, the completeness of (X, d)
implies the τ -completeness of (X,F,�min);
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(2) Let H(·, ·) be the Hausdorff metric, and define

F̃(Θ ,Ξ )(u) = F̃Θ ,Ξ (u)

= γ
(
u – H(Θ ,Ξ )

)
for all Θ ,Ξ ∈ CL(X) and u ∈R. (2.2)

Then F̃ is the Menger–Hausdorff metric induced by F. Moreover, the
τ -completeness of (CL(X), F̃,�) follows from the τ -completeness of (X,F,�)
provided that � ≥ �m, where �m(x, y) = max{x + y – 1, 0} for all x, y ∈ [0, 1].

Lemma 2.1 ([3]) Let (X,F,�) be a Menger PM-space. For any Θ ,Ξ ∈ CL(X) and any
a, b ∈ X, the following statements hold:

(i) For any a ∈ Θ , Fa,Ξ (u) ≥ F̃Θ ,Ξ (u) for all u ≥ 0;
(ii) Fa,Θ (w + v) ≥ �(Fa,b(w), Fy,Θ (v)) for all w, v ≥ 0;

(iii) Fa,Θ (w + v) ≥ �(Fa,Ξ (w), F̃Θ ,Ξ (v)) for all w, v ≥ 0.

The concept of F-regularity was given in [20] as follows.

Definition 2.3 ([20]) Let (X,F,�,�) be a partially ordered Menger PM-space. We say
that � is F-regular, if for sequences {cn}, {dn} ⊂ X and (c, d) ∈ X × X, we have

lim
n→∞ Fcn ,c(u) = lim

n→∞ Fdn ,d(u) = 1 for all u > 0 and cn � dn for all n ∈N	⇒ c � d.

For a hybrid pair of mappings (f , S), where f : X → X is a self-mapping and S : X →N (X)
is a set-valued one, and ξ ∈ (0, 1), we introduce the following quantity:

Jx
ξ (f , S) :=

{

fy ∈ Sx
∣
∣
∣Ffx,Sx(u) ≤ Ffx,fy

(
u
ξ

)

for all u > 0
}

, x ∈ X.

Note that Jx
ξ (f , S) �= ∅ for arbitrary x ∈ X. Moreover, for self-mappings M, N and a partial

order � on X, if Mfy � Nfy for some fy ∈ Jx
ξ (f , S), then we write MSx � NSx.

The following definition generalizes the corresponding one in [21] in two aspects. On
the one hand, the interpretation of QSx �2 RSx relies on the set Jx

ξ (f , S) which involves the
probabilistic metric. On the other hand, the quantity Jx

ξ (f , S) is defined with respect to two
mappings instead of one.

Definition 2.4 Let X be a nonempty set equipped with partial orders �1 and �2. Let
f , O, P, Q, R : X → X be self-mappings, S : X → N (X) be a set-valued one, and ξ ∈ (0, 1).
We say that the hybrid pair of mappings (f , S) is ξ -(O, P, Q, R,�1,�2)-stable if

x ∈ X, Ofx �1 Pfx ⇒ QSx �2 RSx.

For a self-mapping f : X → X and a set-valued mapping S : X → N (X) defined on X, if
fw ∈ Sw for w ∈ X, then we say that w is a coincidence point of f and S, and if fw ∈ Sw,
then we say that w is an approximate coincidence point of f and S. Furthermore, if w ∈ X
satisfies w = fw ∈ Sw, then we say that w is a common fixed point of f and S. We denote
by C(f , S) the set of coincidence points of f and S and by F(f , S) the set of common fixed
points of the two mappings.
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Definition 2.5 Let (X,F,�) be a Menger PM-space, f : X → X be a self-mapping, and
S : X → N (X) be a set-valued one. S is called τ -closed with respect to f if G(S)f is a τ -
closed subset of (X × X, F∗), where

F∗
(fa,fb),(μ,ν)(u) = �

(

Ffa,u

(
u
2

)

, Ffb,v

(
u
2

))

,

for all (a, b), (μ,ν) ∈ X × X and u > 0, and G(S)f = {(a, fb) : a ∈ X, fb ∈ Sa}.

