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Abstract
We consider a family of analytic and normalized functions with the property that
zf ′(z)/f (z) (or 1 + zf ′′(z)/f ′(z)) lies in a domain bounded by a right branch of a
hyperbola ρ = ρ(s) = (2 cos ϕ

s )
–s, where 0 < s ≤ 1 and |ϕ| < (π s)/2. A comprehensive

characteristic of that families and relations with the well known families of univalent
functions are presented. Some relevant examples are indicated.
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1 Introduction and motivation
Let H denote the class of functions f holomorphic in the open unit disc D = {z ∈ C : |z| < 1}
of the complex plane C, and with the power series

f (z) = z +
∞∑

n=2

anzn (z ∈D).

ByS we denote the subclass ofH consisting of univalent functions, and byST , CV the best
known subclasses of S containing functions starlike with respect to the origin and convex,
respectively. Their geometric properties and various applications have caused rapid de-
velopment of research in these directions. Many its subclasses have been introduced and
investigated. The main feature of the new definitions is usually fact that either zf ′(z)/f (z)
or 1 + zf ′′(z)/f ′(z) is located in a some region contained in a right halfplane. A uniform
approach to such definitions was proposed by Ma and Minda [7]. They introduced a spe-
cial class of functions ϕ that map the unit disk onto the domains ϕ(D) symmetric with
respect to the real axis, starlike with respect to ϕ(0) = 1, and with ϕ′(0) > 0. A family P(ϕ)
that consists of holomorphic functions p such that p(0) = 1 and p(D) ⊂ ϕ(D) (or in terms
of subordination as p ≺ ϕ) have also been defined in [7] (in connection with the function
ϕ). The Carathéodory class P = {p(z) = 1 + p1z + p2z2 + · · · ,�p(z) > 0, z ∈D} is simply the
class P((1 + z)/(1 – z)). The class of starlike univalent functions ST (and convex functions
CV , resp.) can be described as zf ′/f ∈ P((1 + z)/(1 – z)) (or 1 + zf ′′/f ′ ∈ P((1 + z)/(1 – z)),
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resp.). It is seen that if ϕ varies, P(ϕ) generates a number of well known subclasses of the
Carathéodory class. In a such way, various similar subclasses of P were defined and stud-
ied through a years. Leading examples ofP areP(α) = P(ϕα(z)) = P((1+(1–2α)z)/(1–z)),
Pγ = P(ϕγ (z)) = P(((1 + z)/(1 – z))γ ), P(A, B) = P(ϕA,B(z)) = P((1 + Az)/(1 + Bz)), etc. Re-
lated families of starlike and convex functions of order α (0 ≤ α < 1) (strongly starlike and
convex of order γ (0 < γ ≤ 1), resp.) were defined as follows:

ST (α) =
{

f ∈H : zf ′/f ≺ ϕα in D
}

=
{

f ∈H : �zf ′(z)
f (z)

> α, z ∈D

}
,

ST γ =
{

f ∈H : zf ′/f ≺ ϕγ in D
}

=
{

f ∈H :
∣∣∣∣Arg

{
zf ′(z)
f (z)

}∣∣∣∣ <
γπ

2
, z ∈D

}
,

and also the corresponding subclasses CV(α), CVγ of convex functions, for which 1 +
zf ′′/f ′ ≺ ϕα or 1 + zf ′′/f ′ ≺ ϕγ (z), respectively (see, for example [1, 9, 11]). We note that
ST = ST (0) = ST 1 and CV = CV(0) = CV1.

An interesting families of the domains that are bounded by a conic sections were intro-
duced and studied in [5, 6]. Such domains are related to k-starlike functions k-ST , and
k-uniformly convex function, denoted k-UCV . A univalent function f ∈ k-ST if the ex-
pression zf ′/f satisfies

�zf ′(z)
f (z)

> k
∣∣∣∣
zf ′(z)
f (z)

– 1
∣∣∣∣ (z ∈D),

and f ∈ k-UCV if �(1 + zf ′′(z)/f ′(z)) > k|zf ′′(z)/f ′(z)| for z ∈D. Equivalently, these families
may be geometrically described by the fact that the expression p(z) = zf ′(z)/f (z) (or p(z) =
1 + zf ′′(z)/f ′(z), resp.) lies in a domain Ωk for z ∈D, where

Ωk =
{

u + iv : u2 > k2(u – 1)2 + k2v2}.

