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Abstract
In this paper, we introduce a new viscosity-type iteration process for approximating a
common solution of a finite family of split variational inclusion problem and fixed
point problem. We prove that the proposed algorithm converges strongly to a
common solution of a finite family of split variational inclusion problems and fixed
point problem for a finite family of type-one demicontractive mappings between a
Hilbert space and a Banach space. Furthermore, we applied our results to study a
finite family of split convex minimization problems, and also considered a numerical
experiment of our results to further illustrate its applicability. Our results extend and
improve the results of Byrne et al. (J. Nonlinear Convex Anal. 13:759–775, 2012), Kazmi
and Rizvi (Optim. Lett. 8(3):1113–1124, 2014), Moudafi (J. Optim. Theory Appl.
150:275–283, 2011), Shehu and Ogbuisi (Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A
Mat. 110(2):503–518, 2016), Takahashi and Yao (Fixed Point Theory Appl. 2015:87,
2015), Chidume and Ezeora (Fixed Point Theory Appl. 2014:111, 2014), and a host of
other important results in this direction.
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1 Introduction
Let H be a real Hilbert space, M : H → 2H be any multivalued mapping and N : H → H
be a single-valued mapping. The variational inclusion problem (VIP) is the problem of
finding x∗ ∈ H such that

0 ∈ M
(
x∗) + N

(
x∗). (1.1)

One of the most popular and effective methods for solving the VIP (1.1) is the following
forward–backward splitting method which includes the proximal point method and the
gradient method (see [11, 26]): For any fixed x1 ∈ H and λ > 0:

xn+1 = (I + λM)–1(I – λN)xn, n ≥ 1.
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If N ≡ 0 in (1.1), then the VIP reduces to the following null point problem (NPP):

Find x∗ ∈ H such that 0 ∈ Mx∗. (1.2)

When M is monotone, problems (1.1) and (1.2) are known to be the most important prob-
lems in monotone operator theory, nonlinear and convex analysis, due to the role they
play in optimization, variational inequalities, semi group theory and evolution equations,
among others. Moreover, many mathematical problems such as optimization problems,
equilibrium problems, variational inequality problems, saddle point problems, etc., can be
modeled as (1.2) or more generally, (1.1) (see [8, 15, 23, 29, 37]). Thus, VIPs and NPPs are
of central importance in nonlinear and convex analysis. As a result of this, many authors
have studied VIPs and NPPs in both Hilbert and Banach spaces (see [1, 2, 10, 11, 26, 28]
and the references therein).

The study of VIPs and NPPs has been extended to the study of split variational inclusion
problem (SVIP) and split common null point problem (SCNPP), respectively. The devel-
opment of these split-type problems can be traced to the split feasibility problem (SFP),
introduced by Censor and Elfving [9] as follows: Find

x∗ ∈ C such that y∗ = Ax∗ ∈ Q, (1.3)

where C and Q are nonempty closed and convex subsets of Rn and R
m, respectively, and

A is an m × n real matrix. The SFP is well known to have wide applications in many fields
such as phase retrieval, medical image reconstruction, signal processing, radiation therapy
treatment planning, among others (see [7, 9] and the references therein). The SFP was also
studied by Byrne [6] using the following CQ-iterative algorithm:

xn+1 = PC
(
I – γ A∗(I – PQ)A

)
xn, n ∈N, (1.4)

where γ ∈ (0, 2
λ

) with λ being the spectral radius of the operator A∗A. Byrne [6] proved
that the sequence generated by Algorithm (1.4) converges weakly to a solution of (1.3).

In 2012, Byrne et al. [8] extended the NPP (1.2) to the following SCNPP: Find x∗ ∈ H1

such that

0 ∈ M1
(
x∗), (1.5)

and

y∗ = Ax∗ ∈ H2 such that 0 ∈ M2
(
y∗), (1.6)

where H1 and H2 are two real Hilbert spaces, M1 and M2 are two multivalued maximal
monotone mappings and A is a bounded linear operator from H1 to H2. Byrne et al. [8]
proposed the following algorithm to solve problem (1.5)–(1.6): For a given x1 ∈ H1, the
sequence {xn} is given by

xn+1 = JM1
λ

(
xn + γ A∗(JM2

λ – I
)
Axn

)
, λ > 0,
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where JM1
λ is the resolvent of M1 defined by JM1

λ := (I +λM1)–1. Furthermore, they obtained
both weak and strong convergence of the proposed algorithm. Motivated by the work of
Byrne et al. [8], Kazmi and Rizvi [25] introduced the following iterative algorithm for ap-
proximating a solution of SCNPP (1.5)–(1.6) which is also a fixed point of a nonexpansive
mapping S in real Hilbert spaces: For a given x1 ∈ H1, let the sequences {un} and {xn} be
generated by

⎧
⎨

⎩
un = JM1

λ (xn + γ A∗(JM2
λ – I)Axn),

xn+1 = αnf (xn) + (1 – αn)Sun, n ≥ 1,
(1.7)

where f is a contraction mapping on H1. Using (1.7), they proved that both {un} and {xn}
converge strongly to z ∈ F(S) ∩ Γ , where Γ is the solution set of SCNPP (1.5)–(1.6).

In 2011, Moudafi [29] introduced and studied the following type of split problem, called
the split variational inclusion problem (SVIP), which naturally extends the SCNPP and the
VIP (1.1): Find

x∗ ∈ H1 such that 0 ∈ M1
(
x∗) + N1

(
x∗), (1.8)

and such that y∗ = Ax∗ ∈ H2 solves

0 ∈ M2
(
y∗) + N2

(
y∗), (1.9)

where M1 : H1 → 2H1 and M2 : H2 → 2H2 are multivalued mappings, A is a bounded linear
operator from H1 to H2, N1 : H1 → H1 and N2 : H2 → H2 are single-valued operators.
Note that if (1.8) and (1.9) are considered separately, then (1.8) is a VIP with its solution
set (M1 + N1)–1(0) and (1.9) is another VIP with its solution set (M2 + N2)–1(0). In [29],
Moudafi proved that x∗ ∈ (M1 + N1)–1(0) if and only if x∗ = JM1

λ (I – λN1)(x∗), ∀λ > 0. It
was also shown in [29] that, if N1 is an α-inverse strongly monotone mapping and M1

is a maximal monotone mapping, then JM1
λ (I – λf ) is averaged with 0 < λ < 2α. Hence,

JM1
λ (I – λf ) is a nonexpansive mapping with 0 < λ < 2α. Also, Moudafi [29] proposed the

following iterative algorithm and obtained its weak convergence to a solution of problem
(1.8)–(1.9): For x1 ∈ H1, the sequence {xn} is generated by

xn+1 = JM1
λ (I – λN1)

(
xn + γ A∗(JM2

λ (I – λN2) – I
)
Axn

)
, n ∈N, (1.10)

where γ ∈ (0, 1
L ) with L being the spectral radius of the operator A∗A. Based on the work

of Moudafi [29], Kazmi and Rizvi [25], Shehu and Ogbuisi [35] proposed the following
iterative algorithm for approximating a solution of SVIP (1.8)–(1.9), which is also a fixed
point of a nonexpansive mapping S: For x1 ∈ H1, let the sequence {xn} be generated by

⎧
⎪⎪⎨

⎪⎪⎩

wn = (1 – αn)xn,

yn = JM1
λ (I – λN1)(wn + γ A∗(JM2

λ (I – λN2) – I)Awn),

xn+1 = (1 – βn)yn + βnSyn, ∀n ≥ 1.

(1.11)

As observed by Moudafi, the SVIP can be viewed as an important generalization of the split
fixed point problem, split variational inequality problem and the SFP (see [32, 40–42]).
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Furthermore, SVIPs are generally known to be very useful in the study of wide classes of
problems, especially problems arising from mechanics, optimization, nonlinear program-
ming, economics, finance, applied sciences, among others. For more results on SVIP see
[15, 22–24, 34] and the references therein.

Recently, Takahashi and Yao [38] studied the SCNPP in a more general setting, that is,
when A is a bounded linear operator from a Hilbert space to a Banach space. In fact, they
established the following result.

Theorem 1.1 Let H be a real Hilbert space and E be a uniformly convex and uniformly
smooth Banach space. Let M1 : H → 2H and M2 : E → 2E∗ be two multivalued maximal
monotone mappings such that Ω := M–1

1 (0)∩A–1(M–1
2 (0)) 	= ∅. Let A : H → E be a bounded

linear operator such that A 	= 0 and A∗ : E∗ → H be the adjoint of the operator A. Let x1 ∈ H
be arbitrary and the sequence {xn} be defined iteratively by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = JM1
λn (xn – λnA∗JE(Axn – TM2

μn Axn)),

yn = αnxn + (1 – αn)zn,

Cn = {z ∈ H : ‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ H : 〈xn – z, x1 – xn〉 ≥ 0},
xn+1 = PCn∩Qn x1, n ≥ 1,

(1.12)

where {αn} is a sequence in [0, 1], {λn} and {μn} are sequences in (0,∞) such that 0 ≤ αn ≤
a < 1, 0 < b ≤ μn and 0 < c ≤ λn‖A‖2 ≤ d < 2 for some a, b, c, d ∈ R. Then {xn} converges
strongly to a point z0 ∈ Ω , where z0 = PΩx1.

On the other hand, the approximation of fixed points of multivalued mappings with re-
spect to Hausdorff metric has been an area of great research interest due to its numerous
applications in diverse areas such as game theory, mathematical economics, non-smooth
differential equations and others. Thus, it has continued to attract the interest of numerous
researchers (see, for example [4, 19, 30]). Recently, Chidume and Ezeora [13] introduced
and studied a Krasnoselskii-type algorithm, and proved its strong convergence to a com-
mon fixed point of a finite family of multivalued strictly pseudocontractive mappings in a
real Hilbert space. More precisely, they proved the following result.

Theorem 1.2 Let C be a nonempty, closed and convex subset of a real Hilbert space H and
Si : C → CB(C) be a finite family of multivalued θi-strictly pseudocontractive mappings,
θi ∈ (0, 1), i = 1, 2, . . . , m such that

⋂m
i=1 F(Si) 	= ∅. Assume that, for p ∈⋂m

i=1 F(Si), Sip = {p}
and Si, i = 1, 2, . . . , m is hemicompact and continuous. Let {xn} be a sequence defined for
x0 ∈ C, by

xn+1 = α0xn + α1y1
n + α2y2

n + · · · + αmym
n , (1.13)

where yi
n ∈ Sixn, n ≥ 1 and αi ∈ (θ , 1), i = 0, 1, . . . , m such that

∑m
i=1 αi = 1 with θ :=

max{θi, i = 1, . . . , m}. Then the sequence {xn} converges strongly to an element of
⋂m

i=1 F(Si).

In the course of proving Theorem 1.2, Chidume and Ezeora [13] considered the follow-
ing lemma (see also [14]).
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Lemma 1.3 Let H be a real Hilbert space and {xi, i = 1, 2, . . . , m} ⊂ H . For αi ∈ (0, 1), i =
1, 2, . . . , m such that

∑m
i=1 αi = 1, the following identity holds:

∥∥
∥∥
∥

m∑

i=1

αixi

∥∥
∥∥
∥

2

=
m∑

i=1

αi‖xi‖2 –
m∑

i,j=1,i	=j

αiαj‖xi – xj‖2. (1.14)

We now make the following observations about Lemma 1.3 and Algorithm (1.12).

Remark 1.4 Lemma 1.3 was established under the assumption that
∑m

i=1 αi = 1, and since
then many authors have used this assumption for the study of finite family of nonlinear
problems (see [11, 36, 37] and the references therein). However, we observe that in a more
general case where {αi

n} is not necessarily a constant sequence, it may be difficult to con-
struct such sequences {αi

n}, i = 1, 2, 3, . . . , m whose sum is 1 for some large m. Therefore,
it is of practical computational importance to consider the following question.

Question Can we obtain a similar result without this assumption?

Our interest, among others, is to answer this question in the affirmative.

Remark 1.5
(i) The choice of the stepsize, 0 < c ≤ λn‖A‖2 ≤ d < 2 used in Theorem 1.1 and some

other corresponding results, requires the computation of the norm of A which in
general is a very difficult task to accomplish as shown in the following result.

Theorem 1.6 ([16, Theorem 2.3]) Let p ∈ [1,∞) be a rational number except for p = 1, 2.
Unless P = NP, there is no algorithm which computes the p-norm of a matrix with entries
in {–1, 0, 1} to relative error with running time polynomial in the dimensions.