For the sake of brevity, S shall denote the set-valued mapping satisfying Sa = Sa for all
a ∈ X.

3 Main results
In this section, we shall present and prove the main results of this paper. We first list some
assumptions.

(A1) If there exists a sequence {an} ⊂ X , such that {fan} is τ -convergent to fa for a ∈ X ,
fan ∈ San–1 for all n ∈ N, and limn→∞ Ffan ,San (u) = 1 for all u > 0, then Ffa,Sa(u) = 1
for all u > 0.

(A2) The following implication holds for any b ∈ X :

fb /∈ Sb ⇒ sup
a∈X

�
(
Ffa,fb(u), Ffa,Sa(u)

)
< 1 for all u > 0.

(A3) S is a τ -closed set-valued mapping with respect to f .
The following two theorems are the main results of this paper.

Theorem 3.1 Let (X,F,�,�1,�2) be a τ -complete partially ordered Menger PM-space,
where �1 and �2 are partial orders on X and � is a continuous t-norm, f , O, P, Q, R : X →
X be self-mappings satisfying that f (X) is τ -closed and O, P, Q, R are τ -continuous, and
S : X → N (X) be a set-valued mapping. Furthermore, suppose that one of assumptions
(A1)–(A3) holds, and the following hypotheses hold for some ξ ∈ (0, 1):

(i) �1 and �2 are F-regular;
(ii) Ofx0 �1 Pfx0 for some x0 ∈ X ;

(iii) (f , S) is ξ -(O, P, Q, R,�1,�2)-stable;
(iv) (f , S) is ξ -(Q, R, O, P,�2,�1)-stable;
(v) Ffy,Sy(u) ≥ Ffx,fy( u

η
) for all x ∈ X and fy ∈ Jx

ξ (f , S) with (Ofx �1 Pfx and Qfy �2 Rfy) or
(Ofy �1 Pfy and Qfx �2 Rfx) and u > 0, where η ∈ (0, ξ ).

Then there exists at least one solution to problem (1.3).

Proof By condition (ii), Ofx0 �1 Pfx0 for some x0 ∈ X. Using (iii) and Definition 2.4, we
get QTx0 �2 RTx0, which implies that there exists fx1 ∈ Jx0

ξ (f , S) such that Qfx1 �2 Rfx1.
Utilizing (iv) and Definition 2.4, we get OTx1 �1 PTx1, which implies that there exists fx2 ∈
Jx1
ξ (f , S) such that Ofx2 �2 Pfx2. Hence, we can inductively construct a sequence {xn} ⊂ X

satisfying

Ofx2n �1 Pfx2n, Qfx2n+1 �2 Rfx2n+1, fxn+1 ∈ Jxn
ξ (f , S), n ∈N∪ {0}, (3.1)



Wu et al. Journal of Inequalities and Applications        (2019) 2019:254 Page 6 of 14

and

Ffxn–1,fxn

(
u
η

)

≤ Ffxn ,Sxn (u) for all u > 0 and n ∈N. (3.2)

Noting that fxn+1 ∈ Jxn
ξ (f , S), we get

Ffxn ,Sxn (u) ≤ Ffxn ,fxn+1

(
u
ξ

)

for all u > 0 and n ∈N. (3.3)

It immediately follows from (3.2) and (3.3) that

Ffxn ,fxn+1 (u) ≥ Ffxn–1,fxn

(
ξu
η

)

for all u > 0 and n ∈N. (3.4)

It is easy to prove from (3.4) that {fxn} is a τ -Cauchy sequence. Therefore, by the
τ -completeness of (X,F,�), there exists u ∈ X such that fxn

τ→ a(n → ∞). By the τ -
closedness of f (X), we have a = fb for some b ∈ X, i.e., fxn

τ→ fb(n → ∞).
Since O, P, Q, R are τ -continuous, by (3.1) and (i), we obtain

Ofb �1 Pfb (3.5)

and

Qfb �1 Rfb. (3.6)

Now, if there exists a subsequence {xnl} of {xn} satisfying that Sxnl = Sb for all l ∈N. Note
that

Ffb,Sb(u) ≥ �

(

Ffb,fxnl+1

(
u
2

)

, Ffxnl+1,Sv

(
u
2

))

for all u > 0.