We note that Ωk is bounded by the conic sections of a shape depending on a parameter k
and contained in a right halfplane. ∂Ωk reduces to the imaginary axis for k = 0, a hyperbola
for 0 < k < 1, parabola for k = 1, and finally to an ellipse, when 1 < k < ∞. It was observed
in [5, 6] that each Ωk is symmetric with respect to the real axis and starlike with respect
to the point 1. Additionally the functions pk , constructed in [6], see also [4], that map the
unit disk onto Ωk satisfy pk(0) = 1, p′

k(0) > 0, for 0 ≤ k < ∞, therefore fulfill the Ma and
Minda assertions.

We also recall that the hyperbola considered in [5, 6] is given by

∂Ωk =
{

u + iv : u2 = k2(u – 1)2 + k2v2, u > 0
}

,

and corresponds to the parameter 0 < k < 1. Moreover, the points of intersection of ∂Ωk

with the real axis is (u, 0) = (k/(k + 1), 0) and the slope angle of asymptotes of ∂Ωk to the
real axis equals arctan(1/k).

This work is intended as an attempt at defining a new subfamily of P related to the
domains bounded by a right branch of a hyperbolas H(s) for 0 < s ≤ 1, where

H(s) =
{
ρeiϕ : ρ =

1
(2 cos ϕ

s )s , –
πs
2

< ϕ <
πs
2

}
.
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It is easy to observe that the intersection point of H(s) and real axis is (u, 0) = (1/2s, 0) and
the slope angle to the real axis is equal (πs)/2. Taking into account these facts, we want to
emphasize then the fact that none hyperbola ∂Ωk reduces to H(s) and conversely. Indeed,
considering a location of common points of the hyperbola H(s), hyperbola ∂Ωk with the
real axis and, we obtain the relation k/(k + 1) = 1/2s that holds for k = 1/(2s – 1) > 1. But
when k > 1 the ∂Ωk is the ellipse.

It is of interest to study the common relations between H(s) and ∂Ωk for any 0 ≤ k < ∞
and 0 < s ≤ 1. The detailed investigation of geometric behavior of ∂Ωk and H(s) provides
a following relations:

H(s) ∩ ∂Ωk = ∅ for 0 ≤ k ≤ 1/2s and k > 1/
(
2s – 1

)
, 0 < s ≤ 1, (1.1)

H(s) ∩ ∂Ωk = {M} for k = 1/
(
2s – 1

)
, 0 < s ≤ 1, where M =

(
1/2s, 0

)
, (1.2)

H(s) ∩ ∂Ωk = {M1, M2} for 1/2s < k < 1/
(
2s – 1

)
, 0 < s ≤ 1, (1.3)

where

M1,2 =
(

k2s–1

k2s – 1
,±

√
(1 – k2)4s–1 + k2s – 1

k2s – 1

)
.

For the case 0 ≤ k ≤ 1/2s a domain bounded by H(s) is contained in a domain bounded
by ∂Ωk , and for k ≥ 1/(2s – 1) conversely, the ellipse bounded by ∂Ωk is contained in a do-
main bounded by a hyperbola H(s). Let us denote by H(s) a domain bounded by hyperbola
H(s). Thus, we have the following inclusion:

H(s) ⊂ Ωk for 0 ≤ k ≤ 1/2s, 0 < s ≤ 1

Ωk ⊂H(s) for k ≥ 1/(2s – 1), 0 < s ≤ 1.
(1.4)

In the remaining cases of k the considered domains have nonempty intersection set (see
Fig. 1). These observation will have significant consequences for the further relations
between corresponding classes of analytic functions, but also means that the domains
bounded by hyperbolas H(s) (0 < s ≤ 1) are completely different from the similar domains
bounded by the hyperbola ∂Ωk .

We also note the obvious difference betweenH(s) and other domains contained in a right
halfplane: disks, halfplanes and angular domains, that have appeared in the investigations
of various subclasses of analytic functions.

From the above reasons we wish to find an analytic function that map the unit disk onto
a domain bounded by the hyperbola H(s), define and investigate a subfamily of P related
to those domains. As a natural extension of that investigation we will define a subfamily
ST hpl(s) of the starlike functions for which zf ′/f is contained in a domain bounded by the
hyperbola H(s) (and related class CVhpl(s) of convex functions). It is also natural to try to
give a sufficient condition for the function f ∈H to be a member of the class ST hpl(s) (or
CVhpl(s), resp.) and solve several extremal problems.

