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Abstract
In the current work, we delineate a comprehensive class of bi-univalent functions
connected with a bounded boundary variation to get the estimates of the first two
Taylor–Maclaurin coefficients. In addition, certain special cases and some appealing
interpretation of the results presented here are pointed out.
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1 Introduction and definitions
Let A be the class of functions f of the form

f (z) = z +
∞∑

n=2

anzn (1.1)

which are analytic in the open unit disc � = {z ∈ C : |z| < 1} and normalized by the con-
ditions f (0) = 0 and f ′(0) = 1. The Koebe one-quarter theorem [4] ensures that the image
of � under every univalent function f ∈ A contains the disc with the center in the origin
and the radius 1/4. Thus, every univalent function f ∈ A has an inverse f –1 : f (�) → �,
satisfying f –1(f (z)) = z, z ∈ �, and

f
(
f –1(w)

)
= w, |w| < r0(f ), r0(f ) ≥ 1

4
.

In addition, it is straightforward to witness that the inverse function has the series ex-
pansion

f –1(w) = w – a2w2 +
(
2a2

2 – a3
)
w3 –

(
5a3

2 – 5a2a3 + a4
)
w4 + · · · , w ∈ f (�). (1.2)

A function f ∈ A is said to be bi-univalent, if both f and f –1 are univalent in �, in the
sense that f –1 has a univalent analytic continuation to � and we denote by Σ this class of
bi-univalent functions. Actually, the study of the Taylor–Maclaurin coefficient inequal-
ities for various classes of bi-univalent functions was recently revived by Srivastava et
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al. [16]. The huge flood of papers (for example) [1, 3, 5, 6, 9, 10, 12–15, 17–19] which
emerged essentially from the pioneering work of Srivastava et al. [16]. One could refer
[16], the above-mentioned work and the references therein for history, examples and dif-
ferent classes and its subclasses of bi-univalent functions. Recently, Çağlar et al. [2] found
the upper bounds for the second Hankel determinant for certain subclasses of analytic and
bi-univalent functions and Srivastava et al. [11] used the Faber polynomial expansions to
address a new subclass of Σ and obtained bounds for their nth (n ≥ 3) coefficients subject
to a given gap series condition.

Definition 1.1 ([7]) Let Pk(α), with k ≥ 2 and 0 ≤ α < 1, denote the class of univalent
analytic functions P, normalized with P(0) = 1, and satisfying

∫ 2π

0

∣∣∣∣
Re P(z) – α

1 – α

∣∣∣∣ d θ ≤ kπ ,

where z = reiθ ∈ �.

For α = 0, we denotePk := Pk(0), hence the classPk corresponds to the class of functions
p analytic in �, normalized with p(0) = 1, and having the expression

p(z) =
∫ 2π

0

1 – zeit

1 + zeit dμ(t), (1.3)

where λ is a real-valued function with bounded variation, which ensures

∫ 2π

0
dμ(t) = 2π and

∫ 2π

0

∣∣dμ(t)
∣∣ ≤ k, k ≥ 2. (1.4)

Obviously, P := P2 is the celebrated class of Carathéodory functions, that is, the normal-
ized functions with positive real part in the open unit disc �.

Definition 1.2 A function f ∈ Σ of the form

f (z) = z +
∞∑

n=2

anzn

belongs to the class Bλ,η,δ
Σ (k;α), λ ≥ 0, δ ≥ 1, η ≥ 0, k ≥ 2 and 0 ≤ α < 1, if the subsequent

conditions are fulfilled:

(1 – δ)
(

f (z)
z

)λ

+ δf ′(z)
(

f (z)
z

)λ–1

+ νηzf ′′(z) ∈Pk(α), z ∈ �, (1.5)

and

(1 – δ)
(

g(w)
w

)λ

+ δg ′(w)
(

g(w)
w

)λ–1

+ νηwg ′′(w) ∈Pk(α), w ∈ �, (1.6)

where the function g(w) = f –1(w) is defined by (1.2) and ν = 2δ+λ
2δ+1 .