Thus, it follows from fxnl ∈ Sb and fxn
τ→ fb(n → ∞) that fb ∈ Sb. Suppose that this is not

true, then Sxn �= Sb for all n ∈ N. Using (3.2) and the fact that fxn+1 ∈ Jxn
ξ (f , S), we get

Ffxn ,Sxn (u) ≥ Ffxn–1,Sxn–1

(
ξu
η

)

for all u > 0 and n ∈N.

Hence, we get limn→∞ Ffxn ,Sxn (u) = 1 for all u > 0 by letting n → ∞. Now, we proceed the
proof by considering the following three cases.

Case 1. Suppose that assumption (A1) holds. By the inductive construction of {xn} and
(A1), we have Ffb,Sb(u) = 1 for all u > 0. So fb ∈ Sb.

Case 2. Suppose that assumption (A2) holds. Now, suppose fb /∈ Sb. Then we have

1 > sup
a∈X

�
(
Ffa,fb(u), Ffa,Sa(u)

) ≥ sup
n∈N

�
(
Ffxn ,fb(u), Ffxn ,Sxn (u)

)
= 1 for all u > 0,

which cannot be true. Therefore, fb ∈ Sb.
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Case 3. Suppose that assumption (A3) holds. Noting that � is continuous, by Defini-
tion 2.5, we obtain

lim
n→∞ F∗

(fxn ,fxn+1),(b,b)(u) = lim
n→∞�

(

Ffxn ,b

(
u
2

)

, Ffxn+1,b

(
u
2

))

= 1 for all u > 0.

It follows from the above assertion that (b, b) ∈ G(S)f , that is,

fb ∈ Sb. (3.7)

Combining (3.5), (3.6), and (3.7), we conclude that b is a solution to problem (1.3). �

We shall further study the existence of solutions to problem (1.4).

Theorem 3.2 If the range of the mapping S is assumed to be CL(X) rather than N (X),
and O, P (or Q, R) are τ -continuous, while the other conditions are the same as the ones
in Theorem 3.1, then there exists b ∈ X such that fb ∈ Sb with constraints Ofb �1 Pfb and
Qfb �2 Rfb. Furthermore, if we assume that ffx = fx for x ∈ C(f , S), then there exists at least
one solution to problem (1.4).

Proof We first assume that O, P are τ -continuous. Then, following the proof in Theo-
rem 3.1, we can get Eqs. (3.5) and (3.7). Since Sb is τ -closed now, we get

fb ∈ Sb. (3.8)

Now, we prove (3.6) holds. In fact, by (iv) and (3.5), we obtain

QSb �2 RSb,

which implies that there exists fy ∈ Jb
ξ (f , S) such that Qy �2 Ry. Noting that fb ∈ Sb, we can

easily verify that

Jb
ξ (f , S) =

{

fy ∈ Sb
∣
∣
∣Ffb,Sb(u) ≤ Ffb,fy

(
u
ξ

)

for all u > 0
}

= {fb}.

Therefore, we deduce that (3.6) holds. If Q and R are τ -continuous, the conclusion can
be proved by using the same method. �

We next prove the second part of the theorem. From (3.8), we get b ∈ C(f , S) and so
a = fb = ffb = fa ∈ Sb. Since Jb

ξ (f , S) = {fb}, we have fa ∈ Jb
ξ (f , S). Noting that (3.5) and (3.6)

hold, it follows from condition (v) of Theorem 3.1 that

Ffa,Sa(u) ≥ Ffb,fa

(
u
η

)

= 1 for all u > 0.