In order to achieve our aim we recall some definitions and preliminary results from the
geometric theory of analytic functions. By B we denote the class of analytic self-mappings
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Figure 1 The mutual location of a hyperbola H(s) (for
s = 1/2) and ∂Ωk

of the unit disk that send the origin onto the origin, i.e.

B =
{
ω(z) ∈H,ω(0) = 0,

∣∣ω(z)
∣∣ < 1, z ∈ D

}
.

The class B is known as the class of Schwarz functions.
We say that f is subordinate to F in D, written f (z) ≺ F(z) (or f ≺ F), if there exists a

function ω ∈ B such that f (z) = F(ω(z)) (z ∈D) see, for example [2, 3]. From that definition
it is easy to show that if F is univalent in D then f ≺ F holds if and only, if f (0) = F(0), and
f (D) ⊂ F(D).

Let us denote by Q the class of functions f that are analytic and injective on D \ E(f ),
where

E(f ) =
{
ζ : ζ ∈ ∂D and lim

z→ζ
f (z) = ∞

}
,

and that are such that

f ′(ζ ) = 0 for ζ ∈ ∂D \ E(f ).

Lemma 1.1 ([8]) Let q ∈Q with q(0) = 1 and let p(z) = 1 + p1z + · · · be analytic in D with
p(z) = 1. If p ⊀ q in D then there exist points z0 ∈D and ζ ∈ ∂D \ E(q) and there exist a real
number m ≥ 1 for which

p
(|z| < |z0|

) ⊂ q(D), p(z0) = q(ζ ), z0p′(z0) = mζq′(ζ ).

2 The class P(qs) and its properties
This section provides a detailed exposition of an analytic function that maps the unit disk
onto a domain bounded by a hyperbola H(s) and contained in a right halfplane. Let

qs(z) :=
1

(1 – z)s = e–s log(1–z) (0 < s ≤ 1, z ∈D),
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where the branch of the logarithm is determined by qs(0) = 1. It is easy to check that

qs(z) = 1 +
∞∑

n=1

qnzn = 1 +
∞∑

n=1

s(s + 1) · · · (s + n – 1)
n!

zn

= 1 + sz +
s(s + 1)

2
z2 +

s(s + 1)(s + 2)
6

z3 + · · · (z ∈ D).

The function qs maps the unit disk onto a domain bounded by a right branch of a hyperbola

H(s) =
{
ρeiϕ : ρ =

1
(2 cos ϕ

2 )s , –
πs
2

< ϕ <
πs
2

}
.

Indeed, setting z = eiθ (θ ∈ (0, 2π )) we obtain

ρeiϕ = qs
(
eiθ ) =

1
(1 – eiθ )s = e–s log |1–eiθ |–s Arg(1–eiθ ) =

ei π–θ
2 s

(2 sin θ
2 )s

.

Thus, we have

�qs
(
eiθ) =

cos( π–θ
2 s)

(2 sin θ
2 )s

, �qs
(
eiθ ) =

sin( π–θ
2 s)

(2 sin θ
2 )s

,

ρ =
1

(2 sin θ
2 )s

, with ϕ =
π – θ

2
s.

Setting ϕ = (θ – π )s/2, after simple computation, we obtain

ρ =
1

(2 cos ϕ

s )s with
(

–
πs
2

< ϕ <
πs
2

)
. (2.1)

The function

g(θ ) = �qs
(
eiθ) =

cos( π–θ
2 s)

(2 sin θ
2 )s

attains its minimal value when θ = π , i.e., we have

�qs
(
eiθ) ≥ 1

2s (0 < θ < 2π ).

Also, we note that �qs(eiθ ) → ∞ for θ → 0. From (2.1) we obtain that the boundary
qs(eiθ ) satisfies the equality 1/ρ = (2 sin θ

2 )s = (2 cos ϕ

s )s. Additionally, we have qs(0) = 1,
therefore a right branch of a hyperbola

H(s) =
{
ρeiϕ ∈C : ρ =

1
(2 cos θ

s )s
, |ϕ| <

πs
2

}

is a boundary of a domain qs(D), which we denote by H(s). The domain H(s) is sym-
metric about the real axis, starlike with respect to the point qs(0) = 1, and it satisfies
q′

s(0) = s > 0. Also, the hyperbola H(s) = ∂H(s) has a vertex at (2–s, 0) and the slant asymp-
totes v = ± tan(πs/2)u (see Fig. 2).
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Figure 2 The image of qs(z) = 1
(1–z)s (s = 1/2)

A special and interesting case of H(s) is that for s = 1/2. We then obtain q1/2(z) = 1√
1–z ,

and the hyperbola reduces to that given by the relation

H(1/2) =
{

u + iv : u2 – v2 = 1/2, u > 0
}

.