(ii) Algorithm (1.12) requires at each step of the iteration process, the computation of
two subsets Cn and Qn, the computation of their intersection Cn ∩ Qn and the
computation of the projection of the initial starting point onto this intersection;
thus, leading to an increase in the computational cost of the iteration. Hence,
algorithms that do not involve the construction of Cn and Qn are more interesting
and of practical computational importance since they are easy to compute than
those that involve these constructions. The desire to search for these algorithms,
impels, urges and motivates us to undertake this research. The work of Kazmi and
Rizvi [25], Moudafi [29], Shehu and Ogbuisi [35], Takahashi and Yao [38], Chidume
and Ezeora [13] provides similar stimulus.

Our purposes in this paper are highlighted in the following approach: First, to study an
extension of the SCNPP (1.5)–(1.6) to the following finite family of split problem: Find
x∗ ∈⋂K

k=1 F(Sk) such that

0 ∈ Mj(x∗) + Nj(x∗), j = 1, 2, . . . , J (1.15)

and

y∗ = Aix∗ ∈ E such that 0 ∈ Qi(y∗), i = 1, 2, . . . , I, (1.16)
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where H is a real Hilbert space, E is uniformly convex and uniformly smooth real Banach
space, Sk : H → P(H), k = 1, 2, . . . , K is a finite family of type-one demicontractive map-
pings, Mj : H → 2H , j = 1, 2, . . . , J and Mi : E → 2E∗ , i = 1, 2, . . . , I are two finite families
of multivalued maximal monotone mappings, Nj : H → H is a finite family of α-inverse
strongly monotone mappings and Ai (for each i = 1, 2, . . . , I) are bounded linear operators
from H to E. Second, we propose a new viscosity-type iteration process that does not in-
volve the construction of either Cn or Qn (or both). Also, the choice of the stepsize adopted
for our computation does not require prior knowledge of the operator norm. Furthermore,
our control sequences do not require the imposition that their sum equals unity. Third,
using our proposed algorithm, we state and prove strong convergence theorem for approx-
imating a solution of problem (1.15)–(1.16). Fourth, we apply our results to study a finite
family of split convex minimization problems, and finally consider a numerical experi-
ment of our results to further illustrate their applicability. Our results extend and improve
the results of Byrne et al. [8], Kazmi and Rizvi [25], Moudafi [29], Shehu and Ogbuisi [35],
Takahashi and Yao [38], Chidume and Ezeora [13], and a host of other important results
in this direction.

2 Preliminaries
In this section, we recall some useful definitions and results that are needed in the proof
of the main results. Also, we shall denote the real Hilbert space by H , weak and strong
convergence by ⇀ and →, respectively.

Let (X, d) be a metric space, 2X be the family of all nonempty subsets of X and CB(X) be
the family of all nonempty, closed and bounded subsets of X. Let H denote the Hausdorff
metric induced by the metric d, that is, for all A, B ∈ CB(X),

H(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

, (2.1)

where d(a, B) := infb∈B d(a, b).
A subset K of X is called proximinal if for each x ∈ X, there exists k ∈ K such that

‖x – k‖ = inf
{‖x – y‖ : y ∈ K

}
= d(x, K). (2.2)

It is well known that every closed convex subset of a uniformly convex Banach space
is proximinal. We shall denote the family of all proximinal subsets of X by P(X), for a
nonempty set X.

Let S : H → 2H be a multivalued mapping, a point x ∈ H is called a fixed point of S if
x ∈ Sx. If Sx = {x}, then x is called a strict fixed point of S. Throughout this paper, we shall
denote the set of fixed points of S by F(S).

A multivalued mapping S is said to be nonexpansive, if

H(Sx, Sy) ≤ ‖x – y‖ ∀x, y ∈ H , (2.3)

and quasi-nonexpansive, if F(S) 	= ∅ and for all p ∈ F(S),

H(Sx, Sp) ≤ ‖x – p‖. (2.4)
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Clearly, every nonexpansive mapping with nonempty fixed point set is quasi-nonexpan-
sive.

S is called θ -strictly pseudocontractive in the sense of Isiogugu [17], if there exists θ ∈
[0, 1) such that ∀x, y ∈ H and u ∈ Sx there exists v ∈ Sy satisfying ‖u – v‖ ≤H(Sx, Sy) and

H2(Sx, Sy) ≤ ‖x – y‖2 + θ
∥
∥x – u – (y – v)

∥
∥2,

and demicontractive in the sense of Isiogugu and Osilike [19], if F(S) 	= ∅ and for all p ∈
F(S), x ∈ H there exists θ ∈ [0, 1) such that

H2(Sx, Sp) ≤ ‖x – p‖2 + θd2(x, Sx). (2.5)

Every nonexpansive mapping is 0-strictly pseudocontractive mapping and every quasi-
nonexpansive mapping is a demicontractive mapping with θ = 0.

The multivalued mapping S is said to be of type-one in the sense of Isiogugu et al. [21]
(see also [20]), if given any pair x, y ∈ H , then

‖u – v‖ ≤H(Sx, Sy), for all u ∈ PSx, v ∈ PSy,

where PSx := {u ∈ Sx : ‖u – x‖ = d(x, Sx)}.
A single-valued mapping f : H → H is called contraction, if there exists ρ ∈ (0, 1) such

that

‖fx – fy‖ ≤ ρ‖x – y‖ ∀x, y ∈ H .

If ρ = 1, then f is called nonexpansive. Furthermore, if fn : H → H is a uniformly conver-
gent sequence of contractions, then there exists a sequence of real numbers ρn ∈ (0, 1)
such that

∥
∥fn(x) – fn(y)

∥
∥≤ ρn‖x – y‖, ∀x, y ∈ H and n ≥ 1.

A mapping f : H → H is said to be
(i) Lipschitz, if there exists a constant L > 0 such that

‖fx – fy‖ ≤ L‖x – y‖, ∀x, y ∈ H ,

(ii) monotone, if

〈fx – fy, x – y〉 ≥ 0, ∀x, y ∈ H ,

(iii) α-inverse strongly monotone, if there exists a constant α > 0 such that

〈fx – fy, x – y〉 ≥ α‖fx – fy‖2, ∀x, y ∈ H .

If α = 1, then f is called firmly nonexpansive. Moreover, if f is α-inverse strongly mono-
tone, then it is 1

α
-Lipschitz continuous.
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Let E be a real Banach space with dim E ≥ 2, then the modulus of convexity of E denoted
by δE : [0, 2] → [0, 1] is defined by

δE(ε) := inf

{
1 –

∥
∥∥
∥

x + y
2

∥
∥∥
∥ : ‖x‖ = ‖y‖ = 1, ε = ‖x – y‖

}
.

We say that E is uniformly convex if δE(ε) > 0, for any ε ∈ (0, 2] and p-uniformly convex, if
there exists cp > 0 such that δE(ε) ≥ cpε

p for any ε ∈ (0, 2].
The modulus of smoothness of E denoted by ρE(τ ) : [0,∞) → [0,∞) is defined by

ρE(τ ) :=
{‖x + τy‖ + ‖x – τy‖

2
– 1 : ‖x‖ = ‖y‖ = 1

}
.

If limn→∞( ρE(τ )
τ

) = 0, then we say that E is uniformly smooth. Also, if there exists cq > 0 such
that ρE(τ ) ≤ cqτ

q for any τ > 0, then we say that E is q-uniformly smooth. It is generally
known that p-uniformly convex Banach spaces are uniformly convex while q-uniformly
smooth Banach spaces are uniformly smooth. Moreover, E is uniformly smoooth if and
only if its dual space E∗ is unformly convex. Examples of uniformly smooth Banach spaces
includes Hilbert spaces, Lp (or lp) spaces, 1 < p < ∞, and the Sobolev spaces W p

m, 1 < p < ∞
(see [12]). Also, it is well known (see [43]) that

Lp(lp) or W p
m is

⎧
⎨

⎩
p-uniformly convex, if p ≥ 2,

2-uniformly convex, if 1 < p ≤ 2.

The normalized duality mapping JE : E → 2E∗ is defined by

JE(x) =
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖2,‖x‖ =

∥
∥x∗∥∥}, ∀x ∈ E.

If E is a Hilbert space, then JE = I , where I is the identity mapping. Also, if E is a real
uniformly smooth and uniformly convex Banach space, then JE and J–1 : E∗ → E are single
valued. Moreover, JEJ–1 = IE∗ and J–1JE = IE (see [12]).

A multivalued mapping M : E → 2E∗ is called monotone, if

〈
x – y, u∗ – v∗〉≥ 0 ∀x, y ∈ D(M), u∗ ∈ M(x), v∗ ∈ M(y),

where D(M) is the domain of M. M is called maximal monotone if the graph G(M) of M
defined by

G(M) =:
{(

x, u∗) ∈ E × E∗ : u∗ ∈ M(x)
}

is not properly contained in the graph of any other monotone mapping. It is known that if
M is a maximal monotone operator, then R(I +λJ–1M) = E, where R(I +λJ–1M) is the range
of (I + λJ–1M) (see [33]). Also, if E is uniformly convex and smooth, then M is maximal
monotone if and only if R(J + λM) = E∗ for λ > 0 (see [5]). Hence, R(I + λJ–1M) = E.

For a maximal monotone mapping M, the metric resolvent TM
λ : R(I + λJ–1M) = E →

D(M) of M is defined by TM
λ x = (I + λJ–1M)–1x, ∀λ > 0, x ∈ E. It is known that TM

λ is single
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valued and nonexpansive. Moreover, 0 ∈ Mx if and only if x = TM
λ x (see [31]). Furthermore,

TM
λ satisfies the following property (see [3, p. 4]):

〈
TM

λ x – q, J
(
x – TM

λ x
)〉≥ 0 ∀x ∈ E, q ∈ F

(
TM

λ

)
. (2.6)

If E is a real Hilbert space, then the metric resolvent TM
λ of M is simply called the resolvent

of M and it is defined by

TM
λ (x) = (I + λM)–1x, x ∈ H ,λ > 0. (2.7)

For the rest of this paper, we shall denote the metric resolvent of M by TM
λ and the resolvent

of M by JM
λ for all λ > 0.

Definition 2.1 A multivalued mapping S : H → P(H) is said to be demiclosed at the ori-
gin, if for any sequence {xn} ⊂ H with xn ⇀ x and d(xn, Sxn) → 0, n → ∞, we have x ∈ Sx.

Lemma 2.2 ([44]) Let C be a nonempty, closed and convex subset of a real uniformly
smooth Banach space E and S : C → C be a nonexpansive mapping. If xn ⇀ x ∈ C and
‖xn – Sxn‖ → 0, then x = Sx.

Lemma 2.3 ([12]) Let H be a real Hilbert space, then, for all x, y ∈ H and α ∈ (0, 1), the
following hold:

(i) 2〈x, y〉 = ‖x‖2 + ‖y‖2 – ‖x – y‖2 = ‖x + y‖2 – ‖x‖2 – ‖y‖2,
(ii) ‖αx + (1 – α)y‖2 = α‖x‖2 + (1 – α)‖y‖2 – α(1 – α)‖x – y‖2,

(iii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Lemma 2.4 ([39]) Let {an} be a sequence of non-negative real numbers such that

an+1 ≤ (1 – tn)an + tnσn + δn, n ≥ 0,

where
(i) {tn} ⊂ [0, 1],

∑∞
n=0 tn = ∞,

(ii) lim supσn ≤ 0,
(iii) δn ≥ 0,

∑∞
n=0 δn < ∞.

Then an → 0 as n → ∞.

Lemma 2.5 ([27]) Let {Γn} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {Γnj}j≥0 of {Γn} such that

Γnj < Γnj+1 ∀j ≥ 0.

Also consider the sequence of integers {τ (n)}n≥n0 defined by

τ (n) = max{k ≤ n | Γk < Γk+1}.

Then {Γn}n≥n0 is a nondecreasing sequence such that τ (n) → ∞, as n → 0, and for all
n ≥ n0, the following two estimates hold:

Γτ (n) ≤ Γτ (n)+1, Γn ≤ Γτ (n)+1.
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Lemma 2.6 ([23] (see also [22])) Let H be a real Hilbert space. Let M : H → 2H be a mono-
tone mapping and N : H → H be any nonlinear mapping. Suppose that z = JM

λ (I –λN)x and
w = JM

μ (I – μN)x, for 0 < λ ≤ μ, then

‖z – x‖ ≤ 2‖w – x‖ ∀x ∈ H .

Let K be a nonempty closed and convex subset of a real Hilbert space H . Suppose that
{Ti}N

i=1, N ≥ 2, is a countable finite family of mappings Ti : K → K , in [18] the authors
consider the horizontal iteration process generated from an arbitrary x1 for the finite fam-
ily of mappings {Ti}N

i=1, using a finite family of the control sequences {{αi
n}∞n=1}N

i=1 as fol-
lows.

For N = 2,

xn+1 = α1
nxn +

(
1 – α1

n
)[

α2
nT1xn +

(
1 – α2

n
)
T2xn

]
.