Therefore, we have fa ∈ Sa, and thus a = fa ∈ Sa. Also, by (3.5) and (3.6), we have Oa �1 Pa
and Qa �1 Ra. Hence, a is a solution to problem (1.4).

Now, we give two examples to show that the above two theorems are valid.
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Example 3.1 Let X = {2 + 1
4n : n ∈N} ∪ {2, 3}, and the following partial order � is imposed

on X: x � y iff x ≤ y for x, y ∈ X. Define f , O, P, Q, R : X → X and S : X → CL(X) as follows:

Ox =

⎧
⎨

⎩

1
16 x + 15

8 , x = 2 + 1
4n+1 , n ∈N,

3, x = 2, 3, 9
4 ,

Px =

⎧
⎨

⎩

1
4 x + 3

2 , x = 2 + 1
4n+1 , n ∈N,

2, x = 2, 3, 9
4 ,

Qx =

⎧
⎨

⎩

(x – 2)4 + 2, x = 2 + 1
4n+1 , n ∈N,

3, x = 2, 3, 9
4 ,

Rx =

⎧
⎨

⎩

(x – 2)2 + 2, x = 2 + 1
4n+1 , n ∈N,

2, x = 2, 3, 9
4 ,

fx =

⎧
⎪⎪⎨

⎪⎪⎩

2 + 1
4n+1 , x = 2 + 1

4n , n ∈N,

2, x = 2,
33
16 , x = 3,

and

Sx =

⎧
⎪⎪⎨

⎪⎪⎩

{2 + 1
4n+2 , 3}, x = 2 + 1

4n , n ∈N,

{2, 33
16 }, x = 2,

{ 33
16 , 3}, x = 3.

Let F be defined by (2.1), where d(x, y) = |x – y|. Then (X,F,�min) is τ -complete. Direct
calculation shows that

Ffx,Sx(u) =

⎧
⎨

⎩

γ (u – 3
4n+2 ), x = 2 + 1

4n , n ∈N,

γ (u), x = 2, 3,

for all u > 0, and so for any ξ ∈ ( 1
4 , 1), we have J

2+ 1
4n

ξ (f , S) = {2 + 1
4n+1 } for all n ∈N, J2

ξ (f , S) =
{2} and J3

ξ (f , S) = { 33
16 }. Moreover, for each x ∈ X and fy ∈ Jx

ξ (f , S), the inequality Ffy,Sy(u) ≥
Ffx,fy( u

η
) holds for η = 1

4 ∈ (0, ξ ).
Noting that when Ofx ≤ Pfx, we have x ∈ {2 + 1

4n , n ∈ N}, and there exists fy ∈ Sx such
that Ffx,Sx(u) ≤ Ffx,fy( u

ξ
) for all ξ ∈ ( 1

4 , 1) and u > 0, and Qfy ≤ Rfy, we observe that (f , S)
is ξ -(O, P, Q, R,�,�)-stable, where ξ ∈ ( 1

4 , 1). Similarly, (f , S) is ξ -(Q, R, O, P,�,�)-stable
with ξ ∈ ( 1

4 , 1). Besides, it is easy to check that assumption (A1) holds. By Theorem 3.1, it
is claimed that C(f , S) �= ∅. In this example, C(f , S) = {2, 3}. Furthermore, it is obvious that
ff 2 = f 2 and ff 3 �= f 3, so by Theorem 3.2 F(f , S) �= ∅. Here, F(f , S) = {2}.

Example 3.2 Let X = [0, π
2 ], and the partial order � is defined in the same way as in Ex-

ample 3.1. Define O, P, Q, R : X → X and S : X → CL(X) as follows:

Ox =

⎧
⎨

⎩

1
4 e 1

2 x, x ∈ [0, π
2 ),

3
2 , x = π

2 ,
Px =

⎧
⎨

⎩

1
3 x + 1

2 , x ∈ [0, π
2 ),

1, x = π
2 ,

Qx =

⎧
⎨

⎩

sin x
2 , x ∈ [0, π

2 ),
5
4 , x = π

2 ,
Rx =

⎧
⎨

⎩

cos x
2 , x ∈ [0, π

2 ),
3
4 , x = π

2 ,

fx =

⎧
⎨

⎩

x
2 , x ∈ [0, π

2 ),
π
2 , x = π

2 ,
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and

Sx =

⎧
⎨

⎩

[0, x
4 ], x ∈ [0, π

2 ),

[ π
8 , π

2 ], x = π
2 .