Lemma 2.1 The function qs is convex univalent in D, moreover g(z) = (qs(z) – 1)/s ∈
CV((1 – s)/2). Also, if |z| = r < 1, then

min|z|=r

∣∣qs(z)
∣∣ = qs(–r) =

1
(1 + r)s and max

|z|=r

∣∣qs(z)
∣∣ = qs(r) =

1
(1 – r)s . (2.2)

Proof We first observe that qs is convex by a convexity property of a set qs(D). To deduce
the univalence, we use the results on univalence of some integrals from [10]. In order to
prove (2.2) we consider the function Q(θ ) for θ ∈ [0, 2π ), where

Q(θ ) =
∣∣qs

(
reiθ)∣∣ =

1
|1 – reiθ |s =

1
(1 + r2 – 2r cos θ )s/2 (0 < r < 1).

Since Q(θ ) attains its minimum at θ = π and maximum at θ = 0, (2.2) follows.
Let us consider g(z) = (qs(z) – 1)/s (z ∈D). Then we have

�
(

1 +
zg ′′(z)
g ′(z)

)
= �

(
1 + sz
1 – z

)
>

1 – s
2

,

so that g ∈ CV((1 – s)/2), as asserted. �
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Definition 2.2 By P(qs) we denote a class of all analytic functions p such that p(0) = 1
and p(z) ≺ qs(z), z ∈D, that is,

P(qs) =
{

p(z) = 1 + p1z + p2z2 + · · · , p(z) ≺ qs(z), z ∈ D
} ⊂P .

Theorem 2.3 If p ∈P(qs), then

�p(z) >
1
2s ,

∣∣Arg
{

p(z)
}∣∣ <

π

2
s (z ∈D), (2.3)

and

∣∣p1/s(z) – 1
∣∣ <

∣∣p(z)
∣∣1/s (z ∈D), (2.4)

or

∣∣p1/(2s)(z) + 1
∣∣ –

∣∣p1/(2s)(z) – 1
∣∣ >

√
2 and �p1/s(z) >

1
2

(z ∈D). (2.5)

Conversely, if p is analytic with p(0) = 1, |Arg{p(z)}| < (πs)/2 and p satisfies (2.4) (or one
of the conditions of (2.5)), then p ≺ qs in D.

Proof The subordination p ≺ qs with p(0) = qs(0), and the geometric properties of qs(D)
from Sect. 1, yield (2.3). We next claim that (2.4) is satisfied. Repeated application of the
properties of subordination p ≺ qs shows that there exists ω ∈ B, such that

p(z) =
1

(1 – ω(z))s or p1/s(z) =
1

1 – ω(z)
(z ∈ D),

which is equivalent to

ω(z) =
p1/s(z) – 1

p1/s(z)
,

∣∣ω(z)
∣∣ < 1 (z ∈D),

and the assertion (2.4) now follows. Squaring (2.4) we may rewrite it as

(
p1/s(z) – 1

)(
p1/s(z) – 1

)
<

∣∣p1/s(z)
∣∣2,

or

∣∣p1/s(z)
∣∣2 – p1/s(z) – p1/s(z) + 1 <

∣∣p1/s(z)
∣∣2,

which is nothing but the second relation of (2.5). For the proof of the first relation of (2.5)
we rewrite (2.4) as

2 + 2
∣∣p1/s(z)

∣∣ – 2
∣∣p1/s(z) – 1

∣∣ > 2,

or equivalently

∣∣p1/(2s)(z) + 1
∣∣2 +

∣∣p1/(2s)(z) – 1
∣∣2 – 2

∣∣p 1
s (z) – 1

∣∣ > 2,
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which immediately becomes

(∣∣p1/(2s)(z) + 1
∣∣ –

∣∣p1/(2s)(z) – 1
∣∣)2 > 2,

and, from this, the desired conclusion follows.
Conversely, if for p is analytic in D with p(0) = 1 and the condition (2.4) (or one of the

conditions of (2.5)) is satisfied, then we easily show that p = ρeiθ lies in a domain H(s) =
qs(D), which completes the proof. �

Theorem 2.4 If p ∈P satisfies

�
{

zp′(z)
p(z)

}
> –

s
2

(z ∈D), (2.6)

then

p(z) ≺ qs(z) (z ∈D).