For N = 3,

xn+1 = α1
nxn +

(
1 – α1

n
)[

α2
nT1xn +

(
1 – α2

n
)[

α3
nT2xn +

(
1 – α3

n
)
T3xn

]]
.

For an arbitrary but finite N ≥ 2,

xn+1 = α1
nxn +

(
1 – α1

n
)[

α2
nT1xn

+
(
1 – α2

n
)[

α3
nT2xn +

(
1 – α3

n
)[· · · [αN TN–1xn + (1 – αN )TN xn

] · · · ]]]

= α1
nxn +

N∑

i=2

αi
n

i–1∏

j=1

(
1 – αj

n
)
Ti–1xn +

N∏

j=1

(
1 – αj

n
)
TN xn, n ≥ 1.

The proofs of the following lemmas (Lemmas 2.7 and 2.10) are given in [18]. However, we
reproduce the proofs here for avoidance of doubt.

Lemma 2.7 Let {αi}N
i=1 be a countable subset of the set of real numbers R, where N ≥ 2 is

an arbitrary integer. Then the following holds:

α1 +
N∑

i=2

αi

i–1∏

j=1

(1 – αj) +
N∏

j=1

(1 – αj) = 1. (2.8)

Proof For N = 2,

α1 +
2∑

i=2

αi

i–1∏

j=1

(1 – αj) +
2∏

j=1

(1 – αj) = α1 + α2(1 – α1) + (1 – α1)(1 – α2)

= α1 + (1 – α1)
[
α2 + (1 – α2)

]

= α1 + (1 – α1) = 1.



Izuchukwu et al. Journal of Inequalities and Applications        (2019) 2019:253 Page 11 of 33

We assume it is true for N and prove for N + 1.

α1 +
N+1∑

i=2

αi

i–1∏

j=1

(1 – αj) +
N+1∏

j=1

(1 – αj)

= α1 +
N∑

i=2

αi

i–1∏

j=1

(1 – αj) + αN+1

N∏

j=1

(1 – αj) +
N+1∏

j=1

(1 – αj)

= α1 +
N∑

i=2

αi

i–1∏

j=1

(1 – αj) +
N∏

j=1

(1 – αj)
[
αN+1 + (1 – αN+1)

]

= α1 +
N∑

i=2

αi

i–1∏

j=1

(1 – αj) +
N∏

j=1

(1 – αj)

= 1. �

Remark 2.8 Lemma 2.7 holds if {αi}N
i=1 is replaced with {αi}N

i=0, and N ≥ 2 is replaced with
N ≥ 1.

Lemma 2.9 Let {αi}N
i=k be a countable subset of the set of real numbers R, where k is a fixed

non-negative integer and N ∈N is any integer with k + 1 ≤ N . Then the following holds:

αk +
N∑

i=k+1

αi

i–1∏

j=k

(1 – αj) +
N∏

j=k

(1 – αj) = 1. (2.9)

Proof For k = 0 and k = 1, the proofs follow from Remark 2.8 and Lemma 2.7, respectively.
We assume it is true for k and N . Now for k and N + 1,

αk +
N+1∑

i=k+1

αi

i–1∏

j=k

(1 – αj) +
N+1∏

j=k

(1 – αj)

= αk +
N∑

i=k+1

αi

i–1∏

j=k

(1 – αj) + αN+1

N∏

j=k

(1 – αj) +
N+1∏

j=k

(1 – αj)

= αk +
N∑

i=k+1

αi

i–1∏

j=k

(1 – αj) +
N∏

j=k

(1 – αj)
[
αN+1 + (1 – αN+1)

]

= αk +
N∑

i=k+1

αi

i–1∏

j=k

(1 – αj) +
N∏

j=k

(1 – αj)

= αk +
N∑

i=k

αi

i–1∏

j=k

(1 – αj) +
N∏

j=k

(1 – αj) = 1.
�

Lemma 2.10 Let t, u and v be arbitrary elements of a real Hilbert space H . Let k be a fixed
non-negative integer and N ∈N be such that k + 1 ≤ N . Let {vi}N–1

i=k ⊆ H and {αi}N
i=k ⊆ [0, 1]

be a countable finite subset of H and R, respectively. Define

y = αkt +
N∑

i=k+1

αi

i–1∏

j=k

(1 – αj)vi–1 +
N∏

j=k

(1 – αj)v.
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Then

‖y – u‖2 = αk‖t – u‖2 +
N∑

i=k+1

αi

i–1∏

j=k

(1 – αj)‖vi–1 – u‖2 +
N∏

j=k

(1 – αj)‖v – u‖2

– αk

[ N∑

i=k+1

αi

i–1∏

j=k

(1 – αj)‖t – vi–1‖2 +
N∏

j=k

(1 – αj)‖t – v‖2

]

– (1 – αk)

[ N–1∑

i=k+1

αi

i∏

j=k

(1 – αj)
∥
∥vi–1 – [αi+1vi + wi+1]

∥
∥2

+ αN

N∏

j=k

(1 – αj)‖v – vN–1‖2

]

,

where wk =
∑N

i=k+1 αi
∏i–1

j=k (1 – αj)vi–1 +
∏N

j=k(1 – αj)v, k = 1, 2, . . . , N – 1 and wN = (1 – αN )v.

Proof Observe that, for k ≤ N – 1, wk = (1 – αk)[αk+1vk + wk+1]. Consequently, we obtain
from Lemma 2.3(ii)

‖y – u‖2 =

∥∥
∥∥
∥
αkt +

N∑

i=k+1

αi

i–1∏

j=k

(1 – αj)vi–1 +
N∏

j=k

(1 – αj)v – u

∥∥
∥∥
∥

2

,

= ‖αkt + wk – u‖2

=
∥
∥αkt + (1 – αk)[αk+1vk + wk+1] – u

∥
∥2

= αk‖t – u‖2 + (1 – αk)‖αk+1vk + wk+1 – u‖2

– αk(1 – αk)
∥
∥t – [αk+1vk + wk+1]

∥
∥2

= αk‖t – u‖2 + (1 – αk)
[
αk+1‖vk – u‖2 + (1 – αk+1)‖αk+2vk+1 + wk+2 – u‖2

– αk+1(1 – αk+1)
∥∥vk – [αk+2vk+1 + wk+2]

∥∥2]

– αk(1 – αk)
[
αk+1‖t – vk‖2 + (1 – αk+1)

∥
∥t – [αk+2vk+1 + wk+2]

∥
∥2

– αk+1(1 – αk+1)
∥∥vk – [αk+2vk+1 + wk+2]

∥∥2]

= αk‖t – u‖2 + (1 – αk)αk+1‖vk – u‖2

+ (1 – αk)(1 – αk+1)‖αk+2vk+1 + wk+2 – u‖2

– (1 – αk)αk+1(1 – αk+1)
∥∥vk – [αk+2vk+1 + wk+2]

∥∥2

– αk(1 – αk)αk+1‖t – vk‖2 – αk(1 – αk)(1 – αk+1)
∥
∥t – [αk+2vk+1 + wk+2]

∥
∥2

+ αk(1 – αk)αk+1(1 – αk+1)
∥∥vk – [αk+2vk+1 + wk+2]

∥∥2

= αk‖t – u‖2 + (1 – αk)αk+1‖vk – u‖2 – αk(1 – αk)αk+1‖t – vk‖2

+ (1 – αk)(1 – αk+1)‖αk+2vk+1 + wk+2 – u‖2

– αk(1 – αk)(1 – αk+1)
∥∥t – [αk+2vk+1 + wk+2]

∥∥2

– αk+1(1 – αk)(1 – αk+1)(1 – αk)
∥
∥vk – [αk+2vk+1 + wk+2]

∥
∥2

= αk‖t – u‖2 + (1 – αk)αk+1‖vk – u‖2 – αk(1 – αk)αk+1‖t – vk‖2
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– αk+1(1 – αk)(1 – αk+1)(1 – αk)
∥∥vk – [αk+2vk+1 + wk+2]

∥∥2

+ (1 – αk)(1 – αk+1)‖αk+2vk+1 + wk+2 – u‖2

– αk(1 – αk)(1 – αk+1)
∥∥t – [αk+2vk+1 + wk+2]

∥∥2

= αk‖t – u‖2 + (1 – αk)αk+1‖vk – u‖2 – αk(1 – αk)αk+1‖t – vk‖2

– αk+1(1 – αk)(1 – αk+1)(1 – αk)
∥
∥vk – [αk+2vk+1 + wk+2]

∥
∥2

+ (1 – αk)(1 – αk+1)
∥∥αk+2vk+1 + (1 – αk+2)[αk+3vk+2 + wk+3] – u

∥∥2

– αk(1 – αk)(1 – αk+1)
∥
∥αk+2vk+1 + (1 – αk+2)[αk+3vk+2 + wk+3] – t

∥
∥2

= αk‖t – u‖2 +
(
1 – α1

n
)
αk+1‖vk – u‖2 – α1

n
(
1 – α1

n
)
αk+1‖t – vk‖2

+ (1 – αk)(1 – αk+1)αk+2‖vk+1 – u‖2

+ (1 – αk)(1 – αk+1)(1 – αk+2)‖αk+3vk+2 + wk+3 – u‖2

– (1 – αk)(1 – αk+1)αk+2(1 – αk+2)
∥
∥vk+1 – [αk+3vk+2 + wk+3]

∥
∥2

– αk(1 – αk)(1 – αk+1)αk+2‖vk+1 – t‖2

– αk(1 – αk)(1 – αk+1)(1 – αk+2)‖αk+3vk+2 + wk+3 – t‖2

+ αk(1 – αk)(1 – αk+1)αk+2(1 – αk+2‖vk+1 – αk+3vk+2 + wk+3‖2

– αk+1(1 – αk)(1 – αk+1)(1 – αk)
∥
∥vk – [αk+2vk+1 + wk+2]

∥
∥2

= αk‖t – u‖2 + (1 – αk)αk+1‖vk – u‖2 – αk(1 – αk)αk+1‖t – vk‖2

+ (1 – αk)(1 – αk+1)αk+2‖vk+1 – u‖2

+ (1 – αk)(1 – αk+1)(1 – αk+2)‖αk+3vk+2 + wk+3 – u‖2

– αk(1 – αk)(1 – αk+1)αk+2‖vk+1 – t‖2

– αk(1 – αk)(1 – αk+1)(1 – αk+2)‖αk+3vk+2 + wk+3 – t‖2

– αk+1(1 – αk)(1 – αk+1)(1 – αk)
∥∥vk – [αk+2vk+1 + wk+2]

∥∥2

– (1 – αk)2(1 – αk+1)αk+2(1 – αk+2)
∥
∥vk+1 – [αk+3vk+2 + wk+3]

∥
∥2

...

= αk‖t – u‖2 +
k+2∑

i=k+1

αi

i–1∏

j=k

(1 – αj)‖vi–1 – u‖2

– αk

[ k+2∑

i=k+1

αi

i–1∏

j=k

(1 – αj)‖t – vi–1‖2

]

– (1 – αk)[
k+2∑

i=k+1

αi

i∏

j=k

(1 – αj)
∥∥vi–1 – [αi+1vi + wi+1]

∥∥2

+
k+2∏

j=k

(1 – αj)
∥∥[αk+3vk+2 + wk+3] – u

∥∥2

– αk

k+2∏

j=k

(1 – αj)
∥∥t – [αk+3vk+2 + wk+3]

∥∥2
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= αk‖t – u‖2 +
N∑

i=k+1

αi

i–1∏

j=k

(1 – αj)‖vi–1 – u‖2 +
N∏

j=k

(1 – αj)‖v – u‖2

– αk

[ N∑

i=k+1

αi

i–1∏

j=k

(1 – αj)‖t – vi–1‖2 +
N∏

j=k

(1 – αj)‖t – v‖2

]

– (1 – αk)

[ N–1∑

i=k+1

αi

i∏

j=k

(1 – αj)
∥
∥vi–1 – [αi+1vi + wi+1]

∥
∥2

+ αN

N∏

j=k

(1 – αj)‖v – vN–1‖2

]

.
�

3 Main results
Lemma 3.1 Let H be a real Hilbert space and E be a real uniformly convex and uniformly
smooth Banach space. Let j = 1, 2, . . . , J , i = 1, 2, . . . , I , k = 1, 2, . . . , K , for some J , I, K ∈N. For
each i, j, k, let Ai : H → E be a bounded linear operator and (Ai)∗ : E∗ → H be the adjoint
of Ai, let Mj : H → 2H be a multivalued maximal monotone mapping, Nj : H → H be an
αj-inverse strongly monotone mapping, Sk : H → P(H), k = 1, 2, . . . , K , be a finite family of
multivalued type-one demicontractive mappings with coefficient θ k ∈ [0, 1), and Qi : E →
2E∗ be a multivalued maximal monotone mapping such that Υ :