Let F be defined as the same one in Example 3.1. Then (X,F,�min) is τ -complete. By
direct calculation, we get

Ffx,Sx(u) =

⎧
⎨

⎩

γ (u – x
4 ), x ∈ [0, π

2 ),

γ (u), x = π
2 ,

for all u > 0, and so for all ξ ∈ ( 1
2 , 1), we have Jx

ξ (f , S) = [( 1
2 – 1

4ξ
)x, x

4 ] for x ∈ [0, π
2 ) and

J
π
2

ξ (f , S) = {π
2 }. Moreover, for x ∈ X and fy ∈ Jx

ξ (f , S), the inequality Ffy,Sy(u) ≥ Ffx,fy( u
η

) holds
for η = 1

2 ∈ (0, ξ ) and u > 0.
We can easily check that (f , S) are ξ -(O, P, Q, R,�,�)-stable and ξ -(Q, R, O, P,�,�)-

stable for ξ ∈ ( 1
2 , 1). Besides, it is obvious that assumption (A1) holds. It can be seen that

all the hypotheses of Theorem 3.1 and Theorem 3.2 hold. So we claim that F(f , S) �= ∅. In
this example, F(f , S) = {0, π

2 }.

4 Consequent results
In this section, we give some results as consequences of Theorem 3.1 and Theorem 3.2.
First, if we use another contraction condition using Menger–Hausdorff metric, we can get
the following result which can be viewed as a corollary of Theorem 3.1.

Corollary 4.1 Let (X,F,�,�1,�2) be a τ -complete partially ordered Menger PM-space,
where �1 and �2 are partial orders on X and � is a continuous t-norm, f , O, P, Q, R : X →
X be self-mappings satisfying f (X) is τ -closed and O, P, Q, R are τ -continuous, and S : X →
N (X) be a set-valued mapping. Furthermore, suppose that the following hypotheses hold
for some ξ ∈ (0, 1):

(i) �1 and �2 are F-regular;
(ii) Ofx0 �1 Pfx0 for some x0 ∈ X ;

(iii) (f , S) is ξ -(O, P, Q, R,�1,�2)-stable;
(iv) (f , S) is ξ -(Q, R, O, P,�2,�1)-stable;
(v) F̃Sx,Sy(u) ≥ Ffx,fy( u

η
) for all x, y ∈ X and u > 0, where η ∈ (0, ξ ).

Then there exists at least one solution to problem (1.3).

Proof First, by (v) and Lemma 2.1 (i), for all x ∈ X and fy ∈ Jx
ξ (f , S) and u > 0, we have

Ffy,Sy(u) ≥ F̃Sx,Sy(u) ≥ Ffx,fy

(
u
η

)

.

Thus, conditions (i)–(v) of Theorem 3.1 are satisfied. We next show that assumption
(A1) holds. In fact, combining the definition of Menger–Hausdorff metric and Lemma 2.1
(ii) and (iii), for all x, y ∈ X and u > 0, we get

Ffx,Sx(u) ≥ �

(

Ffx,fy

(
u
2

)

,�
(

Ffy,Sx

(
u
2

)

,
))



Wu et al. Journal of Inequalities and Applications        (2019) 2019:254 Page 10 of 14

≥ �

(

Ffx,fy

(
u
2

)

,�
(

Ffy,Sy

(
u
4

)

, F̃Sy,Sx

(
u
4

)))

≥ �

(

Ffx,fy

(
u
2

)

,�
(

Ffy,Sy

(
u
4

)

, Ffx,fy

(
u

4η

)))

.