Proof Suppose, on the contrary, that p(z) ⊀ qs(z) on D. Then, by p(0) = qs(0) = 1, and by
Lemma 1.1, there exist z0 ∈D and ζ0 ∈ ∂D (ζ0 = 1) such that

p(z0) = qs(ζ0), z0p′(z0) = mζ0q
′
s(ζ0) with m ≥ 1.

Hence

�
{

z0p′(z0)
p(z0)

}
= �

{
mζ0q

′
s(ζ0)

qs(ζ0)

}
= ms�

{
ζ0

1 – ζ0

}
= –

ms
2

≤ –
s
2

,

which contradicts the assumption (2.6), and therefore p ≺ qs on D. �

3 The classes ST hpl(s), CVhpl(s)
In this section we introduce and examine the notion of starlikeness and convexity related
to the domains bounded by the hyperbolas H(s). We indicate how the properties of the
domains H(s) and class P(qs) influence on the properties of a newly introduced classes.

Definition 3.1 Let ST hpl(s) denote the subfamily of S consisting of the functions f satis-
fying the condition

zf ′(z)
f (z)

≺ qs(z) (z ∈D), (3.1)

and let CVhpl(s) be a class of analytic functions f such that

1 +
zf ′′(z)
f ′(z)

≺ qs(z) (z ∈D). (3.2)

Geometrically, the condition (3.1) and (3.2) means that the expression zf ′(z)/f (z) (or
1 + zf ′′(z)/f ′(z), resp.) lies in a domain H(s). Since H(s) = qs(D) is contained in a right half-
plane, we deduce that ST hpl(s) is a proper subset of a class of a starlike functions ST (and
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CVhpl(s) ⊂ CV , resp.). Furthermore, the properties of H(s) considered in Sect. 1, yield

ST hpl(s) ⊂ ST (α) and CVhpl(s) ⊂ CV(α) for 0 ≤ α ≤ 2–s, 0 < s ≤ 1,

ST hpl(s) ⊂ ST γ and CVhpl(s) ⊂ CVγ for 0 < s ≤ γ ≤ 1.

The above inclusions additionally give

ST hpl(s) ⊂ ST s ∩ ST
(
1/2s), CVhpl(s) ⊂ CV s ∩ CV

(
1/2s), 0 < s ≤ 1.

Also, geometric properties of Ωk and H(s) given by (1.1), (1.2), (1.3) and also (1.4) imply

ST hpl(s) ⊂ k-ST and CVhpl(s) ⊂ k-CV for 0 ≤ k ≤ 2–s, 0 < s ≤ 1,

k-ST ⊂ ST hpl(s) and k-CV ⊂ CVhpl(s) for k ≥ 2s – 1, 0 < s ≤ 1,

k-ST ∩ ST hpl(s) = ∅ and k-CV ∩ CVhpl(s) = ∅ for 2–s < k < 2s – 1, 0 < s ≤ 1.

Moreover

k-ST ⊂ ST hpl(s) and ST hpl(s) ⊂ k-ST for 2–s < k < 2s – 1, 0 < s ≤ 1,

and

k-CV ⊂ CVhpl(s) and CVhpl(s) ⊂ k-CV for 2–s < k < 2s – 1, 0 < s ≤ 1.

Since qs is the extremal function in P(qs), the obvious integral representation of ST hpl(s)
and CVhpl(s) immediately follows.

Theorem 3.2 A function f is in the class ST hpl(s) if, and only if there exists p such that
p ≺ qs, and

f (z) = z exp

(∫ z

0

p(t) – 1
t

dt
)

.

Theorem 3.3 A function f is in the class CVhpl(s) if, and only if there exists p such that
p ≺ qs, and

f (z) =
∫ z

0
exp

(∫ x

0

p(t) – 1
t

dt
)

dx.