It is remarkable that the particular values of λ, δ, η, α and m direct the class Bλ,η,δ
Σ (k;α)

to different subclasses, we exhibit the following subclasses:
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(1) For η = 0, we obtain the class B1,0,δ
Σ (k;α) ≡N λ,δ

Σ (k;α). A function f ∈ Σ of the form

f (z) = z +
∞∑

n=2

anzn

is said to be in N λ,δ
Σ (k;α), if

(1 – δ)
(

f (z)
z

)λ

+ δf ′(z)
(

f (z)
z

)λ–1

∈Pk(α), z ∈ �,

and for g(w) = f –1(w)

(1 – δ)
(

g(w)
w

)λ

+ δg ′(w)
(

g(w)
w

)λ–1

∈Pk(α), w ∈ �,

holds.

Remark 1.3 For k = 2, the class N λ,δ
Σ (2;α) ≡N λ,δ

Σ (α) was considered by Çağlar et al. [3].

(2) For δ = 1 and η = 0, we observe the class Bλ,0,1
Σ (k;α) ≡Rλ

Σ (k;α). A function f ∈ Σ of
the form

f (z) = z +
∞∑

n=2

anzn

is said to be in Rλ
Σ (k;α), if

f ′(z)
(

f (z)
z

)λ–1

∈Pk(α), z ∈ �,

and for g(w) = f –1(w)

g ′(w)
(

g(w)
w

)λ–1

∈Pk(α), w ∈ �,

holds.

Remark 1.4 For k = 2, the class Rλ
Σ (2;α) ≡Rλ

Σ (α) was considered in [8].

(3) For λ = 0; δ = 1 and η = 0, we have B1,0,1
Σ (k;α) ≡ S∗

Σ (k;α). A function f ∈ Σ of the
form

f (z) = z +
∞∑

n=2

anzn

is said to be in S∗
Σ (k;α), if

zf ′(z)
f (z)

∈Pk(α), z ∈ �,
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and for g(w) = f –1(w)

wg ′(w)
g(w)

∈Pk(α), w ∈ �,

holds.

Remark 1.5 For k = 2, we attain the class S∗
Σ (2;α) ≡ S∗

Σ (α).

(4) For λ = 1, we have the class B1,η,δ
Σ (k;α) ≡ Bη,δ

Σ (k;α). A function f ∈ Σ of the form

f (z) = z +
∞∑

n=2

anzn

is said to be in Bη,δ
Σ (k;α), if

(1 – δ)
f (z)

z
+ δf ′(z) + ηzf ′′(z) ∈Pk(α), z ∈ �,

and for g(w) = f –1(w)

(1 – δ)
g(w)

w
+ δg ′(w) + ηwg ′′(w) ∈Pk(α), w ∈ �,

holds.
(5) For δ = λ = 1, we obtain the class B1,η,1

Σ (k;α) ≡ FΣ (η, k;α). A function f ∈ Σ of the
form

f (z) = z +
∞∑

n=2

anzn

is said to be in FΣ (η, k;α), if

f ′(z) + ηzf ′′(z) ∈Pk(α), z ∈ �,

and for g(w) = f –1(w)

g ′(w) + ηwg ′′(w) ∈Pk(α), w ∈ �,

holds.
(6) For λ = 1 and η = 0, we obtain the class B1,0,δ

Σ (k;α),≡ BΣ (δ, k;α). A function f ∈ Σ of
the form

f (z) = z +
∞∑

n=2

anzn

is said to be in BΣ (δ, m;α), if

(1 – δ)
f (z)

z
+ δf ′(z) ∈Pk(α), z ∈ �,



Tang et al. Journal of Inequalities and Applications        (2019) 2019:237 Page 5 of 9

and for g(w) = f –1(w)

(1 – δ)
g(w)

w
+ δg ′(w) ∈Pk(α), w ∈ �,

holds.

Remark 1.6 For k = 2, the class BΣ (δ, 2;α) ≡ BΣ (δ;α) was considered by Frasin and Aouf
[5].