Taking y = xn yields that

Ffx,Tx(u) ≥ �

(

Ffx,fxn

(
u
2

)

,�
(

Ffxn ,Txn

(
u
4

)

, Ffx,fxn

(
u

4η

)))

.

We deduce that assumption (A1) holds by letting n → ∞. Thus, it follows from Theo-
rem 3.1 that the conclusion holds. �

Corollary 4.2 If the range of the mapping S is assumed to be CL(X) rather than N (X),
and O, P (or Q, R) are τ -continuous, while the other conditions are the same as the ones
in Corollary 4.1, then there exist b ∈ X such that fb ∈ Sb with constraints Ofb �1 Pfb and
Qfb �2 Rfb. Furthermore, if we assume that ffx = fx for x ∈ C(f , S), then there exists at least
one solution to problem (1.4).

We can also derive some other consequent results by posing restrictions on the map-
pings or the partial orders from Corollary 4.1 and Corollary 4.2. For the sake of brevity,
we omit them here.

Remark 4.1 Example 3.1 and Example 3.2 cannot be used to illustrate Corollary 4.1, since
in Example 3.1,

F̃S(2),S(2+ 1
4n )(u) = γ

(

u –
15
16

)

≤ γ

(

t –
1

4n+1

)

= Ff (2),f (2+ 1
4n )(u) for all n ∈N and u > 0,

and in Example 3.2, it holds that F̃S(0),S( π
2 )(u) = γ (u – π

2 ) = Ff (0),f ( π
2 )(u) for all u > 0.

By considering a graph instead of a partial order, one can establish analogous results as
above. We first recall the concept of a directed graph.

Definition 4.1 ([22]) An ordered pair (X, E), where X is a nonempty set and E ⊂ X × X is
a binary relation, is called a directed graph G.

We next introduce the following definitions based on graphs.

Definition 4.2 Let (X,F,�, G) be a graph-based Menger PM-space, where G = (X, E) is a
graph. The graph G is called FG-regular, if for sequences {cn}, {dn} ⊂ X and (c, d) ∈ X × X,
we have

lim
n→∞ Fcn ,c(u) = lim

n→∞ Fdn ,d(u)

= 1 for all u > 0, and (cn, dn) ∈ E for all n ∈ N	⇒ (c, d) ∈ E.

Similarly, if there exists fy ∈ Jx
ξ (f , S) such that (My, Ny) ∈ E, where ξ ∈ (0, 1), then we

write (MSx, NSx) ∈ E.
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Definition 4.3 Let X be a nonempty set with graphs G1 = (X, E1) and G2 = (X, E2) imposed
on it, f , O, P, Q, R : X → X be self-mappings, and S : X → N (X) be a set-valued mapping.
The hybrid pair of mappings (f , S) is called ξ -(O, P, Q, R, G1, G2)-graph-stable if

x ∈ X, (Ofx, Pfx) ∈ E1 	⇒ (QSx, RSx) ∈ E2.

Based on the above definitions, we can prove the following two theorems using the same
method in Theorem 3.1 and Theorem 3.2, and also derive corresponding corollaries.

Theorem 4.1 Let (X,F,�, G1, G2) be a τ -complete graph-based Menger PM-space, where
G1 and G2 are two graphs and � is a continuous t-norm, f , O, P, Q, R : X → X be self-
mappings satisfying f (X) is τ -closed and O, P, Q, R are τ -continuous, and S : X →N (X) be
a set-valued mapping. Suppose that one of assumptions (A1)–(A3) holds, and the following
hypotheses hold for some ξ ∈ (0, 1):

(i) G1 and G2 are FG-regular;
(ii) (Ofx0, Pfx0) ∈ G1 for some x0 ∈ X ;

(iii) (f , S) is ξ -(O, P, Q, R, G1, G2)-graph-stable;
(iv) (f , S) is ξ -(Q, R, O, P, G2, G1)-graph-stable;
(v) Ffy,Sy(u) ≥ Ffx,fy( u

η
) for all x ∈ X and fy ∈ Jx

ξ (f , S) with
((Ofx, Pfx) ∈ E1 and (Qfy, Rfy) ∈ E2) or ((Ofy, Pfy) ∈ E1 and (Qfx, Rfx) ∈ E2) and
u > 0, where η ∈ (0, ξ ).