Suppose that Φs,n ∈ ST hpl(s) is such that

zΦ ′
s,n(z)

Φs,n(z)
=

1
(1 – zn)s (z ∈D, n = 1, 2, . . .). (3.3)

Then the functions Φs,n(z) are of the form

Φs,n(z) = z exp

(∫ z

0

qs(tn) – 1
t

dt
)

= z +
s
n

zn+1 +
(n + 2)s2 + ns

4n2 z2n+1

+
4n2s + (9n + 6n2)s2 + (2n2 + 9n + 6)s3

36n3 z3n+1 · · · , (3.4)
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and these are extremal functions for different problems in the class ST hpl(s). For instance

Φs(z) = Φs,1(z) = z exp

(∫ z

0

qs(t) – 1
t

dt
)

= z + sz2 +
3s2 + s

4
z3 +

17s3 + 15s2 + 4s
36

z4 · · · (z ∈D). (3.5)

The special case s = 1/2 gives

Φ1/2,n(z) = z exp

(∫ z

0

q1/2(tn) – 1
t

dt
)

= z
(

4
(1 +

√
1 – zn)2

)1/n

,

= z +
1

2n
zn+1 +

7 – 2n
16n2 z2n+1 + · · ·

and

Φ1/2(z) = Φ1/2,1(z) = z exp

(∫ z

0

q1/2(t) – 1
t

dt
)

=
4z

(1 +
√

1 – z)2

= z +
1
2

z2 +
5

16
z3 + · · · (z ∈D).

Also, suppose that Ks,n ∈ CVhpl(s) is such that

1 +
zK ′′

s,n(z)
K ′

s,n(z)
=

1
(1 – zn)s (z ∈D, n = 1, 2, . . .). (3.6)

Then the functions Ks,n(z) are of the form

Ks,n(z) =
∫ z

0
exp

(∫ w

0

qs(tn) – 1
t

dt
)

dw

= z +
s

n(n + 1)
zn+1 +

(n + 2)s2 + ns
4n2(2n + 1)

z2n+1

+
4n2s + (9n + 6n2)s2 + (2n2 + 9n + 6)s3

36n3(3n + 1)
z3n+1 · · · ,

and the Ks,n are extremal functions for various problems in the class CVhpl(s). The most
interesting special cases are for n = 1

Ks(z) = Ks,1(z) =
∫ z

0
exp

(∫ w

0

qs(t) – 1
t

dt
)

dw =
∫ z

0

Φs(w)
w

dw

= z +
s
2

z2 +
3s2 + s

12
z3 +

17s3 + 15s2 + 4s
144

z4 · · · (z ∈D) (3.7)

and for s = 1/2, n = 1

K1/2(z) = K1/2,1(z) =
∫ z

0

Φ1/2(w)
w

dw

= 8 log

(
2

1 +
√

1 – z

)
+ 4

(√
1 – z – 1√
1 – z + 1

)

= z +
1
4

z2 +
5

48
z3 +

7
128

z4 +
21

640
z5 + · · · (z ∈ D).
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From Theorems 3.2 and 3.3 we obtain the following corollary.

Corollary 3.4 If f ∈ CV(1 – s/2), then f ′ ≺ qs in D. Thus f is univalent in D. The functions
H and G defined by

H(z) = z exp

(∫ z

0

f ′(t) – 1
t

dt
)

, G(z) =
∫ z

0
exp

(∫ x

0

f ′(t) – 1
t

dt
)

dx,

belong to ST hpl(s) and CVhpl(s), respectively.

Examples Defined classes ST hpl(s) and CVhpl(s) are nonempty. The integral representa-
tion given in Theorems 3.2 and 3.3 provides various examples of functions of those classes.
For example, if q1(z) = 1 + B1z with 0 < B1 < 1 – 2–s, then q1 ≺ qs. Hence f1(z) = z exp(B1z) ∈
ST hpl(s), and g1(z) = (eB1z – 1)/B1 ∈ CVhpl(s) (for 0 < B1 < 1 – 2–s), respectively. Since

f2(z) =
z

1 – B2z
, f3(z) =

z
(1 – B3z)2 ,

for 0 < |B2| ≤ s/(2 – s), 0 < |B3| ≤ s/(4 – s) are starlike of order (1 – s/2), applying Corol-
lary 3.4 we see that the appropriate functions

H2(z) =
z

1 – B2z
, H3(z) =

z
1 – B3z

exp

(
B3z

1 – B3z

)

belong to the class ST hpl(s), and the corresponding functions will be elements of CVhpl(s).