(7) For δ = 1, λ = 1 and η = 0, we have the class B1,0,1
Σ (k;α) ≡PΣ (k;α). A function f ∈ Σ

of the form

f (z) = z +
∞∑

n=2

anzn

is said to be in PΣ (m;α), if

f ′(z) ∈Pk(α), z ∈ �,

and for g(w) = f –1(w)

g ′(w) ∈Pk(α), w ∈ �,

holds.

Remark 1.7 For k = 2, the class PΣ (2;α) ≡ PΣ (α) was introduced and studied by Srivas-
tava et al. [16].

To prove the results discussed in this article, we need the following lemma.

Lemma 1.8 Let the function Φ(z) = 1 +
∑∞

n=1 hnzn, z ∈ �, such that Φ ∈Pm(α). Then

|hn| ≤ k(1 – α), n ≥ 1.

In this study, we stumble on the estimates for the coefficients |a2| and |a3| for functions
in the subclassBλ,η,δ

Σ (k;α). Also, we attain the upper bounds of the Fekete–Szegö inequality
by means of the results of |a2| and |a3|.

2 Main results
In the subsequent theorem, we find the coefficient estimates for functions in Bλ,η,δ

Σ (k;α).

Theorem 2.1 Let f (z) = z +
∑∞

n=2 anzn be in the class Bλ,η,δ
Σ (k;α). Then

|a2| ≤ min

{√
2k(1 – α)

(2δ + λ)(λ + 1) + 12νη
;

k(1 – α)
δ + λ + 2νη

}
,

|a3| ≤ min

{
k(1 – α)

2δ + λ + 6νη
+

2k(1 – α)
(2δ + λ)(λ + 1) + 12νη

,
k(1 – α)

2δ + λ + 6νη
+

k2(1 – α)2

(δ + λ + 2νη)2

}
,
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and

∣∣a3 – μa2
2
∣∣ ≤ k(1 – α)

2δ + λ + 6νη
,

where

μ =
(2δ + λ)(λ + 3) + 24νη

2(2δ + λ + 6νη)
.

Proof Since f ∈ Bλ,η,δ
Σ (k;α), from Definition 1.2 we have

(1 – δ)
(

f (z)
z

)λ

+ δf ′(z)
(

f (z)
z

)λ–1

+ νηzf ′′(z) = p(z) (2.1)

and

(1 – δ)
(

g(w)
w

)λ

+ δg ′(w)
(

g(w)
w

)λ–1

+ νηwg ′′(w) = q(w), (2.2)

where p, q ∈Pm(α) and g = f –1. Using the fact that the functions p and q have the following
Taylor expansions:

p(z) = 1 + p1z + p2z2 + p3z3 + · · · , z ∈ �, (2.3)

q(w) = 1 + q1w + q2w2 + q3w3 + · · · , w ∈ �, (2.4)

and equating the coefficients in (2.1) and (2.2), from (1.2) we obtain

(δ + λ + 2νη)a2 = p1, (2.5)

(2δ + λ)
[(

λ – 1
2

)
a2

2 +
(

1 +
6η

2δ + 1

)
a3

]
= p2, (2.6)

–(δ + λ + 2νη)a2 = q1, (2.7)

(2δ + λ)
[(

λ + 3
2

+
12η

2δ + 1

)
a2

2 –
(

1 +
6η

2δ + 1

)
a3

]
= q2. (2.8)

In view of the fact that p, q ∈Pm(α) and Lemma 1.8, the following inequalities hold:

|pk| ≤ k(1 – α), |qk| ≤ k(1 – α), k ≥ 1. (2.9)

It follows from (2.6) and (2.8), additionally, by means of the inequalities (2.9), that

|a2| ≤
√

2k(1 – α)
(2δ + λ)(λ + 1) + 12νη

. (2.10)

From (2.5) and (2.7), we have

p1 = –q1
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and

a2
2 =

p2
1

(δ + λ + 2νη)2 , (2.11)

which, by applying (2.9), shows

|a2| ≤ k(1 – α)
δ + λ + 2νη

.