Then there exists a ∈ X such that fa ∈ Sa, (Ofa, Pfa) ∈ E1 and (Qfa, Rfa) ∈ E2.

Theorem 4.2 If the range of the mapping S is assumed to be CL(X) rather than N (X),
and O, P (or Q, R) are τ -continuous, while the other conditions are the same as the ones
in Corollary 4.1, then there exists v ∈ X such that fv ∈ Sv with constraints Ofv �1 Pfv and
Qfv �2 Rfv. Furthermore, if we assume that ffx = fx for x ∈ C(f , S), then there exists at least
one solution to problem (1.4).

5 An application
In this section, we utilize the main results in Sect. 3 to investigate the existence of solutions
for a system of nonlinear integral equations.

Let X = C([p, q],R), where C([p, q],R) denotes the space of all continuous functions on
[p, q] with q > p > 0, and impose the following norm on X:

‖x‖1 = max
u∈[p,q]

∣
∣x(u)

∣
∣, x ∈ X.

Then (X,‖ · ‖1) is a Banach space.
Consider another norm

‖x‖2 = max
u∈[p,q]

e–ku∣∣x(u)
∣
∣, x ∈ X, k > 0. (5.1)

Note that the two norms ‖ · ‖1 and ‖ · ‖2 are equivalent (see [23]), which implies that
(X,‖ · ‖2) is also a Banach space.

Define F : X × X →D by

F(x, y)(w) = Fx,y(w) = γ
(
w – ‖x – y‖2

)
, x, y ∈ X, w > 0, (5.2)
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and impose on X the following partial order:

x � y ⇐⇒ x(u) ≤ y(u) for all u ∈ [p, q]. (5.3)

Now, we consider the problem of the existence of solutions for the following system of
Volterra integral equations:

xi(u) = h(u) +
∫ u

0
Φi

(
u, v, x(v)

)
dv, i = 1, 2, (5.4)

for all u ∈ [p, q], where q > p > 0, h, xi ∈ X and Φi ∈ C([p, q] × [p, q] × X,R).

Theorem 5.1 Let (X,F,�min) be the Menger PM-space induced by the Banach space X,
where F is defined by (5.2), and X is equipped with the partial order � defined by (5.3),
Φi ∈ C([p, q] × [p, q] × X,R), i = 1, 2, ϕ1 and ϕ2 are two functionals on X, and the following
hypotheses hold:

(i) ‖Φj‖∞ = supu,v∈[p,q],x∈C([p,q],R) |Φi(u, v, x(v))| < ∞ for j ∈ {1, 2};
(ii) ϕ1(fx0) > 0 for some x0 ∈ X ;

(iii) If ϕ1(fx) > 0, then there exists y ∈ X such that
∫ u

0 Φ1(u, v, y(v)) dv =
∫ u

0 Φ2(u, v, x(v)) dv and ϕ2(fy) > 0; if ϕ2(fx) > 0, then there exists
y ∈ X such that

∫ u
0 Φ1(u, v, y(v)) dv =

∫ u
0 Φ2(u, v, x(v)) dv and ϕ1(fy) > 0;

(iv) There exist k > 0 and 0 < η < ξ with ξ ∈ (0, 1) such that, for all x, y ∈ X and all
u, v ∈ [p, q], 1 – e–kq ≤ η, and whenever x ∈ X ,
∫ u

0 Φ1(u, v, y(v)) dv =
∫ u

0 Φ2(u, v, x(v)) dv with ϕ1(fx) > 0 and ϕ2(fy) > 0, we have

∣
∣Φ1

(
u, v, y(v)