Theorem 3.5 The function Φs,n(z), defined by (3.4), is normalized, univalent and convex in
one direction in D for n = 1, 2, . . . , �(21–s + 1)/s�, and convex for n = 1, 2, . . . , �21–s/s�, where
�·� is the floor function.

Proof It is a simple matter to check that Φs,n(z) is normalized by Φs,n(0) = Φ ′
s,n(0) – 1 = 0.

By a definition (3.3) of Φs,n(z), we have

Φ ′
s,n(z)

Φs,n(z)
=

1
z(1 – zn)s .

Hence

�
(

1 +
zΦ ′′

s,n(z)
Φ ′

s,n(z)

)
= �

(
ns

zn

1 – zn +
1

(1 – zn)s

)
,

and from the above we see that

�
(

1 +
zΦ ′′

s,n(z)
Φ ′

s,n(z)

)
> 2–s –

ns
2

.

In order to get univalence, it is convenient to use the result by Umezawa [12], with the
requirement �(1 + zh′′(z)/h′(z)) > –1/2 for univalence of h in D. That condition holds if

2–s –
ns
2

≥ –
1
2

,
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which is satisfied for n = 1, 2, . . . , �(21–s + 1)/s�. We recall that the same condition gives the
convexity in one direction. Furthermore, Φs,n(z) is convex in D if �(1 + zΦ ′′

s,n(z)/Φ ′
s,n(z)) > 0

holds for n ≤ 21–s/s, i.e. for n = 1, 2, . . . , �21–s/s�. �

We have the following from the results in [7], and Lemma 2.1.

Corollary 3.6 If f ∈ ST hpl(s) and |z| = r < 1, then

–Φs(–r) ≤ ∣∣f (z)
∣∣ ≤ Φs(r),

Φ ′
s(–r) ≤ ∣∣f ′(z)

∣∣ ≤ Φ ′
s(r),

∣∣Arg
{

f (z)/z
}∣∣ ≤ max

|z|=r
Arg

{
Φs(z)/z

}
,

f (z)/z ≺ Φs(z)/z (z ∈ D).

Equality holds for some z0 = 0 if and only if f is a rotation of Φs, where Φs is given by (3.5).
Also, if f ∈ ST hpl(s), then either f is a rotation of Φs or

{
w ∈ C : |w| ≤ –Φs(–1)

} ⊂ f (D).

Here –Φs(–1) is understood to be the limit of –Φs(–r) as r tends to 1.

Similar results hold for functions of CVhpl(s).

Corollary 3.7 If f ∈ CVhpl(s) and |z| = r < 1, then

–Ks(–r) ≤ ∣∣f (z)
∣∣ ≤ Ks(r),

K ′
s(–r) ≤ ∣∣f ′(z)

∣∣ ≤ K ′
s(r),

∣∣Arg
{

f ′(z)
}∣∣ ≤ max

|z|=r
Arg

{
K ′

s(z)
}

,

f ′(z) ≺ K ′
s(z) (z ∈ D).

Equality holds for some z0 = 0 if and only if f is a rotation of Ks, where Ks is given by (3.7).
Also, if f ∈ CVhpl(s), then either f is a rotation of Ks or

{
w ∈ C : |w| ≤ –Ks(–1)

} ⊂ f (D).

Here –Ks(–1) is understood to be the limit of –Ks(–r) as r tends to 1.

Theorem 3.8 Let r0 denote the positive root of the equation

1
(1 + r)s =

rs
1 – r

(0 ≤ r < 1). (3.8)

If f ∈ ST hpl(s), then f is convex in the disk |z| < r0.
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Proof Let f ∈ ST hpl(s). Then from Definition 3.1 we obtain

zf ′(z)
f (z)

=
1

(1 – w(z))s (z ∈D),

where w ∈ B. Application of Lemma 2.1 and the well-known inequality for Schwarz func-
tions |w′(z)| ≤ (1 – |w(z)|2)/(1 – |z|2) gives

�
(

1 +
zf ′′(z)
f ′(z)

)
≥ � 1

(1 – w(z))s – s|z| 1 – |w(z)|2
[1 – |w(z)|][1 – |z|2]

≥ 1
(1 + |z|)s –

s|z|
1 – |z| .