⋂K
k=1 F(Sk) ∩⋂J

j=1(Mj +
Nj)–1(0) ∩⋂I

i=1(Ai)–1((Qi)–1(0)) 	= ∅. Let the stepsize γ i
n be chosen such that, for some εi >

0, γ i
n ∈ (εi,

2‖Aixn–TQi

μi Aixn‖
2

‖(Ai)∗JE(Aixn–TMi
μi Aixn)‖2 – εi), if TQi

μi Aixn 	= Aixn; otherwise γ i
n = γ i (γ i being any

nonnegative real number). Let fn : H → H be a sequence of ρn-contractive mappings with
0 < ρ ≤ ρn ≤ ρ̄ < 1 such that {fn(x)} is uniformly convergent for any x ∈ D, where D is any
bounded subset of H . For arbitrary x1 ∈ H , define the sequence {xn} iterative by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi
n = xn – γ i

n(Ai)∗JE(Aixn – TQi

μi Aixn), i = 1, 2, . . . , I,

wn = η1
nxn +

∑I
i=2 ηi

n
∏i–1

t=1(1 – ηt
n)wi–1

n +
∏I

t=1(1 – ηt
n)wI

n,

yj
n = JMj

λ
j
n

(I – λ
j
nNj)wn, j = 1, 2, . . . , J ,

yn = α1
nwn +

∑J
j=2 α

j
n
∏j–1

t=1(1 – αt
n)yj–1

n +
∏J

t=1(1 – αt
n)yJ

n,

un = ζ 1
n xn +

∑K
k=2 ζ k

n
∏k–1

t=1 (1 – ζ t
n)uk–1

n +
∏K

t=1(1 – ζ t
n)uK

n ,

xn+1 = β1
nfn(xn) + (1 – β1

n)[β2
nxn + (1 – β2

n)(νun + (1 – ν)yn)],

(3.1)

where uk
n ∈ PSk xn := {uk

n ∈ Skxn : ‖uk
n – xn‖ = d(xn, Skxn)}, k = 1, 2, . . . , K , μ > 0, ν ∈ (0, 1),

0 < λj ≤ λ
j
n < 2αj, {β1

n}∞n=1, {β2
n}∞n=1, {αj

n}∞n=1, {ηi
n}∞n=1 and {ζ k

n }∞n=1 are real sequences in (0, 1)
such that ζ 1

n ≥ θ k ∀n ≥ 1, k = 1, 2, . . . , K .
Then the sequence {xn} is bounded.

Proof Let q ∈ Υ , then, for each i = 1, 2, . . . , I , we obtain from (3.1) and (2.6)

∥
∥wi

n – q
∥
∥2 =

∥
∥xn – γ i

n
(
Ai)∗JE

(
Aixn – TQi

μi Aixn
)

– q
∥
∥

2

= ‖xn – q‖2 +
(
γ i

n
)2∥∥(Ai)∗JE

(
Aixn – TQi

μi Aixn
)∥∥

2

– 2γn
〈
xn – q,

(
Ai)∗JE

(
Aixn – TQi

μi Aixn
)〉
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= ‖xn – q‖2 + γ 2
n
∥∥(Ai)∗JE

(
Aixn – TQi

μi Aixn
)∥∥

2

– 2γn
〈
Aixn – Aiq, JE

(
Aixn – TQi

μi Aixn
)〉

= ‖xn – q‖2 + γ 2
n
∥
∥(Ai)∗JE

(
Aixn – TQi

μi Aixn
)∥∥

2

– 2γn
〈
Aixn – TQi

μi Aixn, JE
(
Aixn – TQi

μi Aixn
)〉

– 2γn
〈
TQi

μi
Aixn – TQi

μi Aiq, JE
(
Aixn – TQi

μi Aixn
)〉

≤ ‖xn – q‖2 + γ 2
n
∥∥(Ai)∗JE

(
Aixn – TQi

μi Aixn
)∥∥

2

– 2γn
〈
Aixn – TQi

μi Aixn, JE
(
Aixn – TQi

μi Aixn
)〉

= ‖xn – q‖2 + γ 2
n
∥∥(Ai)∗JE

(
Aixn – TQi

μi Aixn
)∥∥

2
– 2γn

∥∥Aixn – TQi

μi Aixn
∥∥2

= ‖xn – q‖2 – γn
[
2
∥∥Aixn – TQi

μi Aixn
∥∥

2
– γn

∥∥(Ai)∗JE
(
Aixn – TQi

μi Aixn
)∥∥

2]

≤ ‖xn – q‖2. (3.2)

From (3.1), (3.2), Lemma 2.7 and Lemma 2.10 (that is, setting k = 1 in Lemma 2.10), we
obtain

∥∥yj
n – q

∥∥2 =
∥∥JMj

λ
j
n

(
I – λj

nNj)wn – JMj

λ
j
n

(
I – λj

nNj)q
∥∥2

≤ ‖wn – q‖2 (3.3)

=

∥∥∥
∥∥
η1

nxn +
I∑

i=2

ηi
n

i–1∏

t=1

(
1 – ηt

n
)
wi–1

n +
I∏

t=1

(
1 – ηt

n
)
wI

n – q

∥∥∥
∥∥

2

≤ η1
n‖xn – q‖2 +

I∑

i=2

ηi
n

i–1∏

t=1

(
1 – ηt

n
)∥∥wi–1

n – q
∥∥2 +

I∏

t=1

(
1 – ηt

n
)∥∥wI

n – q
∥∥2

– η1
n

[ I∑

i=2

ηi
n

i–1∏

t=1

(
1 – ηt

n
)∥∥xn – wi–1

n
∥
∥2 +

I∏

t=1

(
1 – ηt

n
)∥∥xn – wI

n
∥
∥2
]

≤ η1
n‖xn – q‖2 +

I∑

i=2

ηi
n

i–1∏

t=1

(
1 – ηt

n
)‖xn – q‖2 +

I∏

t=1

(
1 – ηt

n
)‖xn – q‖2

– η1
n

[ I∑

i=2

ηi
n

i–1∏

t=1

(
1 – ηt

n
)∥∥xn – wi–1

n
∥∥2 +

I∏

t=1

(
1 – ηt

n
)∥∥xn – wI

n
∥∥2
]

≤ ‖xn – q‖2 – η1
n

[ I∑

i=2

ηi
n

i–1∏

t=1

(
1 – ηt

n
)∥∥xn – wi–1

n
∥∥2 +

I∏

t=1

(
1 – ηt

n
)∥∥xn – wI

n
∥∥2
]

≤ ‖xn – q‖2. (3.4)

Let mn = νun + (1 – ν)yn. Then, by (3.3), (3.4), Lemmas 2.7 and 2.10, we obtain

‖mn – q‖2 ≤ ν‖un – q‖2 + (1 – ν)‖yn – q‖2

≤ ν‖un – q‖2 + (1 – ν)

∥∥
∥∥
∥
α1

nwn +
J∑

j=2

αj
n

j–1∏

t=1

(
1 – αt

n
)
yj–1

n +
J∏

t=1

(
1 – αt

n
)
yJ

n – q

∥∥
∥∥
∥

2
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≤ ν‖un – q‖2 + (1 – ν)

[

α1
n‖wn – q‖2 +

J∑

j=2

αj
n

j–1∏

t=1

(
1 – αt

n
)∥∥yj–1

n – q
∥
∥2

+
J∏

t=1

(
1 – αt

n
)∥∥yJ

n – q
∥
∥2
]

– (1 – ν)α1
n

[ J∑

j=2

αj
n

j–1∏

t=1

(
1 – αt

n
)∥∥wn – yj–1

n
∥
∥2 +

J∏

t=1

(
1 – αt

n
)∥∥wn – yJ

n
∥
∥2
]

≤ ν‖un – q‖2 + (1 – ν)

[

α1
n‖wn – q‖2 +

J∑

j=2

αj
n

j–1∏

t=1

(
1 – αt

n
)‖wn – q‖2

+
J∏

t=1

(
1 – αt

n
)‖wn – q‖2

]

– (1 – ν)α1
n

[ J∑

j=2

αj
n

j–1∏

t=1

(
1 – αt

n
)∥∥wn – yj–1

n
∥
∥2 +

J∏

t=1

(
1 – αt

n
)∥∥wn – yJ

n
∥
∥2
]

= ν‖un – q‖2 + (1 – ν)‖wn – q‖2

– (1 – ν)α1
n

[ J∑

j=2

αj
n

j–1∏

t=1

(
1 – αt

n
)∥∥wn – yj–1

n
∥∥2 +

J∏

t=1

(
1 – αt

n
)∥∥wn – yJ

n
∥∥2
]

≤ ν‖un – q‖2 + (1 – ν)‖xn – q‖2

– (1 – ν)α1
n

[ J∑

j=2

αj
n

j–1∏

t=1

(
1 – αt

n
)∥∥wn – yj–1

n
∥∥2

+
J∏

t=1

(
1 – αt

n
)∥∥wn – yJ

n
∥
∥2
]

. (3.5)

Since Sk is of type-one demicontractive for each k = 1, 2, . . . , K , we obtain from (3.1), and
Lemmas 2.7 and 2.10

‖un – q‖2 ≤ ζ 1
n ‖xn – q‖2 +

K∑

k=2

ζ k
n

k–1∏

t=1

(
1 – ζ t

n
)∥∥uk–1

n – q
∥
∥2 +

K∏

t=1

(
1 – ζ t

n
)∥∥uK

n – q
∥
∥2

– ζ 1
n

[ K∑

k=2

ζ k
n

k–1∏

t=1

(
1 – ζ t

n
)∥∥xn – uk–1

n
∥∥2 +

K∏

t=1

(
1 – ζ t

n
)∥∥xn – uK

n
∥∥2
]

≤ ζ 1
n ‖xn – q‖2 +

K∑

k=2

ζ k
n

k–1∏

t=1

(
1 – ζ t

n
)
H2(Sk–1xn, Sk–1q

)

+
K∏

t=1

(
1 – ζ t

n
)
H2(SK xn, SK q

)

– ζ 1
n

[ K∑

k=2

ζ k
n

k–1∏

t=1

(
1 – ζ t

n
)∥∥xn – uk–1

n
∥
∥2 +

K∏

t=1

(
1 – ζ t

n
)∥∥xn – uK

n
∥
∥2
]

≤ ζ 1
n ‖xn – q‖2 +

K∑

k=2

ζ k
n

k–1∏

t=1

(
1 – ζ t

n
)[‖xn – q‖2 + θ k–1∥∥xn – uk–1

n
∥∥2]
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+
K∏

t=1

(
1 – ζ t

n
)[‖xn – q‖2 + θK∥∥xn – uK

n
∥
∥2]

– ζ 1
n

[ K∑

k=2

ζ k
n

k–1∏

t=1

(
1 – ζ t

n
)∥∥xn – uk–1

n
∥
∥2 +

K∏

t=1

(
1 – ζ t

n
)∥∥xn – uK

n
∥
∥2
]

= ‖xn – q‖2 –
K∑

j=2

ζ k
n

k–1∏

t=1

(
1 – ζ t

n
)(

ζ 1
n – θ k–1)∥∥xn – uk–1

n
∥
∥2

–
K∏

t=1

(
1 – ζ t

n
)(

ζ 1
n – θK)∥∥xn – uK

n
∥
∥2. (3.6)

Substituting (3.6) into (3.5), we obtain

‖mn – q‖2 ≤ ν‖xn – q‖2 – ν
(
ζ 1

n – θ k–1)
K∑

j=2

ζ k
n

k–1∏

t=1

(
1 – ζ t

n
)∥∥xn – uk–1

n
∥∥2

– ν
(
ζ 1

n – θK)
K∏

t=1

(
1 – ζ t

n
)∥∥xn – uK

n
∥
∥2 + (1 – ν)‖xn – q‖2

– (1 – ν)α1
n

[ J∑

j=2

αj
n

j–1∏

t=1

(
1 – αt

n
)∥∥wn – yj–1

n
∥∥2 +

J∏

t=1

(
1 – αt

n
)∥∥wn – yJ

n
∥∥2
]

≤ ‖xn – q‖2

– (1 – ν)α1
n

[ J∑

j=2

αj
n

j–1∏

t=1

(
1 – αt

n
)∥∥wn – yj–1

n
∥∥2 +

J∏

t=1

(
1 – αt

n
)∥∥wn – yJ

n
∥∥2
]

– ν
(
ζ 1

n – θ k–1)
K∑

j=2

ζ k
n

k–1∏

t=1

(
1 – ζ t

n
)∥∥xn – uk–1

n
∥
∥2

– ν
(
ζ 1

n – θK)
K∏

t=1

(
1 – ζ t

n
)∥∥xn – uK

n
∥
∥2

≤ ‖xn – q‖2. (3.7)

From (3.1) and (3.7), we obtain

‖xn+1 – q‖ =
∥
∥β1

n
(
fn(xn) – q

)
+
(
1 – β1

n
)[

β2
nxn +

(
1 – β2

n
)
mn – q

]∥∥

≤ β1
n
∥∥fn(xn) – q

∥∥ +
(
1 – β1

n
)
β2

n‖xn – q‖ +
(
1 – β1

n
)(

1 – β2
n
)‖mn – q‖

≤ β1
n
(∥∥fn(xn) – fn(q)

∥
∥ +

∥
∥fn(q) – q

∥
∥) +

(
1 – β1

n
)‖xn – q‖.