)
– Φ2

(
u, v, y(v)

)∣
∣ ≤ k

∣
∣fx(v) – fy(v)

∣
∣,

where f , S : X → X are defined by fx(u) = h(u) +
∫ u

0 Φ1(u, v, x(v)) dv and
Sx(u) = h(u) +

∫ u
0 Φ2(u, v, x(v)) dv for all u ∈ [p, q], respectively;

(v) There exists a sequence {xn} in X such that
∫ u

0 Φ2(u, v, xn(v)) dv → ∫ u
0 Φ2(u, v, x(v)) dv (n → ∞);

(vi) If
∫ u

0 Φ1(u, v, z(v)) dv =
∫ u

0 Φ2(u, v, z(v)) dv, then
∫ u

0 Φ1(u, v, fz(v)) dv =
∫ u

0 Φ1(u, v, z(v)) dv.
Then (5.4) has a solution z′ in X with constraints Az′ � Bz′ and Cz′ � Dz′.

Proof It is obvious that (X,F,�min) is τ -complete and the partial order � is F-regular.
Define O, P, Q, R : X → X as follows:

Ox =

⎧
⎨

⎩

|x|, ϕ1(x) > 0,

2, otherwise,
Px =

⎧
⎨

⎩

2|x|, ϕ1(x) > 0,

1, otherwise,

Qx =

⎧
⎨

⎩

3|x|, ϕ2(x) > 0,

4, otherwise,
Rx =

⎧
⎨

⎩

4|x|, ϕ2(x) > 0,

3, otherwise,

where |x| ∈ X is the function defined by |x|(u) = |x(u)| for all u ∈ [p, q].
By condition (ii), we know that Afx0 � Bfx0 for some x0 ∈ X, and by (iii), (f , S) are both

ξ -(A, B, C, D,�,�)-stable and ξ -(C, D, A, B,�,�)-stable for ξ ∈ (0, 1).



Wu et al. Journal of Inequalities and Applications        (2019) 2019:254 Page 13 of 14

Consider the norm defined by (5.1), where k satisfies condition (iv). It follows from (iv)
that for x ∈ X, fy = Sx with Ofx � Pfx and Qfy � Rfy, we obtain

‖fy – Sy‖2 ≤ max
u∈[p,q]

∫ u

0
e–kv∣∣Φ1

(
u, v, y(v)

)
– Φ2

(
u, v, y(v)

)∣
∣ek(v–u) dv

≤ k‖fx – fy‖2 max
u∈[p,q]

∫ u

0
ek(v–u) dv

≤ (
1 – e–kq)‖fx – fy‖2

≤ η‖fx – fy‖2,

which implies that

Ffy,Sy(w) ≥ Ffx,fy

(
w
η

)

for some η ∈ (0, ξ ) and any w > 0 by (5.2).
Moreover, it follows from condition (v) that assumption (A1) holds. And by (vi), it holds

that ffz = fz for z ∈ C(f , S). Therefore, all the hypotheses of Theorem 3.1 and Theorem 3.2
hold, and so there exists a point z′ ∈ F(f , S) in X with constraints Az′ � Bz′ and Cz′ � Dz′,
which means that the system of integral equations (5.4) has a solution z′ with constraints
Az′ � Bz′ and Cz′ � Dz′. �

6 Conclusions
In this paper, we have studied a common fixed point problem for a hybrid pair of map-
pings (a self-mapping and a set-valued mapping) under constraints in the framework of a
Menger PM-space, by first investigating a related approximate coincidence point problem
under certain constraints, and have derived some new results. It is worth noting that for
the existence result of a solution to the common fixed point problem (1.4), the τ -continuity
of two mappings O and P (or Q and S) is required rather than posing the τ -continuity on
the four self-mappings. We have also constructed some examples and explored an appli-
cation of the main results. The obtained results in this paper may shed some new light on
the study of approximate coincidence point problems and common fixed point problems
for a hybrid pair of mappings in the framework of Menger PM-spaces.
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