The function ψ(r) = 1
(1+r)s – rs

1–r , where r = |z| ∈ [0, 1) is decreasing in [0, 1) with ψ(0) = 1
and ψ(1–) = –∞. Thus, there exists a unique r0 ∈ (0, 1) such that ψ(r0) = 0, and for 0 ≤ r <
r0 we have 0 < ψ(r) ≤ 1. This inequality is equivalent to

1
(1 + r)s >

rs
1 – r

(
r ∈ [0, 1)

)
,

which is satisfied for |z| < r0, where r0 is the only real positive root of (3.8). �

Theorem 3.9 If f ∈ ST hpl(s), then there exists α > 1 such that

�
{

1 +
zf ′′(z)
f ′(z)

}
< α

(|z| = r < 1
)
.

Proof Let f ∈ ST hpl(s). Then, from Definition 3.1, we obtain

zf ′(z)
f (z)

=
1

(1 – w(z))s (z ∈D),

where w ∈ B. By Lemma 2.1 and the inequality for Schwarz functions it follows that

�
(

1 +
zf ′′(z)
f ′(z)

)
≤ � 1

(1 – w(z))s + s|z| 1 – |w(z)|2
[1 – |w(z)|][1 – |z|2]

≤ 1
(1 – |z|)s +

s|z|
1 – |z| .

The function g(r) = 1
(1–r)s + rs

1–r , where r = |z| ∈ (0, 1), is increasing in (0, 1) and g(0) = 1.
Thus for z ∈ D we have g(|z|) > 1. �

Acknowledgements
The authors thank the editor and the anonymous referees for constructive and pertinent suggestions.

Funding
This work was partially supported by the Centre for Innovation and Transfer of Natural Sciences and Engineering
Knowledge, Faculty of Mathematics and Natural Sciences, University of Rzeszow.

Availability of data and materials
Not applicable.



Kanas et al. Journal of Inequalities and Applications        (2019) 2019:246 Page 14 of 14

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Each of the authors contributed to each part of this study equally, all authors read and approved the final manuscript.

Author details
1University of Rzeszow, Rzeszów, Poland. 2Department of Mathematics, Payame Noor University (PNU), P.O. Box,
19395-3697, Tehran, Iran. 3Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 March 2019 Accepted: 27 August 2019

References
1. Brannan, D.A., Kirwan, W.E.: On some classes of bounded univalent functions. J. Lond. Math. Soc. 2(1), 431–443 (1969)
2. Duren, P.L.: Univalent Functions. Grundlehren der Mathematischen Wissenschaften, vol. 259. Springer, New York

(1983)
3. Goodman, A.W.: Univalent Functions, Vols. I and II. Mariner Publishing Company, Tampa (1983)
4. Kanas, S., Sugawa, T.: On conformal representations of the interior of an ellipse. Ann. Acad. Sci. Fenn., Math. 31,

329–348 (2006)
5. Kanas, S., Wisniowska, A.: Conic regions and k-uniform convexity. J. Comput. Appl. Math. 105, 327–336 (1999)
6. Kanas, S., Wisniowska, A.: Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 45(4), 647–658 (2000)
7. Ma, W.C., Minda, D.: A unified treatment of some special classes of univalent functions. In: Li, Z., Ren, F., Yang, L.,

Zhang, S. (eds.) Proc. Int. Conf. on Complex Analysis, pp. 157–169. International Press, Cambridge (1994)
8. Miller, S.S., Mocanu, P.T.: Differential Subordinations: Theory and Applications. Series of Monographs and Textbooks in

Pure and Applied Mathematics, vol. 225. Dekker, New York (2000)
9. Robertson, M.I.: On the theory of univalent functions. Appl. Math., 374–408 (1936)
10. Royster, W.C.: On the univalence of a certain integral. Mich. Math. J. 12(4), 385–387 (1965)
11. Stankiewicz, J.: Quelques problèmes extrèmaux dans les classes des fonctions α-angulairement ètoilèes. Ann. Univ.

Mariae Curie-Skłodowska, Sect. A 20, 59–75 (1966)
12. Umezawa, T.: Analytic functions convex in one direction. J. Math. Soc. Jpn. 4, 194–202 (1952)


	Relations of a planar domains bounded by hyperbolas with families of holomorphic functions
	Abstract
	MSC
	Keywords

	Introduction and motivation
	The class P(qs) and its properties
	The classes SThpl(s), CVhpl(s)
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