Next, combining the above inequality with (2.10), the first inequality of the conclusion is
proved.

On the other hand, by subtracting (2.8) from (2.6), we have

a3 =
p2 – q2

2(2δ + λ + 6νη)
+ a2

2. (2.12)

By using (2.10) in (2.12), we show

|a3| ≤ k(1 – α)
2δ + λ + 6νη

+
2k(1 – α)

(2δ + λ)(λ + 1) + 12νη

and using (2.11) in (2.12), we get

|a3| ≤ k(1 – α)
2δ + λ + 6νη

+
k2(1 – α)2

(δ + λ + 2νη)2 .

From (2.8), we have

(2δ + λ)(λ + 3) + 24νη

2(2δ + λ + 6νη)
a2

2 – a3 =
q2

2δ + λ + 6νη
.

Furthermore, using (2.9), we finally deduce

∣∣a3 – μa2
2
∣∣ ≤ |q2|

2δ + λ + 6νη
≤ k(1 – α)

2δ + λ + 6νη
,

where

μ =
(2δ + λ)(λ + 3) + 24νη

2(2δ + λ + 6νη)
,

which completes our proof. �

Remark 2.2 For k = 2, the results obtained in Theorem 2.1 improves the results of Yousef
et al. [20, Theorem 4.1].

Corollary 2.3 Let f (z) = z +
∑∞

n=2 anzn be in the class Bλ,η,δ
Σ (α). Then

|a2| ≤ min

{√
4(1 – α)

(2δ + λ)(λ + 1) + 12νη
;

2(1 – α)
δ + λ + 2νη

}
,
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|a3| ≤ min

{
2(1 – α)

2δ + λ + 6νη
+

4(1 – α)
(2δ + λ)(λ + 1) + 12νη

,
2(1 – α)

2δ + λ + 6νη
+

4(1 – α)2

(δ + λ + 2νη)2

}
,

and
∣∣∣∣a3 –

(2δ + λ)(λ + 3) + 24νη

2(2δ + λ + 6νη)
a2

2

∣∣∣∣ ≤ 2(1 – α)
2δ + λ + 6νη

.

Corollary 2.4 Let f (z) = z +
∑∞

n=2 anzn be in the class N λ,δ
Σ (k;α). Then

|a2| ≤ min

{√
2k(1 – α)

(2δ + λ)(λ + 1)
;

k(1 – α)
δ + λ

}
,

|a3| ≤ min

{
k(1 – α)
2δ + λ

+
2k(1 – α)

(2δ + λ)(λ + 1)
,

k(1 – α)
2δ + λ

+
k2(1 – α)2

(δ + λ)2

}
,

and
∣∣∣∣a3 –

λ + 3
2

a2
2

∣∣∣∣ ≤ k(1 – α)
2δ + λ

.

3 Concluding remarks and observations
In this paper, we investigate the estimates of second and third Taylor–Maclaurin coef-
ficients for a comprehensive class Bλ,η,δ

Σ (k;α) of bi-univalent functions. Also, the cor-
responding coefficient estimates for functions in the subclasses Rλ

Σ (k;α), S∗
Σ (k;α),

Bη,δ
Σ (k;α), FΣ (η, k;α), BΣ (δ, k;α) and PΣ (k;α) as mentioned above can be derived eas-

ily and so we omit the details. Also, some interesting remarks on the results presented
here are given.
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6. Goswami, P., Alkahtani, B.S., Bulboacă, T.: Estimate for initial MacLaurin coefficients of certain subclasses of

bi-univalent functions (2015). arXiv:1503.04644v1 [math.CV]
7. Padmanabhan, K.S., Parvatham, R.: Properties of a class of functions with bounded boundary rotation. Ann. Pol. Math.

31, 311–323 (1975)
8. Prema, S., Keerthi, B.S.: Coefficient bounds for certain subclasses of analytic functions. J. Math. Anal. 4(1), 22–27 (2013)
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