By the uniform convergence of {fn(x)} on any bounded subset D of H , and since {q} is
bounded, there exists M > 0 such that ‖fn(q) – q‖ ≤ M, ∀n ≥ 1. Hence, we have

‖xn+1 – q‖ ≤ β1
nρn‖xn – q‖ + β1

n
∥
∥fn(q) – q

∥
∥ +

(
1 – β1

n
)‖xn – q‖

≤ β1
n ρ̄‖xn – q‖ + β1

n
∥∥fn(q) – q

∥∥ +
(
1 – β1

n
)‖xn – q‖

=
(
β1

n ρ̄ +
(
1 – β1

n
))‖xn – q‖ + β1

n
∥∥fn(q) – q

∥∥
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=
(
1 – β1

n(1 – ρ̄)
)‖xn – q‖ + β1

n
∥∥fn(q) – q

∥∥

=
(
1 – β1

n(1 – ρ̄)
)‖xn – q‖ + β1

n(1 – ρ̄)
‖fn(q) – q‖

1 – ρ̄

≤ max

{
‖xn – q‖,

M
1 – ρ̄

}

...

≤ max

{
‖x1 – q‖,

M
1 – ρ̄

}
.

Therefore, {xn} is bounded. �

Theorem 3.2 Let H be a real Hilbert space and E be a real uniformly convex and uniformly
smooth Banach space. Let j = 1, 2, . . . , J , i = 1, 2, . . . , I , k = 1, 2, . . . , K , for some J , I, K ∈N. For
each i, j, k, let Ai : H → E be a bounded linear operator and (Ai)∗ : E∗ → H be the adjoint
of Ai, let Mj : H → 2H be a multivalued maximal monotone mapping, Nj : H → H be an
αj-inverse strongly monotone mapping, Sk : H → P(H), k = 1, 2, . . . , K be a finite family of
multivalued type-one demicontractive mappings with coefficient θ k ∈ [0, 1) such that (I –
Sk) is demiclosed at zero, and Qi : E → 2E∗ be a multivalued maximal monotone mapping
such that Υ :

⋂K
k=1 F(Sk)∩⋂J

j=1(Mj +Nj)–1(0)∩⋂I
i=1(Ai)–1((Qi)–1(0)) 	= ∅. Let the stepsize γ i

n

be chosen such that, for some εi > 0, γ i
n ∈ (εi,

2‖Aixn–TQi

μi Aixn‖
2

‖(Ai)∗JE (Aixn–TMi
μi Aixn)‖2 – εi), if TQi

μi Aixn 	= Aixn;

otherwise γ i
n = γ i (γ i being any nonnegative real number). Let fn : H → H be a sequence of

ρn-contractive mappings with 0 < ρ ≤ ρn ≤ ρ̄ < 1 such that {fn(x)} is uniformly convergent
for any x ∈ D, where D is any bounded subset of H . For arbitrary x1 ∈ H , define the sequence
{xn} iterative by (3.1), where μ > 0, ν ∈ (0, 1), 0 < λj ≤ λ

j
n < 2αj, {β1

n}∞n=1, {β2
n}∞n=1, {ηi

n}∞n=1 and
{ζ k

n }∞n=1 are real sequences in (0, 1) satisfying the following conditions:
(i) limn→∞ β1

n = 0 and
∑∞

n=1 β1
n = ∞;

(ii) 0 < ε1 ≤ β2
n ;

(iii) ζ 1
n ≥ max{θ k , k = 1, 2, . . . , K}, lim infn→∞ ζ k

n
∏k–1

t=1 (1 – ζ t
n)(ζ 1

n – θ k–1) > 0,
k = 2, 3, . . . , (K – 1);

(iv) lim infn→∞
∏K

t=1(1 – ζ t
n)(ζ 1

n – θK ) > 0;
(v) lim infn→∞ ηi

n
∏i–1

t=1(1 – ηt
n) > 0, i = 2, 3, . . . , (I – 1) and lim infn→∞

∏I
t=1(1 – ηt

n) > 0;
(vi) lim infn→∞ α

j
n
∏j–1

t=1(1 – αt
n) > 0, j = 2, 3, . . . , (J – 1) and lim infn→∞

∏J
t=1(1 – αt

n) > 0.
Then the sequence {xn} converges strongly to an element of Υ .

Proof Let q ∈ Υ , then from (3.1), (3.7) and Lemma 2.3, we obtain

‖xn+1 – q‖2 =
∥
∥β1

n
(
fn(xn) – fn(q)

)
+ β1

n
(
fn(q) – q

)
+
(
1 – β1

n
)[

β2
nxn +

(
1 – β2

n
)
mn – q

]∥∥2

≤ ∥
∥(1 – β1

n
)[

β2
nxn +

(
1 – β2

n
)
mn – q

]
+ β1

n
(
fn(xn) – fn(q)

)∥∥2

+ 2β1
n
〈
fn(q) – q, xn+1 – q

〉

≤ (
1 – β1

n
)2∥∥β2

nxn +
(
1 – β2

n
)
mn – q

∥∥2 +
(
β1

n
)2∥∥(fn(xn) – fn(q)

)∥∥2

+ 2β1
n
(
1 – β1

n
)〈
β2

nxn +
(
1 – β2

n
)
mn – q, fn(xn) – fn(q)

〉

+ 2β1
n
〈
fn(q) – q, xn+1 – q

〉
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=
(
1 – β1

n
)2

β2
n‖xn – q‖2 +

(
1 – β1

n
)2(1 – β2

n
)‖mn – q‖2

–
(
1 – β1

n
)2

β2
n
(
1 – β2

n
)‖xn – mn‖2 +

(
β1

n
)2∥∥(fn(xn) – fn(q)

)∥∥2

+ 2β1
n
(
1 – β1

n
)〈
β2

nxn +
(
1 – β2

n
)
mn – q, fn(xn) – fn(q)

〉

+ 2β1
n
〈
fn(q) – q, xn+1 – q

〉

≤ (
1 – β1

n
)2‖xn – q‖2 –

(
1 – β1

n
)2

β2
n
(
1 – β2

n
)‖xn – mn‖2

+
(
β1

n
)2∥∥fn(xn) – fn(q)

∥∥2

+ 2β1
n
(
1 – β1

n
)〈
β2

nxn +
(
1 – β2

n
)
mn – q, fn(xn) – fn(q)

〉

+ 2β1
n
〈
fn(q) – q, xn+1 – q

〉

≤ (
1 – β1

n
)2‖xn – q‖2 –

(
1 – β1

n
)2

β2
n
(
1 – β2

n
)‖xn – mn‖2

+
(
β1

n
)2

ρ2
n‖xn – q‖2

+ 2β1
n
(
1 – β1

n
)∥∥β2

nxn +
(
1 – β2

n
)
mn – q

∥
∥
∥
∥fn(xn) – fn(q)

∥
∥

+ 2β1
n
〈
fn(q) – q, xn+1 – q

〉

≤ (
1 – β1

n
)2‖xn – q‖2 –

(
1 – β1

n
)2

β2
n
(
1 – β2

n
)‖xn – mn‖2

+
(
β1

n
)2

ρ̄2‖xn – q‖2 + 2ρ̄β1
n
(
1 – β1

n
)‖xn – q‖2

+ 2β1
n
〈
fn(q) – q, xn+1 – q

〉
. (3.8)

We now divide the rest of the proof into two cases.
Case 1. Suppose that there exists n0 ∈N such that {‖xn – q‖}∞n=n0 is nonincreasing. Then,

by Lemma 3.1, {‖xn – q‖} converges. Thus,

‖xn – q‖ – ‖xn+1 – q‖ → 0 as n → ∞. (3.9)

By (3.1) and (3.6), we obtain

‖xn+1 – q‖2 ≤ β1
n
∥
∥fn(xn) – q

∥
∥2 +

(
1 – β1

n
)
β2

n‖xn – q‖2 +
(
1 – β1

n
)(

1 – β2
n
)‖mn – q‖2

≤ β1
n
∥∥fn(xn) – q

∥∥2 +
(
1 – β1

n
)
β2

n‖xn – q‖2

+
(
1 – β1

n
)(

1 – β2
n
)(

ν‖un – q‖2 + (1 – ν)‖yn – q‖2)

≤ β1
n
∥
∥fn(xn) – q

∥
∥2 +

(
1 – β1

n
)
β2

n‖xn – q‖2

+
(
1 – β1

n
)(

1 – β2
n
)(

ν‖xn – q‖2 + (1 – ν)‖wn – q‖2)

= β1
n
∥∥fn(xn) – q

∥∥2 +
(
1 – β1

n
)(

β2
n + ν

(
1 – β2

n
))‖xn – q‖2

+
(
1 – β1

n
)(

1 – β2
n
)
(1 – ν)‖wn – q‖2. (3.10)

By (3.3) and (3.10), we obtain

η1
n

[ I∑

i=2

ηi
n

i–1∏

t=1

(
1 – ηt

n
)∥∥xn – wi–1

n
∥∥2 +

I∏

t=1

(
1 – ηt

n
)∥∥xn – wI

n
∥∥2
]

≤ ‖xn – q‖2 – ‖wn – q‖2
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≤ ‖xn – q‖2 +
(β2

n + ν(1 – β2
n))

(1 – β2
n)(1 – ν)

‖xn – q‖2

+
1

(1 – β1
n)(1 – β2

n)(1 – ν)
(
–‖xn+1 – q‖2 + β1

n
∥∥fn(xn) – q

∥∥2)

=
(1 – β1

n)
(1 – β1

n)(1 – β2
n)(1 – ν)

‖xn – q‖2

+
1

(1 – β1
n)(1 – β2

n)(1 – ν)
(
–‖xn+1 – q‖2 + β1

n
∥
∥fn(xn) – q

∥
∥2)

=
1

(1 – β1
n)(1 – β2

n)(1 – ν)
[‖xn – q‖2 – ‖xn+1 – q‖2]

+
β1

n
(1 – β1

n)(1 – β2
n)(1 – ν)

[∥∥fn(xn) – q
∥
∥2 – ‖xn – q‖2]. (3.11)

By the conditions on the control sequences, we obtain

lim
n→∞

∥∥xn – wi
n
∥∥ = 0, i = 1, 2, . . . , I. (3.12)

By the condition on {γ i
n}, we obtain

lim
n→∞

∥∥(Ai)∗JE
(
Aixn – TQi

μi Aixn
)∥∥ = 0, i = 1, 2, . . . , I. (3.13)

Also, from (3.2), (3.12) and (3.13), we obtain

2γ i
n
∥∥Aixn – TQi

μi Aixn
∥∥

2 ≤ ‖xn – q‖2 –
∥∥wi

n – q
∥∥2 +

(
γ i

n
)2∥∥(Ai)∗JE

(
Aixn – TQi

μi Aixn
)∥∥2

≤ ∥
∥xn – wi

n
∥
∥2 – 2

∥
∥xn – wi

n
∥
∥
∥
∥wi

n – q
∥
∥2

+
(
γ i

n
)2∥∥(Ai)∗JE

(
Aixn – TQi

μi Aixn
)∥∥2

→ 0, as n → ∞. (3.14)

Hence,

lim
n→∞

∥∥Aixn – TQi

μi Aixn
∥∥ = 0, i = 1, 2, . . . , I. (3.15)

By (3.8), we have

(
1 – β1

n
)2

β2
n
(
1 – β2

n
)‖xn – mn‖2 ≤ ‖xn – q‖2 – ‖xn+1 – q‖2 + β1

nM1,

for some M1 > 0 and this implies that

lim
n→∞‖xn – mn‖ = 0. (3.16)

Hence, by (3.1) and condition (i), we obtain

lim
n→∞‖xn+1 – xn‖ = 0. (3.17)
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From (3.7) and (3.16), we obtain

(1 – ν)α1
n

[ J∑

j=2

αj
n

j–1∏

t=1

(
1 – αt

n
)∥∥wn – yj–1

n
∥
∥2 +

J∏

t=1

(
1 – αt

n
)∥∥wn – yJ

n
∥
∥2
]

≤ ‖xn – q‖2 – ‖mn – q‖2 → 0, as n → ∞,

which implies from condition (vi) that

lim
n→∞

∥
∥wn – yj

n
∥
∥ = 0, j = 1, 2, . . . , J . (3.18)

Since 0 < λj ≤ λ
j
n, by Lemma 2.6, we obtain

∥
∥wn – JMj

λj
(
I – λjNj)wn

∥
∥≤ 2

∥
∥wn – yj

n
∥
∥→ 0, as n → ∞, j = 1, 2, . . . , J . (3.19)

Similarly, we obtain from (3.7) and (3.16)

ν
(
ζ 1

n – θ k–1)
K∑

j=2

ζ k
n

k–1∏

t=1

(
1 – ζ t

n
)∥∥xn – uk–1

n
∥
∥2 + ν

(
ζ 1

n – θK)
K∏

t=1

(
1 – ζ t

n
)∥∥xn – uK

n
∥
∥2

≤ ‖xn – q‖2 – ‖mn – q‖2

→ 0, as n → ∞,

which implies that

lim
n→∞

∥∥xn – uk
n
∥∥ = 0, k = 1, 2, . . . , K . (3.20)

Therefore,

d
(
xn, Skxn

)
=
∥∥xn – uk

n
∥∥→ 0, n → ∞, k = 1, 2, . . . , K . (3.21)

Since {xn} is bounded (by Lemma 3.1), there exists a subsequence {xnj} of {xn} such that
xnj ⇀ x∗ ∈ H , and by the demiclosedness of (I – Sk) (for each k) at zero and (3.21), we have
x∗ ∈⋂K

k=1 F(Sk). Moreover,

‖wn – xn‖2 ≤ η1
n‖xn – xn‖2 +

I∑

i=2

ηi
n

i–1∏

t=1

(
1 – ηt

n
)∥∥wi–1

n – xn
∥
∥2 +

I∏

t=1

(
1 – ηt

n
)∥∥wI

n – xn
∥
∥2

– η1
n

[ I∑

i=2

ηi
n

i–1∏

t=1

(
1 – ηt

n
)∥∥xn – wi–1

n
∥
∥2 +

I∏

t=1

(
1 – ηt

n
)∥∥xn – wI

n
∥
∥2
]

≤
I∑

i=2

ηi
n

i–1∏

t=1

(
1 – ηt

n
)∥∥wi–1

n – xn
∥∥2 +

I∏

t=1

(
1 – ηt

n
)∥∥wI

n – xn
∥∥2,

which implies from (3.12) that

lim
n→∞‖wn – xn‖ = 0. (3.22)
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Furthermore, Ai is a bounded linear operator for each i = 1, 2, . . . , I , so {Aixnj} converges
weakly to Aix∗ ∈ E. Also, TQ

μi is nonexpansive, thus, by (3.15) and the demiclosedness of
(I – TQi

μi ) at 0, we obtain

Ax∗ ∈
I⋂

i=1

F
(
TQi

μi

)
.

Similarly, we obtain from (3.19) and (3.22)

x∗ ∈
J⋂

j=1

F
(
JMj
λj

(
I – λjNj

))
.

Therefore, we conclude that x∗ ∈ Υ .
Meanwhile, since {fn(x)} is uniformly convergent on any bounded subset of H and {x∗}

is bounded, we can set f (x∗) = limn→∞ fn(x∗). Thus, we obtain

lim sup
n→∞

〈
fn
(
x∗) – x∗, xn – x∗〉 = lim sup

j→∞

〈
fnj

(
x∗) – x∗, xnj – x∗〉

= 0.

By replacing q with x∗ in (3.8), we get

∥∥xn+1 – x∗∥∥2 ≤ (
1 – 2β1

n
(
1 – ρ̄

(
1 – β1

n
)))∥∥xn – x∗∥∥2 –

(
1 – β1

n
)2

β2
n
(
1 – β2

n
)‖xn – mn‖2

+
(
β1

n
)2(1 + ρ̄2)∥∥xn – x∗∥∥2 + 2β1

n
〈
fn
(
x∗) – x∗, xn+1 – x∗〉

≤ (
1 – 2β1

n(1 – ρ̄)
)∥∥xn – x∗∥∥2 + 2β1

n(1 – ρ̄)

×
[

β1
n(1 + ρ̄2)
2(1 – ρ̄)

∥
∥xn – x∗∥∥2 +

1
1 – ρ̄

(〈
fn
(
x∗) – x∗, xn+1 – x∗〉)

]
. (3.23)

Using Lemma 2.4, we obtain xn → x∗ ∈ Υ as n → ∞.
Case 2. Assume that {‖xn – q‖} is not a monotonically decreasing sequence. Set Γn =

‖xn – q‖2 and let τ : N →N be a mapping for all n ≥ n0 (for some n0 large enough) by

τ (n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.

Clearly, τ is non-decreasing sequence such that τ (n) → ∞ as n → ∞ and

0 ≤ Γτ (n) ≤ Γτ (n)+1, ∀n ≥ n0.

This implies that ‖xτ (n) – q‖ ≤ ‖xτ (n)+1 – q‖, ∀n ≥ n0. Thus limn→∞ ‖xτ (n) – q‖ exists. In a
similar way to Case 1, we can show that

∥
∥(Ai)∗JE

(
Aixτ (n) – TQi

μi Aixτ (n)
)∥∥→ 0, n → ∞, i = 1, 2, . . . , I. (3.24)

Similarly,

∥∥xτ (n) – uk
τ (n)
∥∥→ 0, n → ∞, k = 1, 2, . . . , K , (3.25)
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so that

d
(
xτ (n), Skxτ (n)

)
=
∥
∥xτ (n) – uk

τ (n)
∥
∥→ 0, n → ∞, k = 1, 2, . . . , K .

We can also show that

‖xτ (n)+1 – xτ (n)‖ → 0, n → ∞,

‖wτ (n) – xτ (n)‖ → 0, n → ∞,
∥∥Aixτ (n) – TQi

μi Aixτ (n)
∥∥→ 0, n → ∞, i = 1, 2, . . . , I.

(3.26)

and

∥
∥wτ (n) – JMj

λj
(
I – λjNj)wτ (n)

∥
∥→ 0, as n → ∞, j = 1, 2, . . . , J . (3.27)

From the fact that {xτ (n)} is bounded, we see that there exists a subsequence of {xτ (n)},
denoted as {xτ (n)}, that converges weakly to x∗ ∈ H1. Since ‖wτ (n) – xτ (n)‖ → 0, it follows
that wτ (n) ⇀ x∗ ∈ H1. As in Case 1, we can show that x∗ ∈ Υ and

lim sup
n→∞

〈
fτ (n)

(
x∗) – x∗, xτ (n)+1 – x∗〉 = 0.

By replacing q with x∗ in (3.8), we get

∥∥xτ (n)+1 – x∗∥∥2 ≤ (
1 – 2β1

τ (n)
(
1 – ρ̄

(
1 – β1

τ (n)
)))∥∥xτ (n) – x∗∥∥2

–
(
1 – β1

τ (n)
)2

β2
τ (n)
(
1 – β2

τ (n)
)∥∥xτ (n) – mτ (n)

∥∥2

+
(
β1

τ (n)
)2(1 + ρ̄2)∥∥xτ (n) – x∗∥∥2 + 2β1

τ (n)
〈
fτ (n)

(
x∗) – x∗, xτ (n)+1 – x∗〉

≤ (
1 – 2β1

τ (n)(1 – ρ̄)
)∥∥xτ (n) – x∗∥∥2 +

(
β1

τ (n)
)2(1 + ρ̄2)∥∥xτ (n) – x∗∥∥2

+ 2β1
τ (n)
〈
fτ (n)

(
x∗) – x∗, xτ (n)+1 – x∗〉. (3.28)

This implies that (noting that Γτ (n) ≤ Γτ (n)+1 and β1
τ (n) > 0)

2(1 – ρ̄)
∥∥xτ (n) – x∗∥∥2 ≤ β1

τ (n)
(
1 + ρ̄2)∥∥xτ (n) – x∗∥∥2 + 2

〈
fτ (n)

(
x∗) – x∗, xτ (n)+1 – x∗〉. (3.29)

This implies that

lim sup
n→∞

∥∥xτ (n) – x∗∥∥≤ 0.

Thus,

lim
n→∞

∥∥xτ (n) – x∗∥∥ = 0. (3.30)

Therefore,

∥∥xτ (n)+1 – x∗∥∥≤ ∥∥xτ (n) – x∗∥∥ + ‖xτ (n)+1 – xτ (n)‖ → 0, n → ∞.
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Furthermore, for n ≥ n0, it is easy to see that Γτ (n) ≤ Γτ (n)+1 if n 	= τ (n) (that is, τ (n) < n),
because Γj ≤ Γj+1 for τ (n) + 1 ≤ j ≤ n. As a consequence, we obtain for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ (n),Γτ (n)+} = Γτ (n)+1.

Hence, limn→∞ Γn = 0, that is, {xn} converges to x∗ ∈ Υ . This completes the proof. �

The following new results follow directly from Theorem 3.2.

Corollary 3.3 Let H be a real Hilbert space and E be a real uniformly convex and uni-
formly smooth Banach space. Let i = 1, 2, . . . , I , k = 1, 2, . . . , K , for some I, K ∈ N. For each
i, k, let Ai : H → E be a bounded linear operator and (Ai)∗ : E∗ → H be the adjoint of
Ai, M : H → 2H be a multivalued maximal monotone mapping and N : H → H be an
α-inverse strongly monotone mapping and Sk : H → P(H), k = 1, 2, . . . , K be a finite fam-
ily of multivalued type-one demicontractive mappings with coefficient θ k ∈ [0, 1) such that
(I – Sk) is demiclosed at zero, and Qi : E → 2E∗ be a multivalued maximal monotone map-
ping such that Υ :

⋂K
k=1 F(Sk)∩ (M + N)–1(0)∩⋂I

i=1(Ai)–1((Qi)–1(0)) 	= ∅. Let the stepsize γ i
n

be chosen such that, for some εi > 0, γ i
n ∈ (εi, 2‖Aixn–TQi

μ Aixn‖
2

‖(Ai)∗JE (Aixn–TMi
μ Aixn)‖2 – εi), if TQi

μ Aixn 	= Aixn;

otherwise γ i
n = γ i (γ i being any nonnegative real number). Let fn : H → H be a sequence of

ρn-contractive mappings with 0 < ρ ≤ ρn ≤ ρ̄ < 1 such that {fn(x)} is uniformly convergent
for any x ∈ D, where D is any bounded subset of H . For arbitrary x1 ∈ H , define the iterative
sequence {xn} by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi
n = xn – γn(Ai)∗JE(Aixn – TQi

μ Aixn), i – 1, 2, . . . , I,

wn = η1
nxn +

∑I
i=2 ηi

n
∏i–1

t=1(1 – ηt
n)wi–1

n +
∏I

i=1(1 – ηi
n)wI ,

yn = JM
λn (I – λnN)wn,

un = ζ 1
n xn +

∑K
k=2 ζ k

n
∏k–1

t=1 (1 – ζ t
n)uk–1

n +
∏K

k=1(1 – ζ k
n )uK

n ,

xn+1 = β1
nfn(xn) + (1 – β1

n)[β2
nxn + (1 – β2

n)(νun + (1 – ν)yn)],

(3.31)

where uk
n ∈ PSk xn := {uk

n ∈ Skxn : ‖uk
n – xn‖ = d(xn, Skxn)}, k = 1, 2, . . . , K , μ > 0, ν ∈ (0, 1),

0 < λ ≤ λn < 2α, {β1
n}∞n=1, {β2

n}∞n=1, {ηi
n}∞n=1 and {ζ k

n }∞n=1 are real sequences in (0, 1) satisfying
the following conditions:

(i) limn→∞ β1
n = 0 and

∑∞
n=1 β1

n = ∞;
(ii) 0 < ε1 ≤ β2

n ;
(iii) ζ 1

n ≥ max{θ k , k = 1, 2, . . . , K}, lim infn→∞ ζ k
n
∏k–1

t=1 (1 – ζ t
n)(ζ 1

n – θ k–1) > 0,
k = 2, 3, . . . , (K – 1);

(iv) lim infn→∞
∏K

t=1(1 – ζ t
n)(ζ 1

n – θK ) > 0;
(v) lim infn→∞ ηi

n
∏i–1

t=1(1 – ηt
n) > 0, i = 2, 3, . . . , (I – 1) and lim infn→∞

∏I
t=1(1 – ηt

n) > 0.
Then the sequence {xn} converges strongly to an element of Υ .

Corollary 3.4 Let H be a real Hilbert space and E be a real uniformly convex and uni-
formly smooth Banach space. Let j = 1, 2, . . . , J , k = 1, 2, . . . , K , for some J , K ∈ N. For each
j, k, let A : H → E be a bounded linear operator and A∗ : E∗ → H be the adjoint of A,
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Mj : H → 2H be a multivalued maximal monotone mapping and Nj : H → H be an α-
inverse strongly monotone mapping and Sk : H → P(H), k = 1, 2, . . . , K be a finite family
of multivalued type-one demicontractive mappings with coefficient θ k ∈ [0, 1) such that
(I – Sk) is demiclosed at zero, and Q : E → 2E∗ be a multivalued maximal monotone map-
ping such that Υ :

⋂K
k=1 F(Sk) ∩⋂J

j=1(Mj + Nj)–1(0) ∩ A–1(Q–1(0)) 	= ∅. Let the stepsize γn

be chosen such that, for some ε > 0, γn ∈ (ε, 2‖Axn–TQ
μ Axn‖2

‖(A)∗JE(Axn–TM
μ Axn)‖2 – ε

)
, if TQ

μ Axn 	= Axn; oth-

erwise γn = γ (γ being any nonnegative real number). Let fn : H → H be a sequence of
ρn-contractive mappings with 0 < ρ ≤ ρn ≤ ρ̄ < 1 such that {fn(x)} is uniformly convergent
for any x ∈ D, where D is any bounded subset of H . For arbitrary x1 ∈ H , define the iterative
sequence {xn} by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn – γnA∗JE(Axn – TQ
μ Axn),

yj
n = JMj

λ
j
n

(I – λ
j
nNj)wn, j = 1, 2, . . . , J ,

yn = α1
nwn +

∑J
j=2 α

j
n
∏j–1

t=1(1 – αt
n)yj–1

n +
∏J

j=1(1 – α
j
n)yJ ,

un = ζ 1
n xn +

∑K
k=2 ζ k

n
∏k–1

t=1 (1 – ζ t
n)uk–1

n +
∏K

k=1(1 – ζ k
n )uK

n ,

xn+1 = β1
nfn(xn) + (1 – β1

n)[β2
nxn + (1 – β2

n)(νun + (1 – ν)yn)],

(3.32)

where uk
n ∈ PSk xn := {uk

n ∈ Skxn : ‖uk
n – xn‖ = d(xn, Skxn)}, k = 1, 2, . . . , K , μ > 0, ν ∈ (0, 1),

0 < λj ≤ λ
j
n < 2αj, {β1

n}∞n=1, {β2
n}∞n=1, {αj

n}∞n=1 and {ζ k
n }∞n=1 are real sequences in (0, 1) satisfying

the following conditions:
(i) limn→∞ β1

n = 0 and
∑∞

n=1 β1
n = ∞;

(ii) 0 < ε1 ≤ β2
n ;

(iii) ζ 1
n ≥ max{θ k , k = 1, 2, . . . , K}, lim infn→∞ ζ k

n
∏k–1

t=1 (1 – ζ t
n)(ζ 1

n – θ k–1) > 0,
k = 2, 3, . . . , (K – 1);

(iv) lim infn→∞
∏K

t=1(1 – ζ t
n)(ζ 1

n – θK ) > 0;
(v) lim infn→∞ α

j
n
∏j–1

t=1(1 – αt
n) > 0, j = 2, 3, . . . , (J – 1) and lim infn→∞

∏J
t=1(1 – αt

n) > 0.
Then the sequence {xn} converges strongly to an element of Υ .

Corollary 3.5 Let H be a real Hilbert space and E be a real uniformly convex and uni-
formly smooth Banach space. Let j = 1, 2, . . . , J , i = 1, 2, . . . , I , for some J , I ∈ N.For each
i, j, let Ai : H → E be a bounded linear operator and (Ai)∗ : E∗ → H be the adjoint
of Ai, Mj : H → 2H be a multivalued maximal monotone mapping and Nj : H → H
be an α-inverse strongly monotone mapping. Suppose S : H → P(H) is a multivalued
type-one demicontractive mapping with coefficient θ ∈ [0, 1) such that (I – S) is demi-
closed at zero and Qi : E → 2E∗ be a multivalued maximal monotone mapping such that
Υ : F(S) ∩ ⋂J

j=1(Mj + Nj)–1(0) ∩ ⋂I
i=1(Ai)–1((Qi)–1(0)) 	= ∅. Let the stepsize γ i

n be chosen

such that, for some εi > 0, γ i
n ∈ (εi,

2‖Aixn–TQi

μi Aixn‖
2

‖(Ai)∗JE(Aixn–TMi
μi Aixn)‖2 – εi), if TQi

μi Aixn 	= Aixn; other-

wise γ i
n = γ i (γ i being any nonnegative real number). Let fn : H → H be a sequence of ρn-

contractive mappings with 0 < ρ ≤ ρn ≤ ρ̄ < 1 such that {fn(x)} is uniformly convergent for
any x ∈ D, where D is any bounded subset of H . For arbitrary x1 ∈ H , define the iterative
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sequence {xn} by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi
n = xn – γn(Ai)∗JE(Aixn – TQi

μ Aixn), i = 1, 2, . . . , I,

wn = η1
nxn +

∑I
i=2 ηi

n
∏i–1

t=1(1 – ηt
n)wi–1

n +
∏I

i=1(1 – ηi
n)wI ,

yj
n = JMj

λ
j
n

(I – λ
j
nNj)wn, j = 1, 2, . . . , J ,

yn = α1
nwn +

∑J
j=2 α

j
n
∏j–1

t=1(1 – αt
n)yj–1

n +
∏J

j=1(1 – α
j
n)yJ ,

xn+1 = β1
nfn(xn) + (1 – β1

n)[β2
nxn + (1 – β2

n)(νun + (1 – ν)yn)],

(3.33)

where un ∈ PSxn := {un ∈ Sxn : ‖un – xn‖ = d(xn, Sxn)}, μ > 0, ν ∈ (θ , 1), 0 < λj ≤ λ
j
n < 2αj,

{β1
n}∞n=1, {β2

n}∞n=1, {αj
n}∞n=1 and {ηi

n}∞n=1 are real sequences in (0, 1) satisfying the following
conditions:

(i) limn→∞ β1
n = 0 and

∑∞
n=1 β1

n = ∞;
(ii) 0 < ε1 ≤ β2

n ≤ 1 – θ ;
(iii) lim infn→∞ ηi

n
∏i–1

t=1(1 – ηt
n) > 0, i = 2, 3, . . . , (I – 1) and lim infn→∞

∏I
t=1(1 – ηt

n) > 0;
(iv) lim infn→∞ α

j
n
∏j–1

t=1(1 – αt
n) > 0, j = 2, 3, . . . , (J – 1) and lim infn→∞

∏J
t=1(1 – αt

n) > 0.
Then the sequence {xn} converges strongly to an element of Υ .

Corollary 3.6 Let H be a real Hilbert space and E be a real uniformly convex and uni-
formly smooth Banach space. Let j = 1, 2, . . . , J , for some J ∈ N. For each j, let Mj : H → 2H

be a multivalued maximal monotone mapping and Nj : H → H be an α-inverse strongly
monotone mapping A : H → E be a bounded linear operator and A∗ : E∗ → H be the adjoint
of A, and S : H → P(H) be a multivalued type-one demicontractive mapping with coeffi-
cient θ ∈ [0, 1) such that (I – S) is demiclosed at zero, and Q : E → 2E∗ be a multivalued
maximal monotone mapping such that Υ : F(S) ∩⋂J

j=1(Mj + Nj)–1(0) ∩ A–1(Q–1(0)) 	= ∅.

Let the stepsize γn be chosen such that, for some ε > 0, γn ∈ (ε, 2‖Axn–TQ
μ Axn‖2

‖(A)∗JE(Axn–TM
μ Axn)‖2 – ε

)
, if

TQ
μ Axn 	= Axn; otherwise γn = γ (γ being any nonnegative real number). Let fn : H → H be a

sequence of ρn-contractive mappings with 0 < ρ ≤ ρn ≤ ρ̄ < 1 such that {fn(x)} is uniformly
convergent for any x ∈ D, where D is any bounded subset of H . For arbitrary x1 ∈ H , define
the iterative sequence {xn} by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wn = xn – γn(A)∗JE(Axn – TQ
μ Axn),

yj
n = JMj

λ
j
n

(I – λ
j
nNj)wn, j = 1, 2, . . . , J ,

yn = α1
nwn +

∑J
j=2 α

j
n
∏j–1

t=1(1 – αt
n)yj–1

n +
∏J

j=1(1 – α
j
n)yJ ,

xn+1 = β1
nfn(xn) + (1 – β1

n)[β2
nxn + (1 – β2

n)(νun + (1 – ν)yn)],

(3.34)

where un ∈ PSxn := {un ∈ Sxn : ‖un – xn‖ = d(xn, Sxn)}, μ > 0, ν ∈ (θ , 1), 0 < λj ≤ λ
j
n < 2αj,

{β1
n}∞n=1, {β2

n}∞n=1, and {αj
n}∞n=1 are real sequences in (0, 1) satisfying the following conditions:

(i) limn→∞ β1
n = 0 and

∑∞
n=1 β1

n = ∞;
(ii) 0 < ε1 ≤ β2

n ≤ 1 – θ ;
(iii) lim infn→∞ α

j
n
∏j–1

t=1(1 – αt
n) > 0, j = 2, 3, . . . , (J – 1) and lim infn→∞

∏J
t=1(1 – αt

n) > 0.
Then the sequence {xn} converges strongly to an element of Υ .

Corollary 3.7 Let H be a real Hilbert space and E be a real uniformly convex and uni-
formly smooth Banach space. Let k = 1, 2, . . . , K , for some K ∈ N. For each k, let Sk :
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H → P(H), k = 1, 2, . . . , K be a finite family of multivalued type-one demicontractive map-
pings with coefficient θ k ∈ [0, 1) such that (I – Sk) is demiclosed at zero, A : H → E be a
bounded linear operator and A∗ : E∗ → H be the adjoint of A, M : H → 2H be a mul-
tivalued maximal monotone mapping and N : H → H be an α-inverse strongly mono-
tone mapping, and Q : E → 2E∗ be a multivalued maximal monotone mapping such that
Υ :

⋂K
k=1 F(Sk) ∩ (M + N)–1(0) ∩A–1(Q–1(0)) 	= ∅. Let the stepsize γn be chosen such that, for

some ε > 0, γn ∈ (ε, 2‖Axn–TQ
μ Axn‖2

‖(A)∗JE(Axn–TM
μ Axn)‖2 – ε

)
, if TQ

μ Axn 	= Axn; otherwise γn = γ (γ being any

nonnegative real number). Let fn : H → H be a sequence of ρn-contractive mappings with
0 < ρ ≤ ρn ≤ ρ̄ < 1 such that {fn(x)} is uniformly convergent for any x ∈ D, where D is any
bounded subset of H . For arbitrary x1 ∈ H , define the iterative sequence {wn}, {xn} and {yn}
by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = xn – γnA∗JE(Axn – TQ
μ Axn),

yn = JM
λn (I – λnN)wn,

un = ζ 1
n xn +

∑K
k=2 ζ k

n
∏k–1

t=1 (1 – ζ t
n)uk–1

n +
∏K

k=1(1 – ζ k
n )uK

n ,

xn+1 = β1
nfn(xn) + (1 – β1

n)[β2
nxn + (1 – β2

n)(νun + (1 – ν)yn)],

(3.35)

where uk
n ∈ PSk xn := {uk

n ∈ Skxn : ‖uk
n – xn‖ = d(xn, Skxn)}, k = 1, 2, . . . , K , μ > 0, ν ∈ (0, 1), 0 <

λ ≤ λn < 2α, {β1
n}∞n=1, {β2

n}∞n=1, and {ζ k
n }∞n=1 are real sequences in (0, 1) satisfying the following

conditions:
(i) limn→∞ β1

n = 0 and
∑∞

n=1 β1
n = ∞;

(ii) 0 < ε1 ≤ β2
n ;

(iii) ζ 1
n ≥ max{θ k , k = 1, 2, . . . , K}, lim infn→∞ ζ k

n
∏k–1

t=1 (1 – ζ t
n)(ζ 1

n – θ k–1) > 0,
k = 2, 3, . . . , (K – 1);

(iv) lim infn→∞
∏K

t=1(1 – ζ t
n)(ζ 1

n – θK ) > 0.
Then the sequence {xn} converges strongly to an element of Υ .

Corollary 3.8 Let H be a real Hilbert space and E be a real uniformly convex and uni-
formly smooth Banach space. Let i = 1, 2, . . . , I , for some I ∈ N. For each i, k, let Ai :
H → E be a bounded linear operator and (Ai)∗ : E∗ → H be the adjoint of Ai. Suppose
M : H → 2H be a multivalued maximal monotone mapping and N : H → H be an α-
inverse strongly monotone mapping and S : H → P(H) be a multivalued type-one demi-
contractive mapping with coefficient θ ∈ [0, 1) such that (I – S) is demiclosed at zero, and
Qi : E → 2E∗ be a multivalued maximal monotone mapping such that Υ : F(S) ∩ (M +
N)–1(0) ∩⋂I

i=1(Ai)–1((Qi)–1(0)) 	= ∅. Let the stepsize γ i
n be chosen such that, for some εi > 0,

γ i
n ∈ (εi, 2‖Aixn–TQi

μ Aixn‖
2

‖(Ai)∗JE(Aixn–TMi
μ Aixn)‖2 – εi), if TQi

μ Aixn 	= Aixn; otherwise γ i
n = γ i (γ i being any non-

negative real number). Let fn : H → H be a sequence of ρn-contractive mappings with
0 < ρ ≤ ρn ≤ ρ̄ < 1 such that {fn(x)} is uniformly convergent for any x ∈ D, where D is any
bounded subset of H . For arbitrary x1 ∈ H , define the iterative sequence {xn} by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wi
n = xn – γn(Ai)∗JE(Aixn – TQi

μ Aixn), i = 1, 2, . . . , I,

wn = η1
nxn +

∑I
i=2 ηi

n
∏i–1

t=1(1 – ηt
n)wi–1

n +
∏I

i=1(1 – ηi
n)wI ,

yn = JM
λn (I – λnN)wn,

xn+1 = β1
nfn(xn) + (1 – β1

n)[β2
nxn + (1 – β2

n)(νun + (1 – ν)yn)],

(3.36)
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where un ∈ PSxn := {un ∈ Sxn : ‖un – xn‖ = d(xn, Sxn)}, μ > 0, ν ∈ (θ , 1), 0 < λ ≤ λn < 2α,
{β1

n}∞n=1, {β2
n}∞n=1 and {ηi

n}∞n=1 are real sequences in (0, 1) satisfying the following conditions:
(i) limn→∞ β1

n = 0 and
∑∞

n=1 β1
n = ∞;

(ii) 0 < ε1 ≤ β2
n ≤ 1 – θ ;

(iii) lim infn→∞ ηi
n
∏i–1

t=1(1 – ηt
n) > 0, i = 2, 3, . . . , (I – 1) and lim infn→∞

∏I
t=1(1 – ηt

n) > 0.
Then the sequence {xn} converges strongly to an element of Υ .

4 Application to finite family split convex minimization problems
Let Fj : H →R be a finite family of convex and continuously differentiable functions, Gj

1 :
H → (–∞, +∞] and Gi

2 : E → (–∞, +∞] be two finite families of proper convex and lower
semi-continuous functions. Then, for each i = 1, 2, . . . , I and j = 1, 2, . . . , J , the gradient ∇Fj

of Fj is monotone and continuous, and the subdifferentials ∂Gj
1 : H → 2H of Gj

1 and ∂Gi
2 :

E → 2E∗ of Gi
2 are maximal monotone (see [33]). Furthermore,

Fj(x∗) + Gj
1
(
x∗) = min

x∈H

[
Fj(x) + Gj

1(x)
] ⇔ 0 ∈ ∇Fj(x∗) + ∂Gj

1
(
x∗), j = 1, 2, . . . , J ,

and

Gi
2
(
y∗) = min

y∈E
Gi

2(y) ⇔ 0 ∈ ∂Gi
2
(
y∗), i = 1, 2, . . . , I.

Let us consider the following finite family of split convex minimization problem: Find

x∗ ∈ F
(
Sk) such that Fj(x∗) + Gj

1
(
x∗) = min

x∈H

[
Fj(x) + Gj

1(x)
]
, (4.1)

and

y∗ = Aix∗ ∈ E such that Gi
2
(
x∗) = min

y∈E
Gi

2(y), (4.2)

where i = 1, 2, . . . , I , j = 1, 2, . . . , J , k = 1, 2, . . . , K , Ai : H → E is a bounded linear operator
for each i, Fj, Gj

1 and Gi
2 are as defined above, Sk : H → P(H) is a finite family of multival-

ued type-one demicontractive mappings. Suppose the solution set of problem (4.1)–(4.1)
is Ω , then setting Mj = ∂Gj

1, Qi = ∂Gi
2 and Nj = ∇Fj in Theorem 3.2, we obtain the fol-

lowing new result for approximating a common solution of finite family of split convex
minimization problems and fixed point problem for a finite family of multivalued type-
one demicontractive mappings.

Theorem 4.1 Let H be a real Hilbert space and E be a real uniformly convex and uniformly
smooth Banach space. Let j = 1, 2, . . . , J , i = 1, 2, . . . , I , k = 1, 2, . . . , K , for some J , I, K ∈N. For
each i, j, k, let Ai : H → E be a bounded linear operator and (Ai)∗ : E∗ → H be the adjoint
of Ai, let Gj

1 : H → (–∞, +∞] and Gi
2 : E → (–∞, +∞] be proper convex and lower semi-

continuous functions, Fj : H →R be a convex and continuously differentiable function such
that ∇Fj is 1

α
-Lipschitz continuous, and Sk : H → P(H), k = 1, 2, . . . , K be a finite family

of multivalued type-one demicontractive mappings with coefficient θ k ∈ [0, 1) such that
(I – Sk) is demiclosed at zero and Ω 	= ∅. Let the step size γ i

n be chosen such that, for some

εi > 0, γ i
n ∈ (εi,

2‖Aixn–T
∂Gi

2
μi Aixn‖

2

‖(Ai)∗JE(Aixn–T
∂Gi

2
μi Aixn)‖

2 – ε
)
, if T∂Gi

2
μi Aixn 	= Aixn; otherwise γ i

n = γ i (γ i being
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any nonnegative real number). Let fn : H → H be a sequence of ρn-contractive mappings
with 0 < ρ ≤ ρn ≤ ρ̄ < 1 such that {fn(x)} is uniformly convergent for any x ∈ D, where D is
any bounded subset of H . For arbitrary x1 ∈ H , define the iterative sequence {xn} by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi
n = xn – γ i

n(Ai)∗JE(Aixn – T∂Gi
2

μi Aixn), i = 1, 2, . . . , I,

wn = η1
nxn +

∑I
i=2 ηi

n
∏i–1

t=1(1 – ηt
n)wi–1

n +
∏I

t=1(1 – ηt
n)wI

n,

yj
n = J∂Gj

1
λ

j
n

(I – λ
j
n∇Fj)wn, j = 1, 2, . . . , J ,

yn = α1
nwn +

∑J
j=2 α

j
n
∏j–1

t=1(1 – αt
n)yj–1

n +
∏J

t=1(1 – αt
n)yJ

n,

un = ζ 1
n xn +

∑K
k=2 ζ k

n
∏k–1

t=1 (1 – ζ t
n)uk–1

n +
∏K

t=1(1 – ζ t
n)uK

n ,

xn+1 = β1
nfn(xn) + (1 – β1

n)[β2
nxn + (1 – β2

n)(νun + (1 – ν)yn)],

(4.3)

where uk
n ∈ PSk xn := {uk

n ∈ Skxn : ‖uk
n – xn‖ = d(xn, Skxn)}, k = 1, 2, . . . , K , μ > 0, ν ∈ (0, 1),

0 < λj ≤ λ
j
n < 2αj, {β1

n}∞n=1, {β2
n}∞n=1, {β3

n}∞n=1, {αj
n}∞n=1, {ηi

n}∞n=1 and {ζ k
n }∞n=1 are real sequences

in (0, 1) satisfying the following conditions:
(i) limn→∞ β1

n = 0 and
∑∞

n=1 β1
n = ∞;

(ii) 0 < ε1 ≤ β2
n ;

(iii) ζ 1
n ≥ max{θ k , k = 1, 2, . . . , K}, lim infn→∞ ζ k

n
∏k–1

t=1 (1 – ζ t
n)(ζ 1

n – θ k–1) > 0,
k = 2, 3, . . . , (K – 1);

(iv) lim infn→∞
∏K

t=1(1 – ζ t
n)(ζ 1

n – θK ) > 0;
(v) lim infn→∞ ηi

n
∏i–1

t=1(1 – ηt
n) > 0, i = 2, 3, . . . , (I – 1) and lim infn→∞

∏I
t=1(1 – ηt

n) > 0;
(vi) lim infn→∞ α

j
n
∏j–1

t=1(1 – αt
n) > 0, j = 2, 3, . . . , (J – 1) and lim infn→∞

∏J
t=1(1 – αt

n) > 0.
Then the sequence {xn} converges strongly to Ω .

5 Numerical example
We now give a numerical example of Algorithm (3.1) to show its performance. Let H = R

2

and E = R
4 (be endowed with the euclidean norm). Let I = 5, J = 3 and K = 4. Then define

Mj : R2 →R
2 by

Mj(x) = (jx1 – 3jx2, 3jx1 + jx2), j = 1, 2, 3.

Clearly, Mj is maximal monotone for each j. Thus, for each x ∈R
2, we compute the resol-

vent of Mj as follows:

JMj

λ
j
n

(x) =

([
1 0
0 1

]

+

[
jλj

n –3jλj
n

3jλj
n jλj

n

])–1 [
x1

x2

]

=
1

1 + 2jλj
n + 10j2(λj

n)2

[
1 + jλj

n 3jλj
n

–3jλj
n 1 + jλj

n

][
x1

x2

]

,

which implies that

JMj

λ
j
n

(x) =
(

(1 + jλj
n)x1 + 3jλj

nx2

1 + 2jλj
n + 10j2(λj

n)2
,

(1 + jλj
n)x2 – 3jλj

nx1

1 + 2jλj
n + 10j2(λj

n)2

)
.
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Also, we define Qi : R4 → R
4 by Qi(x) = (4ix1, 4ix2, 4ix3, 4ix4), i = 1, 2, 3, 4, 5. Then Qi is

maximal monotone. In a similar way, we obtain the resolvent of Qi as

TQi

μi (x) =
(

x1

4iμi + 1
,

x2

4iμi + 1
,

x3

4iμi + 1
,

x4

4iμi + 1

)
.

Let Ai : R2 → R
4 be defined by Ai(x) = (–3ix1 + 4ix2, ix1 + 5ix2, 3ix1 – 2ix2, 2ix1 – 3ix2),

fn : R2 → R
2 be defined by fn(x) = 4

5 x ∀n ≥ 1, and Sk : R2 → R
2 be defined by Sk(x) =

–( 2k+1
2 )(x1, x2), k = 1, 2, 3, 4, then Sk is a θ k-demicontractive mapping with θ k = 4k2+4k–3

(2k+3)2 for
each k = 1, 2, 3, 4. Thus, θ = 77

121 . Now, define Nj : R2 →R
2 by N(x) = (4jx1, 4jx2), j = 1, 2, 3.

Then N is an αj-inverse strongly monotone mapping with αj = 1
4j . Take ν = 1

2 , β1
n = 1

n+1 ,

β2
n = n+1

5n , λ
j
n = n

4jn+1 , ηi
n = 2in+3

4+6in , α
j
n = n+1

4jn+2 , ζ k
n = 77n+2

121kn+1 and γ i
n ∈ (εi,

2‖Aixn–TQi

μi Aixn‖
2

‖(Ai)T (Aixn–TMi
μi Aixn)‖2 –

εi), if TQi

μi Aixn 	= Aixn; otherwise γ i
n = γ i (γ i being any nonnegative real number). Then

conditions (i)–(vi) of Theorem 3.2 are satisfied. Hence, we consider the following cases
for μi and our initial points x1 (see Fig. 1).

Figure 1 Errors vs. iteration numbers (n): Case I(a) (top left); Case I(b) (top right); Case II(a) (bottom left);
Case II(b) (bottom right)
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Case I:
(a) Take x1 = (0.5, –0.25)T and μi = μ = 8

10 .
(b) Take x1 = (–5, 4)T and μi = μ = 8

10 .
Case II:
(a) Take x1 = (–5, 3)T and μi = μ = 10.
(b) Take x1 = (–5, 3)T and μi = μ = 1000.

6 Conclusion
A new viscosity-type iteration process that does not involve the construction of either Cn

or Qn is introduced for approximating a common solution of a finite family of split varia-
tional inclusion problem and fixed point problem for a finite family of type-one demicon-
tractive mappings between a Hilbert space and a Banach space. Furthermore, our choice
of stepsize in Algorithm (3.1) does not depend on the norm of the bounded linear operator
A which is very difficult to compute in general as illustrated in Theorem 1.6. Moreover, we
established a strong convergence theorem for approximating a solution of the aforemen-
tioned problem and our control sequences do not require the imposition of the condition
that the sum = 1. Some applications and numerical experiments of the established results
are given to further illustrate the applicability of our results.
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